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Abstract

We introduce I-MOVE, the first publicly available RGB-

D/stereo dataset for estimating velocities of independently

moving objects. Velocity estimation given RGB-D data is

an unsolved problem. The I-MOVE dataset provides an op-

portunity for generalizable velocity estimation models to be

created and have their performance be accurately and fairly

measured. The dataset features various outdoor and in-

door scenes of single and multiple moving objects. Com-

pared to other datasets, I-MOVE is unique because the

RGB-D data and speed for each object are supplied for a

variety of different settings/environments, objects, and mo-

tions. The dataset includes training and test sequences cap-

tured from four different depth camera views and three 4K-

stereo setups. The data are also time-synchronized with

three Doppler radars to provide the magnitude of velocity

ground truth. The I-MOVE dataset includes complex scenes

from moving pedestrians via walking and biking to multiple

rolling objects, all captured with the seven cameras, pro-

viding over 500 Depth/Stereo videos. To access the dataset

please visit www.vast.uccs.edu/imove

1. Introduction

In recent years, the field of video-based computer vi-

sion has lead to exploration of some interesting problems,

such as tracking [3, 35, 23, 25], localization and mapping

[41, 4], action recognition, as well as sentiment analysis

[6, 32]. We present the relatively unexplored task of motion

parameter estimation. Even though motion parameters are

useful for a large variety of applications, estimating them

from videos has not been studied extensively. Motion pa-

rameters are a necessary component in numerous applica-

tions, such as robotic navigation, [10, 1] collision detection,

[3, 18, 20], drone visual tracking[43, 38], and car veloc-

ity estimation for speed monitoring or accident prevention

[16, 19, 5, 42]. In problems, such as collision detection,

it is not only necessary to take into account velocity, but

also that of other surrounding independently moving ob-

jects. Similarly, in robotics, if one wishes to enable a robot

Figure 1: I-MOVE PROBLEM While there has been consider-

able research in velocity estimation, this paper, with the help of the

proposed I-MOVE dataset, highlights the need for improvement in

the field. In the above plot, we consider a swinging pendulum

and record its instantaneous velocity with the radar. We use the

radars and physics laws to estimate the ground truths. As evident

from the plot, standard approaches for velocity estimations using

vision-based systems do not provide values remotely close to ei-

ther of the ground truth estimates. Further details are available in

Sec. 5

to interact with an independently moving object (e.g. fly-

ing ball, frisbee, or drone), the motion parameters of these

objects need to be accurately estimated to understand the

trajectory and predict the future location of the objects suc-

cessfully. Another important application area for motion

parameter estimation is in the realm of sports. Numer-

ous sports performance analysis of athletes relies on ve-

locity and acceleration information. Most obviously, sports

where speed is the main component (running, biking, swim-

ming, etc.). However, this is also a key component for

sports, such as weightlifting, where the athletes are look-

ing for their lift force. Requiring acceleration information

to estimate and find the best posture/lift technique. Sim-

ilarly, motion parameters may also be useful for training

purposes in various sports, such as skiing, snowboarding,

or skateboarding. Having related data for these problems
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has become so crucial that many synthetic environments

have been created [17, 40, 14]. These synthetic environ-

ments have greatly helped people approach the problem, but

in the unconstrained real-world environments, these tasks

are much more complicated than the research environments.

While most of the constrained application areas could either

document motion parameter information using specialized

sensors, such as Inertial Measurement Unit (IMUs) or from

egocentric videos, these are not viable for unconstrained

scenarios because both of these approaches need to have

access to the object in motion. With a task, such as estimat-

ing the instantaneous velocity of a flying ball, neither IMUs

nor egocentric videos may be used [8, 7, 13, 27]. Since data

from cameras can be easily accessible for such problems,

they become the logical choice to create a more useful and

robust method for motion parameter estimation.

Currently, there are no existing, publicly available

datasets that provide velocity estimation for such compli-

cated tasks; for this reason, we are introducing a new

dataset, I-MOVE. Compared to the existing datasets, I-

MOVE is unique in that it provides all of the following:

(a) First to provide instantaneous velocity ground truth

(b) Contains a variety of objects and motions

(c) Includes both indoor and outdoor scenes

(d) Captured using many types of cameras

(e) Simultaneous captures from a variety of viewing an-

gles

(f) Validation procedure for velocity ground truth

2. Related Datasets

Non-RGB-D vision-based velocity estimation has been

studied for decades [21, 31, 29]. In recent years, with

application of computer vision algorithms to the domains

of robotics [39, 22], autonomous driving cars [15, 24],

vehicle velocity estimation/monitoring[16, 19, 5, 42], and

drones [10], the number of works attempting to estimate

motion parameters has grown dramatically [11, 33]. As a

result, the need for these datasets has also grown greatly

[42, 37, 26, 9, 36]. Many of these works differ in the pri-

mary purpose of the dataset, the ground truth supplied by

the dataset, the environments in which the datasets take

place, and the objects for which motion parameters are es-

timated. In this section, we first recognize the datasets that

either focus on motion parameter estimation or on a related

task. These datasets generally use RGB data or data ac-

quired from non-vision systems. We then discuss the most

similar datasets within the RGB-D realm.

2.1. RGB or Motion Parameter Only Datasets

In the purely RGB world, there are existing datasets,

such as the Multi-Object Tracking (MOT) Benchmark

dataset [30]. This dataset has videos of high pedestrian traf-

fic areas. MOT is an excellent dataset for testing tracking

in complex environments. An effective tracking algorithm

for this dataset, which would allow you to estimate the pixel

space velocity. However, if one wished to estimate the ve-

locity in a meaningful metric (i.e. meters per second) it

would not be possible to do so accurately without substan-

tial intrinsic and extrinsic calibration.

The Human Activity Recognition dataset [2] contains

smartphone accelerometer information collected by numer-

ous people performing various tasks, such as sitting, walk-

ing, and going upstairs. This dataset contains no im-

ages/video and was created with the intent of generating a

model that could predict activity solely from the accelerom-

eter information. Because the problem presented in this

paper aims to estimate the motion parameters of an object

from a video, this dataset cannot be utilized.

An additional human activity recognition-based dataset

is the UTD-MHAD [9], which contains both IMU and video

information. This dataset contains 27 actions performed by

8 subjects (4 females and 4 males). Each subject repeated

each action four times. The actions include motions, such

as a knock on a door, sit to stand, and stand to sit. Because

these actions are extremely limited in their variety and the

length of time they are performed, they are not as desirable

to estimate motion parameters. The dataset also contains no

ground truth for velocity or motion parameters other than

that provided via the IMU.

Another interesting dataset is the HumanEva dataset

[36], which is a synchronized video and motion capture

dataset. It consists of four subjects performing a set of six

predefined actions three times (twice with video and mo-

tion capture, and once with motion capture alone). This

dataset was intended to be used to improve existing three-

dimensional pose estimation and action recognition. If one

wished to use the dataset for motion parameter estimation,

it would be challenging due to the lack of velocity ground

truth, variety of speeds, and types of motions/settings for

the data.

2.2. RGB­D Datasets

While there are a variety of RGB-D datasets, to the best

of our knowledge, there is no RGB-D dataset that contains

an adequate velocity ground truth to evaluate the perfor-

mance of an algorithm/method accurately. The most sim-

ilar dataset is the one proposed in the paper, A Benchmark

for the Evaluation of RGB-D SLAM Systems [37]. The

dataset contains the color and depth images from a Mi-

crosoft Kinect sensor along with the ground truth trajec-

tory of the sensor. The ground truth trajectory was obtained

from a high-accuracy motion capture system with eight high

speed tracking cameras plus the accelerometer data from

the Kinect. However, since the Kinect has limited perfor-
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Figure 2: DATASET COLLECTION SETUP The I-MOVE dataset is aimed at vision-based estimation of the velocity of moving objects.

Above is the setup used to record the RGB-D data of a moving pendulum along with its instantaneous velocity. To record the vision-based

information, we use a variety of stereo camera devices. Each of the cameras, even when belonging to the same family of depth calculation

technique, differ in specifications as summarized in Table 1 and Sec. 3.1. For recording the velocity ground truths, we use three Doppler

radars, specifically three OmniPreSense radars that are positioned such that they are perpendicular to the motion of the object. Certain

scenes, such as pendulum, dropped object, and rolling object on ramp, incorporate additional ground truth from physics-based calculations

further detailed in Sec. 3.

Camera Resolution FPS Horizontal-FOV Vertical-FOV Type

ZED 2208 x 1242 15 90◦ 60◦

Stereo RGB
Stereo GoPro (Standard) 4096 x 3072 15 122.6◦ 94.4◦

Stereo GoPro (Modified) 4096 x 3072 15 54.1◦ 32.1◦

Stereo GoPro (Modified) 4096 x 3072 15 64.7◦ 39.3◦

RealSense 415 1280 x 720 30 85◦ 58◦
Stereo RGB-D (IR)

RealSense 435 1280 x 720 30 63◦ 42.5◦

MYNT 1280 x 720 60 122◦ 76◦ Monochromatic IR

Table 1: CAMERA INFORMATION Each camera used in the data collection process is different to ensure the velocity estimation model

generated is more likely to generalize to different devices, perspectives, and scenes. The cameras all differ in field of view (FOV), in

addition, there are three different resolutions, frames per second, and types of depth calculation methods. This variety also helps provide

an accurate comparison between each device for settings, objects, and motions with which they perform best.

mance in outdoor environments, the dataset was restricted

to indoor use only. Moreover, the dataset only contained

a single type of object. Hence, even if someone would at-

tempt to create a system for motion parameter estimation

on this dataset, it may not generalize well on other objects.

The DIML RGB-D dataset [26] also contains data collected

with a Kinect. However, this database does include indoor

and outdoor video in addition to object segmentation, mak-

ing it more plausible to conduct tests for motion parameter

estimation purposes. But this dataset does not contain any

velocity ground truth. The dataset also only contains single

camera views, making it likely that any system created to

estimate motion parameters on this dataset may not trans-

late well to data from a different camera source.

3. The I-MOVE Dataset

I-MOVE, unlike any other dataset, contains various ob-

jects subjected to a variety of motions under varying scenes,

lighting, and recorded with seven different cameras. The

seven cameras may be divided into three different cate-

gories, stereo RGB, RGB-D & stereo, and monochromatic

with IR depth. The variety of cameras capturing the same

scene simultaneously allows the user to compare the per-

formance not just of various algorithms but also of various

cameras, allowing one to decide on the best camera for a

specific application. The variety in objects and scenes also

ensures each video differs widely not only in shape and

size of the object but also motion paths, making them suit-

able for training with deep learning-based techniques where

varying data is useful. A break down of what the current I-

MOVE dataset contains can be found in Table 2. I-MOVE
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(a) Intel RealSense 415 (b) Intel RealSense 435

(c) ZED (d) MYNT

Figure 3: SAMPLE IMAGES FROM OUR DEPTH CAMERAS Though all the above images provide us depth information from the

scene, each of the cameras differ in specifications such as field of view and frames/sec. These variations can be used in the future to

answer more daunting application-oriented questions, such as what camera should be used for a specific problem regarding a small object,

fast-moving object, or indoor versus outdoor.

also includes the instantaneous velocity of the object in all

of the above scenarios. An essential aspect of any given

dataset is the accuracy of its annotations. Since I-MOVE

uses specific sensors for providing instantaneous velocity,

it becomes necessary to validate the performance of these

sensors. In order to understand the extent of any errors

due to these sensors, the dataset includes some carefully

crafted experiments that can be closely related to the laws

of physics. As demonstrated in later sections, these exper-

iments are used to validate the performance of the velocity

sensors.

3.1. Cameras & Calibration

In order to record the same object movement from var-

ious viewing angles, we used seven different cameras that

can be divided into the following three categories. a) Stereo

RGB: This category consists of a ZED camera and three

stereo GoPro Hero 3s (six GoPros in total because there

are two GoPros per stereo setup). From the three Go-

Pro stereo cameras, we modify the configuration of two

to provide us significant variation in the horizontal field

of view. b) Stereo RGB-D (IR): For the IR-based RG-

B-Ds with stereo, we used Intel RealSense 415 and Intel

RealSense 435 cameras. c) Monochromatic IR: For the

monochromatic camera with IR depth, we used the MYNT

Eye S. Further details on the cameras may be found in Ta-

ble 1. For calibrating all of the above cameras, the intrin-

sic and extrinsic calibration information was collected us-

ing the checkerboard approach commonly performed with

OpenCV [34, 12]. These calibration video segments are in-

cluded as part of the dataset in case researchers wish to uti-

lize them. One such calibration segment can be found for

each significant change in lighting, background, or exper-

imental setup. For some of the cameras, such as the ZED

and Intel RealSense, calibration options are also available

within the SDKs; these can be used if a single world coor-

dinate space is not necessary.

This variety in cameras enables researchers to explore

the best camera according to the scenario they are attempt-

ing to address. The variety of scenarios may include the

following: object size, object speed, environmental condi-

tions (indoor/outdoor).

Small objects: For the purpose of velocity estimation, it

is necessary for a system to be able to track the moving

object accurately across frames. If an object is smaller, it

may result in increased difficulty for tracking the object.

With cameras that have a lower resolution, this inconsis-

tent tracking would also significantly decrease the accuracy

of the depth estimation for the object. In such a scenario,

a high-resolution camera like the GoPro with a 4K resolu-

tion may provide much higher performance than the lower

resolution RGB-D cameras. Stereo cameras with a greater

distance/baseline between each lens can also improve the

depth estimation accuracy for objects that are smaller or fur-

ther away.

Fast-moving objects: Similarly, tracking fast-moving

objects can also be extremely difficult. If their size in the
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Scene Number

Objects/

Differences

Num.

Depth

Videos

In
d

o
o

r

Intrinsic Calibration 2 14

Extrinsic Calibration 2 14

Rolling Object Single Ramp 15 105

Rolling Object Two Ramps 5 35

Rolling Object Two Ramps

(facing ramp)

4 28

Biking 2 14

Variety movements

(Walking, Skateboarding,

Biking)

2 14

Pedestrians / Walking 3 21

Skateboarding 2 14

Object Throwing 3 21

Pendulum 15 105

Object Drop 3 21

O
u

td
o

o
r

Intrinsic Calibration 1 7

Extrinsic Calibration 1 7

Pedestrian 3 21

Object Drop 2 14

Rolling Object Single Ramp 9 63

Rolling Object Two Ramps 10 70

Table 2: I-MOVE DATASET BREAKDOWN The I-MOVE

dataset is presented above by scene type, then by the respective

amount of differences both in object/setup (i.e. changes in ramp

height or object swung on pendulum). The final column is the cor-

responding quantity of depth videos associated with each type of

scene (there are seven times the number of each scene). If indi-

vidual RGB videos are desired, there are 14 times the number of

each corresponding scene. The I-MOVE dataset contains scenes

varying in objects, motions, settings (indoor and outdoor), and

complexity (from a single ball rolling down a ramp to a biker,

pedestrian, and skateboarder all in the same scene). This large

variety and quantity in the dataset allow for models to be gener-

ated/created that are more likely to generalize to other scenes and

applications as well as testing the velocity estimation model on

both the simple and more complex ends of the spectrum.

frame is large enough, this may not be as significant of an

issue, but for most practical cases, the object will be moving

so quickly that there is a significant amount of blur, making

it difficult to track and lowering the quality of the depth esti-

mation. Higher frame-rate cameras, such as the MYNT and

Intel RealSenses, should be less affected by this problem.

For lower frame-rate devices, this problem can be much

more significant depending on the accuracy of the object

tracker and the form of depth estimation used.

Indoor vs. Outdoor / varying illumination: In many

practical applications of velocity estimation, there is fre-

quently fluctuation in lighting. Where indoor scenarios of-

ten help improve IR-based depth devices accuracy, they also

increase the amount of blur likely for moving objects. In

outdoor situations, the light may be so bright that it lowers

the depth accuracy of IR-based depth devices by a signif-

icant margin. However, it can potentially improve the ac-

curacy of stereo-based devices such as the ZED. Outdoor

situations also increase the likelihood of lighting changes

during a scene/period of time where velocity estimation

would be needed, increasing the likelihood that object track-

ers would have greater difficulty in maintaining a precise

bounding box for the object(s) of interest.

3.2. Collecting Ground Truth Velocity

Since the I-MOVE dataset is aimed at providing stan-

dardization for prediction of velocity for a moving object,

it also needs to provide instantaneous velocity values. To

achieve the instantaneous velocity, we use three doppler

radars. Specifically, we use OmniPreSense doppler radars,

which provide the magnitude of the velocity of objects

within their 78◦ wide beams. Each radar provides nine mag-

nitudes of velocity sorted by the return radar strength.

To ensure the accuracy of the values provided by the

radars used in our experiments, we design specific exper-

iments where velocity can be estimated using the laws of

physics. These experimental setups include dropping an ob-

ject, rolling an object down a ramp, and swinging an object

like a pendulum. With these known physics-based setups,

it becomes possible to use physics equations to find the in-

stantaneous velocities for each setup, which are used to es-

timate the error in the radars. The equations used for each

of the setups required the more complex instantaneous ve-

locity calculations to be used as opposed to the more com-

mon final velocity equations. This is because we wanted

to obtain velocity for each frame/image within the videos

collected.

Free fall (drop): The velocity data for the object drop was

computed using the commonly known equation V = 1

2
gt2,

where g is the gravitational acceleration (9.8m/sec2) and t
is the time since the object was released. Because the radars

and cameras are returning timestamp information, the ve-

locity is easily calculated and compared at any given times-

tamp.

Rolling down a ramp: Calculating the instantaneous ve-

locity of a rolling ball/object is slightly more complicated.

Aspects, such as friction between the ball and the ramp, can

prove to be very inaccurate and tedious to measure. Since

the goal of using these physics-based experiments is not to

calibrate the radar but to get an understanding of the va-

lidity of the radar estimates, we assume the ramp and air

to provide zero friction/resistance concerning the ball. The
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final velocity (velocity when the rolling object reaches the

end of the ramp) is calculated using the following equation

Vfinal =
√

10

7
gh, where g is once again gravity and h is the

height of the ramp. Now that the final velocity is obtained,

and given that we know the initial velocity as zero, we can

find the average acceleration using the equation, a =
Vfinal

∆t

by dividing the final velocity by the change in time (the time

it takes to reach the bottom of ramp). We can then use this

average acceleration to find the velocity at any point be-

tween the object starting down the ramp and reaching the

ground. To do this, we use the following equation Vt = at.
This equation multiplies the average acceleration down the

ramp a by the time since the release of the object (t), to pro-

vide us the instantaneous velocity of the object while rolling

down a ramp.

Swinging object / pendulum: To calculate the instanta-

neous velocity for a moving object, we needed to measure

the length (L) of the string to which the object was attached.

The time taken by an object to complete a swing period can

be determined using the equation: P = 2π
√

L
g

. We can

then determine the angle of the object with the vertical θ
at any given time t as θt = θMaxcos(

2π
P
t), where θMax

is the highest point of the swing (or the initial drop angle),

P is the period of the swing, and t is the time since the

initial drop, at which we are trying to estimate the instan-

taneous velocity. Given this angle θt, we can then find the

instantaneous velocity of the pendulum with the equation:

Vt =
√

2.g.L(cos θt − cos θMax). Vt is the instantaneous

velocity at time t.

Now that we are able to solve for the instantaneous ve-

locity of the pendulum, we apply this to each time-step

recorded pendulum data. The accuracy of this velocity data

is also significantly improved by the fact that we applied

this to pendulum drops of 20◦or less, making it a simple

small-amplitude pendulum problem and improving the data

generated via the prior equations. If the release had been at

a greater angle, it would allow more room for free fall, air

resistance, and rotation/circular swing to affect the accuracy

of the equations used.

Multiple moving objects: For objects which have vari-

ous independently moving parts, such as arms or legs of a

person, collecting ground truth velocity becomes nontrivial,

especially without specialized systems, such as MOCAP.

Each of our radars provided nine velocity estimates,

sorted by the magnitude returned. Consolidating this data

is tedious and hence has been left to future work. For the

scope of this work, we use the velocity reading for the most

significant radar returns, which is roughly the largest nearby

objects.

Figure 4: SKEMATIC FOR HORIZONTAL FIELD OF VIEW

OF EACH CAMERA Each box represents a 1 foot x 1 foot square

and, as can be seen in the figure, the cameras are placed two feet

apart horizontally. The figure also shows that object has to be

slightly less than five feet away from the center camera (Intel Re-

alSense 435) in order to be in the field of view of all the cameras.

We conducted various scenes with object’s motions (such as a ball

rolling down a ramp) within the field of view of all devices as can

be seen above.

3.3. Setup

The apparatus used for data collection was meticu-

lously crafted to provide reliable results in various loca-

tions/scenes. The seven cameras were mounted on an angle

bar, as can be seen in Figure 2. This allows us provides a

significant difference in the X-axis and a slight difference in

the Z-axis for each camera.

The cameras were mounted identically at each loca-

tion such that each camera’s abilities can also be evaluated

(range, quality, accuracy, etc.) in different settings.

Due to the wide variety in object size, scene layouts, and

environments where data was collected, the apparatus was

created to accommodate these differences. The cameras all

have a different field of view, making the order and spacing

of them vital components, so the key actions/movements of

the object can be captured by every device.

Given our purposeful placement based on the field of

view of the cameras, see Figure 4, we were able to obtain

a two foot spacing between each camera. This allowed for

a fairly significant difference in camera perspective while

still having all cameras capturing the object, and its most

valuable movements. The set up was arranged from left

to right (facing the lens) as follows: Stereo GoPro (stan-

dard), Stereo GoPro (modified 64), Stereo GoPro (modi-

fied 54), Intel RealSense 415, Intel RealSense 435, ZED,
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MYNT Eye S (Monochromatic), which can be seen in Fig-

ure 2. This rig allows us to have a portable and consis-

tent system, which is essential given the numerous loca-

tions/environments where the data was collected.

3.4. Synchronization of Sensors

In addition to calibration, synchronization was also es-

sential because the same motion ground truth was used for

different cameras and perspective. For this reason, it was

also crucial to ensure the radars providing the ground (that

is not obtainable via physics-based setups/equations) were

time synced with the cameras so that the ground truth was

accurately applied to the appropriate frame from each stereo

camera setup. To do this, we time synced the computers

used to collect the information from both OmniPreSense

radars also to collect the Intel RealSense 435 and 415 data.

Both radars were set to return their timestamp information

in addition to the velocity magnitudes. This synchroniza-

tion allowed us to use a flash event, where we utilized a

camera flash lasting four milliseconds. The flash allowed

the moment to be visually captured by all the stereo cam-

eras thus using the frame(s) with flash to appropriately sync

the velocity information from the radars to the correspond-

ing camera frames.

4. Evaluation

Our framework is a platform for a fair comparison of

state-of-the-art velocity estimation methods. We provide

authors with standardized ground truth data, evaluation

metrics, and scripts to ensure that the velocity estimation

method is isolated from other components. This approach

towards evaluation provides a more fair and accurate com-

parison. We employ the commonly known yet valuable

Mean Absolute Difference (MAD) comparison metric.

MAD =
1

n

n
∑

i=1

|xi1 − xi2|

Where xi1 is the estimated magnitude of the velocity and

xi2 is ground truth magnitude of velocity, with n being the

number of ground truth measurements for each scene. The

evaluation script uses the ground truth radar data associated

with the scene/video and subtracts the corresponding ve-

locity estimation given for each timestamp. For frames in

which there is not a velocity estimation, the script will in-

terpolate based on the existing data. For each video, the

MAD will be initiated/calculated from the beginning of the

object’s motion until either a specified amount of time has

passed or the motion of the object has ceased. Because of

the large number of scenes and variety in motion and object

size, we use the ramp, drop, and pendulum scenes to ade-

quately evaluate each velocity estimation method. The drop

and ramp scenes have different yet still mostly linear mo-

tions, whereas the pendulum scene provides more complex

motion and changes in the direction of the motion. Using

these scenes paired with an outdoor example to test the ef-

fectiveness of the model in a different setting allows us to

have a better performance measure of each velocity estima-

tion model tested on the dataset.

5. Baseline

As a starting point for the I-MOVE dataset, we used a

simple multi-stage approach to estimate the velocity vector

and its magnitude. We first automatically detect the mov-

ing object’s location, then implement a tracker to return the

position of the object throughout the scene. Finally, we im-

plement a Kalman filter to estimate the speed of the object

for each frame. We briefly outline each component and the

results of our baseline, but for greater detail and access to

the code, please visit the VAST GitHub.

5.1. Object Detection

In order to identify the object automatically, we utilize

a motion detection approach to identify the object(s) of

interest and initialize the tracker with their location. We

first take the RGB / color frame and apply a mild Gaus-

sian blur in order to make smaller, insignificant motions

from each frame unnoticed. We then apply the built-in

OpenCV Background Subtractor KNN and save the first

few frames. We use these frames to compare against fu-

ture frames for the difference in pixels. When there is a

significant difference/movement from the initial frames, we

identify the area/bounding box around the movement and

initialize the tracker with the bounding box corners. This

approach, although effective, does have the limitation of

missing some of the initial movement. For shorter object

tracking events/motions this proved to be a significant is-

sue.

5.2. Object Tracking

Once the bounding box in returned by the motion de-

tection algorithm we use it as the initializing bounding

box for the Discriminative Correlation Filter Tracker with

Channel and Spatial Reliability (CSRT) [28]. The CSRT

tracker tracks the object throughout the RGB frame, return-

ing its bounding box location in two-dimensional space.

We then take the center pixels of this bounding box and,

using the corresponding camera’s API, project the two-

dimensional pixel to its three-dimensional coordinates. The

three-dimensional coordinates are then averaged and re-

turned as one three-dimensional coordinate for the object in

the respective frame. These three-dimensional coordinates,

along with their frame’s timestamps are then used as inputs

to a Kalman filter.
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Source
Pendulum ◦Ramp Drop Outdoor 8◦ Ramp

Radar (R) Physics (P) R P R P R P

Radar - 0.152 - 0.016 - 0.068 - 0.023

ZED 1.090 1.108 0.108 0.274 1.846 1.215 0.255 0.245

RealSense 435 1.743 1.589 0.441 0.393 1.868 1.216 0.506 0.410

RealSense 415 0.283 0.275 0.199 0.153 2.083 2.145 0.269 0.208

Table 3: BASELINE RESULTS For each physics-based setup we evaluated a scene using the Mean Absolute Difference (MAD) with

meters per second as the units. To evaluate the performance of the radar, we compared its velocity estimates to those from the physics-based

equation. Each of the above cameras (ZED, Realsense 415, and 435) were evaluated against both the radar data and the physics-based

velocity estimates. The results make it clear that there are still significant improvements to be made before the problem is solved. There are

somewhat reasonable results for each of the cameras in the indoor and outdoor ramp scenes; however for the remaining scenes (pendulum

and dropped object), especially for the high speed of the dropped object, results are substantially worse.

5.3. Kalman Filter

Speed estimation of the object being tracked is done with

a Kalman filter. Our Kalman filter assumes constant accel-

eration and with a state vector of:

X =
[

x y z ẋ ẏ ż ẍ ÿ z̈
]T

Within the Kalman Filter, we used the state transition

matrix A =

1 0 0 ∆t 0 0 1

2
(∆t)2 0 0

0 1 0 0 ∆t 0 0 1

2
(∆t)2 0

0 0 1 0 0 ∆t 0 0 1

2
(∆t)2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

where change in time (∆t) used in the state transition matrix

is calculated by finding the difference in the time between

each frame’s timestamps. The Kalman is updated using the

3D point measurement (estimated location) from the infor-

mation returned by the CSRT tracker. The magnitude of the

velocity of the object is then computed from the Kalman es-

timated velocity for each frame, by taking
√

ẋ2 + ẏ2 + ż2,

where ẋ, ẏ, and ż are from the state vector X . This ap-

proach allows us to estimate the velocity for every frame/at

every timestamp provided by the corresponding camera.

5.4. Current Results

Though tests were conducted on numerous videos, we

show a few examples from our current baseline in Table 3

and Figure 1. For easier and more gradual situations, such

as a rolling object going down a slightly inclined ramp, vi-

able speed estimations can be made. However, for more

complex and quick motions, there is still a large and un-

solved problem. For example, although we were able to

obtain fairly good estimations for an approximately ≈ 8◦

ramp in the indoor and outdoor videos with the RealSense

415, that sensor was completely unable to return good esti-

mations for a dropped/falling object. We saw similar diffi-

culties with dropped/falling objects in the other cameras as

well. The RealSense 435 and ZED cameras also seemed to

struggle with the pendulum videos where the greatly alter-

nating depth caused problems when the tracker’s bounding

box was slightly off of the pendulum. These baseline re-

sults for rather simple motions make it clear there is much

work to be done on multiple aspects of this problem, from

the automatic object tracker to the motion estimation al-

gorithm/approach itself. For multiple moving objects (not

shown), the baseline results are even worse.

6. Conclusion & Future Work

This paper presented a novel, challenging set of mo-

tion sequences and their corresponding magnitude of veloc-

ities within the I-MOVE dataset. This dataset is intended

to help researchers progress and refine their approaches to

produce more robust velocity of estimation of an object

being tracked. We identify several drawbacks and limita-

tions within the existing datasets in addition to explaining

the differences between our dataset and ground truths. We

also explain how no pre-existing datasets contain all of the

necessary information to adequately approach the problem

of independently moving object velocity estimation. The

problem of velocity estimation for an independently moving

object given RGB-D data is certainly not currently solved.

However, given public access to the I-MOVE dataset it is

now much more feasible for people to create and test their

approach to solving this problem. In future works we plan

to use the three radars placed on a calibration board to de-

velop novel stereo-radar approaches to extract three dimen-

sional velocity vectors as an additional ground truth. We

also intend to use moving cameras so the dataset will have

the additional diversity of both stationary and dynamic cam-

era data. All updates and modifications to the dataset will

be available at www.vast.uccs.edu/imove
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