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We introduce I-MOVE, the first publicly available RGB- 3
D/stereo dataset for estimating velocities of independently '§
moving objects. Velocity estimation given RGB-D data is T2
an unsolved problem. The I-MOVE dataset provides an op- %
portunity for generalizable velocity estimation models to be )
. . ol
created and have their performance be accurately and fairly 2
measured. The dataset features various outdoor and in- =
door scenes of single and multiple moving objects. Com- 20
pared to other datasets, I-MOVE is unique because the 5 3 a 5 6 7
RGB-D data and speed for each object are supplied for a Time (seconds)
variety of different settings/environments, objects, and mo- ==+ R5415 —=- R5435 — Physics (GT)

tions. The dataset includes training and test sequences cap-
tured from four different depth camera views and three 4K-
stereo setups. The data are also time-synchronized with
three Doppler radars to provide the magnitude of velocity
ground truth. The I-MOVE dataset includes complex scenes
from moving pedestrians via walking and biking to multiple
rolling objects, all captured with the seven cameras, pro-
viding over 500 Depth/Stereo videos. To access the dataset
please visit www.vast.uccs.edu/imove

1. Introduction

In recent years, the field of video-based computer vi-
sion has lead to exploration of some interesting problems,
such as tracking [3, 35, 23, 25], localization and mapping
[41, 4], action recognition, as well as sentiment analysis
[6, 32]. We present the relatively unexplored task of motion
parameter estimation. Even though motion parameters are
useful for a large variety of applications, estimating them
from videos has not been studied extensively. Motion pa-
rameters are a necessary component in numerous applica-
tions, such as robotic navigation, [10, 1] collision detection,
[3, 18, 20], drone visual tracking[43, 38], and car veloc-
ity estimation for speed monitoring or accident prevention
[16, 19, 5, 42]. In problems, such as collision detection,
it is not only necessary to take into account velocity, but
also that of other surrounding independently moving ob-
jects. Similarly, in robotics, if one wishes to enable a robot

— =+ ZED —— Radar (GT)

Figure 1: -MOVE PROBLEM While there has been consider-
able research in velocity estimation, this paper, with the help of the
proposed I-MOVE dataset, highlights the need for improvement in
the field. In the above plot, we consider a swinging pendulum
and record its instantaneous velocity with the radar. We use the
radars and physics laws to estimate the ground truths. As evident
from the plot, standard approaches for velocity estimations using
vision-based systems do not provide values remotely close to ei-
ther of the ground truth estimates. Further details are available in
Sec. 5

to interact with an independently moving object (e.g. fly-
ing ball, frisbee, or drone), the motion parameters of these
objects need to be accurately estimated to understand the
trajectory and predict the future location of the objects suc-
cessfully. Another important application area for motion
parameter estimation is in the realm of sports. Numer-
ous sports performance analysis of athletes relies on ve-
locity and acceleration information. Most obviously, sports
where speed is the main component (running, biking, swim-
ming, etc.). However, this is also a key component for
sports, such as weightlifting, where the athletes are look-
ing for their lift force. Requiring acceleration information
to estimate and find the best posture/lift technique. Sim-
ilarly, motion parameters may also be useful for training
purposes in various sports, such as skiing, snowboarding,
or skateboarding. Having related data for these problems
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has become so crucial that many synthetic environments
have been created [17, 40, 14]. These synthetic environ-
ments have greatly helped people approach the problem, but
in the unconstrained real-world environments, these tasks
are much more complicated than the research environments.
While most of the constrained application areas could either
document motion parameter information using specialized
sensors, such as Inertial Measurement Unit (IMUs) or from
egocentric videos, these are not viable for unconstrained
scenarios because both of these approaches need to have
access to the object in motion. With a task, such as estimat-
ing the instantaneous velocity of a flying ball, neither IMUs
nor egocentric videos may be used [8, 7, 13, 27]. Since data
from cameras can be easily accessible for such problems,
they become the logical choice to create a more useful and
robust method for motion parameter estimation.

Currently, there are no existing, publicly available
datasets that provide velocity estimation for such compli-
cated tasks; for this reason, we are introducing a new
dataset, -MOVE. Compared to the existing datasets, I-
MOVE is unique in that it provides all of the following:

(a) First to provide instantaneous velocity ground truth
(b) Contains a variety of objects and motions

(¢) Includes both indoor and outdoor scenes

(d) Captured using many types of cameras

(e) Simultaneous captures from a variety of viewing an-
gles

(f) Validation procedure for velocity ground truth

2. Related Datasets

Non-RGB-D vision-based velocity estimation has been
studied for decades [21, 31, 29]. In recent years, with
application of computer vision algorithms to the domains
of robotics [39, 22], autonomous driving cars [15, 24],
vehicle velocity estimation/monitoring[16, 19, 5, 42], and
drones [10], the number of works attempting to estimate
motion parameters has grown dramatically [11, 33]. As a
result, the need for these datasets has also grown greatly
[42, 37, 26, 9, 36]. Many of these works differ in the pri-
mary purpose of the dataset, the ground truth supplied by
the dataset, the environments in which the datasets take
place, and the objects for which motion parameters are es-
timated. In this section, we first recognize the datasets that
either focus on motion parameter estimation or on a related
task. These datasets generally use RGB data or data ac-
quired from non-vision systems. We then discuss the most
similar datasets within the RGB-D realm.

2.1. RGB or Motion Parameter Only Datasets

In the purely RGB world, there are existing datasets,
such as the Multi-Object Tracking (MOT) Benchmark

dataset [30]. This dataset has videos of high pedestrian traf-
fic areas. MOT is an excellent dataset for testing tracking
in complex environments. An effective tracking algorithm
for this dataset, which would allow you to estimate the pixel
space velocity. However, if one wished to estimate the ve-
locity in a meaningful metric (i.e. meters per second) it
would not be possible to do so accurately without substan-
tial intrinsic and extrinsic calibration.

The Human Activity Recognition dataset [2] contains
smartphone accelerometer information collected by numer-
ous people performing various tasks, such as sitting, walk-
ing, and going upstairs. This dataset contains no im-
ages/video and was created with the intent of generating a
model that could predict activity solely from the accelerom-
eter information. Because the problem presented in this
paper aims to estimate the motion parameters of an object
from a video, this dataset cannot be utilized.

An additional human activity recognition-based dataset
is the UTD-MHAD [9], which contains both IMU and video
information. This dataset contains 27 actions performed by
8 subjects (4 females and 4 males). Each subject repeated
each action four times. The actions include motions, such
as a knock on a door, sit to stand, and stand to sit. Because
these actions are extremely limited in their variety and the
length of time they are performed, they are not as desirable
to estimate motion parameters. The dataset also contains no
ground truth for velocity or motion parameters other than
that provided via the IMU.

Another interesting dataset is the HumanEva dataset
[36], which is a synchronized video and motion capture
dataset. It consists of four subjects performing a set of six
predefined actions three times (twice with video and mo-
tion capture, and once with motion capture alone). This
dataset was intended to be used to improve existing three-
dimensional pose estimation and action recognition. If one
wished to use the dataset for motion parameter estimation,
it would be challenging due to the lack of velocity ground
truth, variety of speeds, and types of motions/settings for
the data.

2.2. RGB-D Datasets

While there are a variety of RGB-D datasets, to the best
of our knowledge, there is no RGB-D dataset that contains
an adequate velocity ground truth to evaluate the perfor-
mance of an algorithm/method accurately. The most sim-
ilar dataset is the one proposed in the paper, A Benchmark
for the Evaluation of RGB-D SLAM Systems [37]. The
dataset contains the color and depth images from a Mi-
crosoft Kinect sensor along with the ground truth trajec-
tory of the sensor. The ground truth trajectory was obtained
from a high-accuracy motion capture system with eight high
speed tracking cameras plus the accelerometer data from
the Kinect. However, since the Kinect has limited perfor-
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Figure 2: DATASET COLLECTION SETUP The I-MOVE dataset is aimed at vision-based estimation of the velocity of moving objects.
Above is the setup used to record the RGB-D data of a moving pendulum along with its instantaneous velocity. To record the vision-based
information, we use a variety of stereo camera devices. Each of the cameras, even when belonging to the same family of depth calculation
technique, differ in specifications as summarized in Table 1 and Sec. 3.1. For recording the velocity ground truths, we use three Doppler
radars, specifically three OmniPreSense radars that are positioned such that they are perpendicular to the motion of the object. Certain
scenes, such as pendulum, dropped object, and rolling object on ramp, incorporate additional ground truth from physics-based calculations

further detailed in Sec. 3.

Camera | Resolution | FPS | Horizontal-FOV | Vertical-FOV | Type
ZED 2208 x 1242 | 15 90° 60°
Stereo GoPro (Standard) | 4096 x 3072 15 122.6° 94.4° Stereo RGB
Stereo GoPro (Modified) | 4096 x 3072 15 54.1° 32.1°
Stereo GoPro (Modified) | 4096 x 3072 | 15 64.7° 39.3°
RealSense 415 1280 x 720 30 85° 58°
RealSense 435 1280x 720 | 30 63° 12.5° Stereo RGB-D (IR)
MYNT 1280 x 720 60 122° 76° Monochromatic IR

Table 1: CAMERA INFORMATION Each camera used in the data collection process is different to ensure the velocity estimation model
generated is more likely to generalize to different devices, perspectives, and scenes. The cameras all differ in field of view (FOV), in
addition, there are three different resolutions, frames per second, and types of depth calculation methods. This variety also helps provide
an accurate comparison between each device for settings, objects, and motions with which they perform best.

mance in outdoor environments, the dataset was restricted
to indoor use only. Moreover, the dataset only contained
a single type of object. Hence, even if someone would at-
tempt to create a system for motion parameter estimation
on this dataset, it may not generalize well on other objects.
The DIML RGB-D dataset [26] also contains data collected
with a Kinect. However, this database does include indoor
and outdoor video in addition to object segmentation, mak-
ing it more plausible to conduct tests for motion parameter
estimation purposes. But this dataset does not contain any
velocity ground truth. The dataset also only contains single
camera views, making it likely that any system created to
estimate motion parameters on this dataset may not trans-
late well to data from a different camera source.

3. The I-MOVE Dataset

I-MOVE, unlike any other dataset, contains various ob-
jects subjected to a variety of motions under varying scenes,
lighting, and recorded with seven different cameras. The
seven cameras may be divided into three different cate-
gories, stereo RGB, RGB-D & stereo, and monochromatic
with IR depth. The variety of cameras capturing the same
scene simultaneously allows the user to compare the per-
formance not just of various algorithms but also of various
cameras, allowing one to decide on the best camera for a
specific application. The variety in objects and scenes also
ensures each video differs widely not only in shape and
size of the object but also motion paths, making them suit-
able for training with deep learning-based techniques where
varying data is useful. A break down of what the current I-
MOVE dataset contains can be found in Table 2. -lMOVE
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Figure 3: SAMPLE IMAGES FROM OUR DEPTH CAMERAS Though all the above images provide us depth information from the
scene, each of the cameras differ in specifications such as field of view and frames/sec. These variations can be used in the future to
answer more daunting application-oriented questions, such as what camera should be used for a specific problem regarding a small object,

fast-moving object, or indoor versus outdoor.

also includes the instantaneous velocity of the object in all
of the above scenarios. An essential aspect of any given
dataset is the accuracy of its annotations. Since -MOVE
uses specific sensors for providing instantaneous velocity,
it becomes necessary to validate the performance of these
sensors. In order to understand the extent of any errors
due to these sensors, the dataset includes some carefully
crafted experiments that can be closely related to the laws
of physics. As demonstrated in later sections, these exper-
iments are used to validate the performance of the velocity
Sensors.

3.1. Cameras & Calibration

In order to record the same object movement from var-
ious viewing angles, we used seven different cameras that
can be divided into the following three categories. a) Stereo
RGB: This category consists of a ZED camera and three
stereo GoPro Hero 3s (six GoPros in total because there
are two GoPros per stereo setup). From the three Go-
Pro stereo cameras, we modify the configuration of two
to provide us significant variation in the horizontal field
of view. b) Stereo RGB-D (IR): For the IR-based RG-
B-Ds with stereo, we used Intel RealSense 415 and Intel
RealSense 435 cameras. ¢) Monochromatic IR: For the
monochromatic camera with IR depth, we used the MYNT
Eye S. Further details on the cameras may be found in Ta-
ble 1. For calibrating all of the above cameras, the intrin-
sic and extrinsic calibration information was collected us-
ing the checkerboard approach commonly performed with
OpenCV [34, 12]. These calibration video segments are in-

cluded as part of the dataset in case researchers wish to uti-
lize them. One such calibration segment can be found for
each significant change in lighting, background, or exper-
imental setup. For some of the cameras, such as the ZED
and Intel RealSense, calibration options are also available
within the SDKs; these can be used if a single world coor-
dinate space is not necessary.

This variety in cameras enables researchers to explore
the best camera according to the scenario they are attempt-
ing to address. The variety of scenarios may include the
following: object size, object speed, environmental condi-
tions (indoor/outdoor).

Small objects: For the purpose of velocity estimation, it
is necessary for a system to be able to track the moving
object accurately across frames. If an object is smaller, it
may result in increased difficulty for tracking the object.
With cameras that have a lower resolution, this inconsis-
tent tracking would also significantly decrease the accuracy
of the depth estimation for the object. In such a scenario,
a high-resolution camera like the GoPro with a 4K resolu-
tion may provide much higher performance than the lower
resolution RGB-D cameras. Stereo cameras with a greater
distance/baseline between each lens can also improve the
depth estimation accuracy for objects that are smaller or fur-
ther away.

Fast-moving objects: Similarly, tracking fast-moving
objects can also be extremely difficult. If their size in the
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Scene Number Num.
Objects/ Depth
Differences | Videos
Intrinsic Calibration 2 14
Extrinsic Calibration 2 14
Rolling Object Single Ramp 15 105
Rolling Object Two Ramps 5 35
Rolling Object Two Ramps 4 28
§ (facing ramp)
= Biking 2 14
. Variety movements 2 14
(Walking, Skateboarding,
Biking)

Pedestrians / Walking 3 21
Skateboarding 2 14

Object Throwing 3 21
Pendulum 15 105

Object Drop 3 21

Intrinsic Calibration 1 7

o Extrinsic Calibration 1 7
_§ Pedestrian 3 21
= Object Drop 2 14
© Rolling Object Single Ramp 9 63
Rolling Object Two Ramps 10 70

Table 2: I-MOVE DATASET BREAKDOWN The I-MOVE
dataset is presented above by scene type, then by the respective
amount of differences both in object/setup (i.e. changes in ramp
height or object swung on pendulum). The final column is the cor-
responding quantity of depth videos associated with each type of
scene (there are seven times the number of each scene). If indi-
vidual RGB videos are desired, there are 14 times the number of
each corresponding scene. The I-MOVE dataset contains scenes
varying in objects, motions, settings (indoor and outdoor), and
complexity (from a single ball rolling down a ramp to a biker,
pedestrian, and skateboarder all in the same scene). This large
variety and quantity in the dataset allow for models to be gener-
ated/created that are more likely to generalize to other scenes and
applications as well as testing the velocity estimation model on
both the simple and more complex ends of the spectrum.

frame is large enough, this may not be as significant of an
issue, but for most practical cases, the object will be moving
so quickly that there is a significant amount of blur, making
it difficult to track and lowering the quality of the depth esti-
mation. Higher frame-rate cameras, such as the MYNT and
Intel RealSenses, should be less affected by this problem.
For lower frame-rate devices, this problem can be much
more significant depending on the accuracy of the object
tracker and the form of depth estimation used.

Indoor vs. Outdoor / varying illumination: In many
practical applications of velocity estimation, there is fre-

quently fluctuation in lighting. Where indoor scenarios of-
ten help improve IR-based depth devices accuracy, they also
increase the amount of blur likely for moving objects. In
outdoor situations, the light may be so bright that it lowers
the depth accuracy of IR-based depth devices by a signif-
icant margin. However, it can potentially improve the ac-
curacy of stereo-based devices such as the ZED. Outdoor
situations also increase the likelihood of lighting changes
during a scene/period of time where velocity estimation
would be needed, increasing the likelihood that object track-
ers would have greater difficulty in maintaining a precise
bounding box for the object(s) of interest.

3.2. Collecting Ground Truth Velocity

Since the I-MOVE dataset is aimed at providing stan-
dardization for prediction of velocity for a moving object,
it also needs to provide instantaneous velocity values. To
achieve the instantaneous velocity, we use three doppler
radars. Specifically, we use OmniPreSense doppler radars,
which provide the magnitude of the velocity of objects
within their 78° wide beams. Each radar provides nine mag-
nitudes of velocity sorted by the return radar strength.

To ensure the accuracy of the values provided by the
radars used in our experiments, we design specific exper-
iments where velocity can be estimated using the laws of
physics. These experimental setups include dropping an ob-
ject, rolling an object down a ramp, and swinging an object
like a pendulum. With these known physics-based setups,
it becomes possible to use physics equations to find the in-
stantaneous velocities for each setup, which are used to es-
timate the error in the radars. The equations used for each
of the setups required the more complex instantaneous ve-
locity calculations to be used as opposed to the more com-
mon final velocity equations. This is because we wanted
to obtain velocity for each frame/image within the videos
collected.

Free fall (drop): The velocity data for the object drop was
computed using the commonly known equation V' = % gt?,
where g is the gravitational acceleration (9.8m/ sec?) and t
is the time since the object was released. Because the radars
and cameras are returning timestamp information, the ve-
locity is easily calculated and compared at any given times-
tamp.

Rolling down a ramp: Calculating the instantaneous ve-
locity of a rolling ball/object is slightly more complicated.
Aspects, such as friction between the ball and the ramp, can
prove to be very inaccurate and tedious to measure. Since
the goal of using these physics-based experiments is not to
calibrate the radar but to get an understanding of the va-
lidity of the radar estimates, we assume the ramp and air
to provide zero friction/resistance concerning the ball. The
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final velocity (velocity when the rolling object reaches the
end of the ramp) is calculated using the following equation

Viinal = 4/ % gh, where g is once again gravity and h is the
height of the ramp. Now that the final velocity is obtained,
and given that we know the initial velocity as zero, we can
find the average acceleration using the equation, a = %
by dividing the final velocity by the change in time (the time
it takes to reach the bottom of ramp). We can then use this
average acceleration to find the velocity at any point be-
tween the object starting down the ramp and reaching the
ground. To do this, we use the following equation V; = at.
This equation multiplies the average acceleration down the
ramp a by the time since the release of the object (¢), to pro-
vide us the instantaneous velocity of the object while rolling

down a ramp.

Swinging object / pendulum: To calculate the instanta-
neous velocity for a moving object, we needed to measure
the length (L) of the string to which the object was attached.
The time taken by an object to complete a swing period can

be determined using the equation: P = 27r\/§ . We can

then determine the angle of the object with the vertical 6
at any given time t as 0; = 0Mawcos(%”t), where 074z
is the highest point of the swing (or the initial drop angle),
P is the period of the swing, and ¢ is the time since the
initial drop, at which we are trying to estimate the instan-
taneous velocity. Given this angle 6;, we can then find the
instantaneous velocity of the pendulum with the equation:
V, = \/2.g.L(cos 0y — cosOprqaz). Vi is the instantaneous
velocity at time ¢.

Now that we are able to solve for the instantaneous ve-
locity of the pendulum, we apply this to each time-step
recorded pendulum data. The accuracy of this velocity data
is also significantly improved by the fact that we applied
this to pendulum drops of 20°or less, making it a simple
small-amplitude pendulum problem and improving the data
generated via the prior equations. If the release had been at
a greater angle, it would allow more room for free fall, air
resistance, and rotation/circular swing to affect the accuracy
of the equations used.

Multiple moving objects: For objects which have vari-
ous independently moving parts, such as arms or legs of a
person, collecting ground truth velocity becomes nontrivial,
especially without specialized systems, such as MOCAP.

Each of our radars provided nine velocity estimates,
sorted by the magnitude returned. Consolidating this data
is tedious and hence has been left to future work. For the
scope of this work, we use the velocity reading for the most
significant radar returns, which is roughly the largest nearby
objects.

GoPro GoPro GoPro RS 435 RS415 ZED MYNT
(122.6°) (64.7°) (54.1°) (63°) (85°) (90%) (122°)

A
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Ball
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¥
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Figure 4: SKEMATIC FOR HORIZONTAL FIELD OF VIEW
OF EACH CAMERA Each box represents a 1 foot x 1 foot square
and, as can be seen in the figure, the cameras are placed two feet
apart horizontally. The figure also shows that object has to be
slightly less than five feet away from the center camera (Intel Re-
alSense 435) in order to be in the field of view of all the cameras.
We conducted various scenes with object’s motions (such as a ball
rolling down a ramp) within the field of view of all devices as can
be seen above.

3.3. Setup

The apparatus used for data collection was meticu-
lously crafted to provide reliable results in various loca-
tions/scenes. The seven cameras were mounted on an angle
bar, as can be seen in Figure 2. This allows us provides a
significant difference in the X-axis and a slight difference in
the Z-axis for each camera.

The cameras were mounted identically at each loca-
tion such that each camera’s abilities can also be evaluated
(range, quality, accuracy, etc.) in different settings.

Due to the wide variety in object size, scene layouts, and
environments where data was collected, the apparatus was
created to accommodate these differences. The cameras all
have a different field of view, making the order and spacing
of them vital components, so the key actions/movements of
the object can be captured by every device.

Given our purposeful placement based on the field of
view of the cameras, see Figure 4, we were able to obtain
a two foot spacing between each camera. This allowed for
a fairly significant difference in camera perspective while
still having all cameras capturing the object, and its most
valuable movements. The set up was arranged from left
to right (facing the lens) as follows: Stereo GoPro (stan-
dard), Stereo GoPro (modified 64), Stereo GoPro (modi-
fied 54), Intel RealSense 415, Intel RealSense 435, ZED,
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MYNT Eye S (Monochromatic), which can be seen in Fig-
ure 2. This rig allows us to have a portable and consis-
tent system, which is essential given the numerous loca-
tions/environments where the data was collected.

3.4. Synchronization of Sensors

In addition to calibration, synchronization was also es-
sential because the same motion ground truth was used for
different cameras and perspective. For this reason, it was
also crucial to ensure the radars providing the ground (that
is not obtainable via physics-based setups/equations) were
time synced with the cameras so that the ground truth was
accurately applied to the appropriate frame from each stereo
camera setup. To do this, we time synced the computers
used to collect the information from both OmniPreSense
radars also to collect the Intel RealSense 435 and 415 data.
Both radars were set to return their timestamp information
in addition to the velocity magnitudes. This synchroniza-
tion allowed us to use a flash event, where we utilized a
camera flash lasting four milliseconds. The flash allowed
the moment to be visually captured by all the stereo cam-
eras thus using the frame(s) with flash to appropriately sync
the velocity information from the radars to the correspond-
ing camera frames.

4. Evaluation

Our framework is a platform for a fair comparison of
state-of-the-art velocity estimation methods. We provide
authors with standardized ground truth data, evaluation
metrics, and scripts to ensure that the velocity estimation
method is isolated from other components. This approach
towards evaluation provides a more fair and accurate com-
parison. We employ the commonly known yet valuable
Mean Absolute Difference (MAD) comparison metric.

n

1
MAD = ﬁZ‘x“ 7IE¢2|

=1

Where x;; is the estimated magnitude of the velocity and
x ;9 is ground truth magnitude of velocity, with n being the
number of ground truth measurements for each scene. The
evaluation script uses the ground truth radar data associated
with the scene/video and subtracts the corresponding ve-
locity estimation given for each timestamp. For frames in
which there is not a velocity estimation, the script will in-
terpolate based on the existing data. For each video, the
MAD will be initiated/calculated from the beginning of the
object’s motion until either a specified amount of time has
passed or the motion of the object has ceased. Because of
the large number of scenes and variety in motion and object
size, we use the ramp, drop, and pendulum scenes to ade-
quately evaluate each velocity estimation method. The drop

and ramp scenes have different yet still mostly linear mo-
tions, whereas the pendulum scene provides more complex
motion and changes in the direction of the motion. Using
these scenes paired with an outdoor example to test the ef-
fectiveness of the model in a different setting allows us to
have a better performance measure of each velocity estima-
tion model tested on the dataset.

5. Baseline

As a starting point for the [-MOVE dataset, we used a
simple multi-stage approach to estimate the velocity vector
and its magnitude. We first automatically detect the mov-
ing object’s location, then implement a tracker to return the
position of the object throughout the scene. Finally, we im-
plement a Kalman filter to estimate the speed of the object
for each frame. We briefly outline each component and the
results of our baseline, but for greater detail and access to
the code, please visit the VAST GitHub.

5.1. Object Detection

In order to identify the object automatically, we utilize
a motion detection approach to identify the object(s) of
interest and initialize the tracker with their location. We
first take the RGB / color frame and apply a mild Gaus-
sian blur in order to make smaller, insignificant motions
from each frame unnoticed. We then apply the built-in
OpenCV Background Subtractor KNN and save the first
few frames. We use these frames to compare against fu-
ture frames for the difference in pixels. When there is a
significant difference/movement from the initial frames, we
identify the area/bounding box around the movement and
initialize the tracker with the bounding box corners. This
approach, although effective, does have the limitation of
missing some of the initial movement. For shorter object
tracking events/motions this proved to be a significant is-
sue.

5.2. Object Tracking

Once the bounding box in returned by the motion de-
tection algorithm we use it as the initializing bounding
box for the Discriminative Correlation Filter Tracker with
Channel and Spatial Reliability (CSRT) [28]. The CSRT
tracker tracks the object throughout the RGB frame, return-
ing its bounding box location in two-dimensional space.
We then take the center pixels of this bounding box and,
using the corresponding camera’s API, project the two-
dimensional pixel to its three-dimensional coordinates. The
three-dimensional coordinates are then averaged and re-
turned as one three-dimensional coordinate for the object in
the respective frame. These three-dimensional coordinates,
along with their frame’s timestamps are then used as inputs
to a Kalman filter.
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Source Pendulum °Ramp Drop Outdoor 8° Ramp
Radar (R) | Physics (P) R [ P R [ P R | P
Radar - 0.152 - 0.016 - 0.068 - 0.023
ZED 1.090 1.108 0.108 | 0.274 | 1.846 | 1.215 | 0.255 0.245
RealSense 435 1.743 1.589 0.441 | 0.393 | 1.868 | 1.216 | 0.506 0.410
RealSense 415 0.283 0.275 0.199 | 0.153 | 2.083 | 2.145 | 0.269 0.208

Table 3: BASELINE RESULTS For each physics-based setup we evaluated a scene using the Mean Absolute Difference (MAD) with
meters per second as the units. To evaluate the performance of the radar, we compared its velocity estimates to those from the physics-based
equation. Each of the above cameras (ZED, Realsense 415, and 435) were evaluated against both the radar data and the physics-based
velocity estimates. The results make it clear that there are still significant improvements to be made before the problem is solved. There are
somewhat reasonable results for each of the cameras in the indoor and outdoor ramp scenes; however for the remaining scenes (pendulum
and dropped object), especially for the high speed of the dropped object, results are substantially worse.

5.3. Kalman Filter

Speed estimation of the object being tracked is done with
a Kalman filter. Our Kalman filter assumes constant accel-
eration and with a state vector of:
X:[zyzxyzxyz]

Within the Kalman Filter, we used the state transition
matrix A =

1 00 At 0 0 2i(Ap? 0 0
010 0 At 0 0 1(At)? 0
001 0 0 At 0 0 1(At)?
000 1 0 0 At 0 0
000 0O 1 0 0 At 0
000 0 0 1 0 0 At
000 0 0 O 1 0 0
000 0 0 O 0 1 0
000 0O 0 O 0 0 1

where change in time (At) used in the state transition matrix
is calculated by finding the difference in the time between
each frame’s timestamps. The Kalman is updated using the
3D point measurement (estimated location) from the infor-
mation returned by the CSRT tracker. The magnitude of the
velocity of the object is then computed from the Kalman es-
timated velocity for each frame, by taking /%2 + 52 + 22,
where %, y, and 2 are from the state vector X. This ap-
proach allows us to estimate the velocity for every frame/at
every timestamp provided by the corresponding camera.

5.4. Current Results

Though tests were conducted on numerous videos, we
show a few examples from our current baseline in Table 3
and Figure 1. For easier and more gradual situations, such
as a rolling object going down a slightly inclined ramp, vi-
able speed estimations can be made. However, for more
complex and quick motions, there is still a large and un-
solved problem. For example, although we were able to
obtain fairly good estimations for an approximately ~ 8°

ramp in the indoor and outdoor videos with the RealSense
415, that sensor was completely unable to return good esti-
mations for a dropped/falling object. We saw similar diffi-
culties with dropped/falling objects in the other cameras as
well. The RealSense 435 and ZED cameras also seemed to
struggle with the pendulum videos where the greatly alter-
nating depth caused problems when the tracker’s bounding
box was slightly off of the pendulum. These baseline re-
sults for rather simple motions make it clear there is much
work to be done on multiple aspects of this problem, from
the automatic object tracker to the motion estimation al-
gorithm/approach itself. For multiple moving objects (not
shown), the baseline results are even worse.

6. Conclusion & Future Work

This paper presented a novel, challenging set of mo-
tion sequences and their corresponding magnitude of veloc-
ities within the I-MOVE dataset. This dataset is intended
to help researchers progress and refine their approaches to
produce more robust velocity of estimation of an object
being tracked. We identify several drawbacks and limita-
tions within the existing datasets in addition to explaining
the differences between our dataset and ground truths. We
also explain how no pre-existing datasets contain all of the
necessary information to adequately approach the problem
of independently moving object velocity estimation. The
problem of velocity estimation for an independently moving
object given RGB-D data is certainly not currently solved.
However, given public access to the -MOVE dataset it is
now much more feasible for people to create and test their
approach to solving this problem. In future works we plan
to use the three radars placed on a calibration board to de-
velop novel stereo-radar approaches to extract three dimen-
sional velocity vectors as an additional ground truth. We
also intend to use moving cameras so the dataset will have
the additional diversity of both stationary and dynamic cam-
era data. All updates and modifications to the dataset will
be available at www.vast.uccs.edu/imove
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