
Robust Feature Tracking in DVS Event Stream using Bézier Mapping

Hochang Seok Jongwoo Lim∗

Department of Computer Science, Hanyang University, Seoul, Korea.

{hochangseok, jlim}@hanyang.ac.kr

Abstract

Unlike conventional cameras, event cameras capture the

intensity changes at each pixel with very little delay. Such

changes are recorded as an event stream with their posi-

tions, timestamps, and polarities continuously, thus there

is no notion of ‘frame’ as in conventional cameras. As

many applications including 3D pose estimation use 2D

trajectories of feature points, it is necessary to detect and

track the feature points robustly and accurately in a con-

tinuous event stream. In conventional feature tracking al-

gorithms for event streams, the events in fixed time inter-

vals are converted into the event images by stacking the

events at their pixel locations, and the features are tracked

in the event images. Such simple stacking of events yields

blurry event images due to the camera motion, and it can

significantly degrade the tracking quality. We propose to

align the events in the time intervals along Bézier curves

to minimize the misalignment. Since the camera motion

is unknown, the Bézier curve is estimated to maximize the

variance of the warped event pixels. Instead of the initial

patches for tracking, we use the temporally integrated tem-

plate patches, as it captures rich texture information from

accurately aligned events. Extensive experimental evalua-

tions in 2D feature tracking as well as 3D pose estimation

show that our method significantly outperforms the conven-

tional approaches.

1. Introduction

The event cameras, such as the Dynamic Vision Sensor

(DVS) [5, 6], capture the intensity changes at individual pix-

els asynchronously. The intensity changes are recorded as

a sequence of events, which contains the pixel x- and y-

location, the timestamp of the change, and the polarity (pos-

itive or negative). Due to their asynchronous nature, there

is no notion of ‘frames’ and a video is represented as a con-

tinuous event stream. In addition to low power consump-

tion and low latency of the event cameras, this characteristic

makes the event cameras ideal for sensing high-speed mo-

tion of the cameras as the changes are reported immediately

∗Corresponding author.

with very little latency.

It would be ideal for the camera motion to be estimated

at every event, but it is not realistic as individual events

can be noisy and they do not contain enough informa-

tion to constrain the camera motion. Moreover the tradi-

tional computer vision algorithms are not suited for han-

dling event streams directly, thus conventional event-related

approaches [23] make the ad hoc event images by stacking

the events within certain time slots at their pixel locations.

The generated event images can be used for feature detec-

tion, tracking, stereo matching, or optical flow computation,

but the small motion of the camera in the time window cause

misalignment and yields blurry images.

In this work, we propose a novel event alignment and

feature tracking algorithm for event cameras (Figure 1).

Compared to the previous work which stacks the events at

their pixel locations [12, 13, 27] or along straight lines [7],

the proposed algorithm aligns the events at individual

patches using Bézier curves. As Bézier curves can model

complex motion in the image more accurately, the aligned

patch images have far less blur and more sharpness. Since

the true patch motion is not known, the Bézier curves needs

to be estimated from the event data. According to Gallego et

al. [7] the alignment of events can be done by maximizing

the variance of the event image patch, which is constructed

by accumulating the count of events falling at the individual

pixels.

By finding the Bézier curve that maximizes the event

patch variance, we can track the local patch motion contin-

uously, where the starting position of the patch at the next

time window becomes the end point of the estimated Bézier

curve. To compute reliable and accurate motion estimation,

the feature tracks should be long and precise. Depending on

the camera motion and scene texture, the edges parallel to

the camera motion can be missing in the aligned image be-

cause there is little change in intensity in such regions, and

using such patches for tracking is not desirable. Therefore

long-term integration of events is necessary to capture the

appearance of the patch correctly for reliable tracking. We

propose a long-term feature tracking algorithm with tem-

poral integration method of the events and Bézier align-

1658



Figure 1. Visualization of an event stream in the space-time domain, colored according to the event polarity (left). Projection of aligned

events (center) and the feature tracking result (right) by the proposed algorithm.

ment with the accumulated template. The proposed method

solves the data association problem of the events to the fea-

ture and the motion estimation problem simultaneously.

The proposed algorithm is evaluated extensively using

various synthetic event sequences. It is compared to the

state-of-the-art event feature tracking algorithms in track-

ing 2D feature location and estimating the 3D camera poses

from tracked features. This experimental validation shows

the superior performance of the proposed event alignment

and long-term feature tracking algorithm.

The contributions of this paper can be summarized as

(i) the event alignment algorithm using Bézier curves by

variance maximization for short-term tracking (Fig-

ure 2 a),

(ii) the accurate temporal template update method for

long-term tracking (Figure 2 b), and

(iii) extensive experimental evaluation of the proposed al-

gorithm using synthetic and real datasets.

2. Related Work

Event cameras are introduced recently in the field of

computer vision and robotics due to theirs ultra high fre-

quency, robustness in high-dynamic range (HDR) environ-

ment, and low power consumption. However, because of

the asynchronous event output makes it difficult to use the

existing computer vision algorithm. There are many other

research topics for event cameras: EMVS [20] for estimat-

ing depth using event and pose, event-based visual odome-

try [23], event-based visual-inertial odometry [22, 32], Ulti-

mate SLAM [28] for estimating posture using event camera.

For optical flow estimation, both conventional method [4]

and deep learning method [30, 31] are actively studied. Im-

age reconstruction methods for using existing computer vi-

sion algorithms are also being studied [10, 19, 24].

In particular, feature detection, matching, and tracking

for event cameras, which are traditionally important prob-

lems in computer vision field, are of high interest. Anal-

ogous to the local feature detection and tracking algo-

rithms for conventional images, such as Harris corners [9],

SIFT [16], or the KLT tracker [3], researchers attempt to

define local features in an event stream. The most straight-

forward way is to stack the events in a short time window

at their pixel locations [27, 17, 23], and treat the stacked

images just as the conventional images. This is simple and

effective, but when the camera is moving the events from

the same scene points do not map onto the same point. To

alleviate this issue Gallego et al. [7] propose to estimate a

straight line in the spatio-temporal XYT domain, and align

the events along the line. When the camera motion is sim-

ple and steady, this approach works well, but for abrupt or

irregular camera motions the event trajectories deviate from

straight lines and the aligned images become blurry.

Although there are not many studies on event camera

based feature matching yet, some interesting works about

feature descriptor and matching for object recognition, like

HOTS [15] and HATS [25], are presented. There has been

several event feature tracking, using event camera only

[29], [14], [2], [1] or using the events and conventional im-

ages at the same time [8]. Alzugaray et al. [2] proposes

a fully asynchronous feature tracking method without dis-

cretizing the event stream, including new event feature de-

tection approach. The tracker by Zhu et al. [29] stacks the

events for a short time and computes new feature locations

by ICP-based Expectation Maximization method. Since the

event images by stacking are greatly influenced by the cam-

era motion, the tracking performance is limited when the

camera moves rapidly. On the other hand, Gehrig et al. [8]

try to overcome this problem by using the gradient image of

a frame which is less influenced by appearance changes due

to motion. Our work is closely related to Zhu et al. [29], in

a sense that it performs feature tracking using only an event

camera. However, the main difference is that we consider

the influence of the camera motion, similar to Gehrig et

al. [8], but without using conventional intensity images.

3. Proposed Algorithm

In this paper, we propose the event alignment method us-

ing a 3D Bézier curve in XYT-domain and the long-term

feature tracking algorithm. First we introduce the event

alignment along a curve into a patch image, then define the

variance of the image.

Suppose there exist a given a set of events E
.
= {ek}

1659



(a) Event alignment using a Bézier curve (b) Reference patch update for tracking
Figure 2. (a) Our method aligns a set of events using a Bézier curve. (b) The reference patch is updated using the patch history volume

with exponential decay for long-term tracking.

in the time window [0, T ], where ek
.
= (xk, yk, tk, pk)

⊤,

xk, yk are the pixel location, tk is the timestamp, and

pk ∈ {−1,+1} is the polarity of the event k. We define

a parametric curve C(t;x0, θ) which returns the 2D loca-

tion xt
.
= (xt, yt)

⊤ for the given timestamp t, and passes

the start point x0 at t = 0. θ determines the shape of the

curve. For notational simplicity, we only consider one time

window [0, T ] in this section, but it can be expanded to mul-

tiple time windows without loss of generality.

Then we can map the events to the 2D pixel coordinates

as follows:

f(e;x0, θ) = xe − C(te;x0, θ) + x0, (1)

where xe = (xe, ye)
⊤ is the pixel location and te is the

timestamp of the event e. This function computes the lo-

cation offset of the event from the curve at the timestamp,

and maps the event at the same offset from the start point

x0, thus it maps the events along the curve. For example,

all events exactly on the curve will be mapped to the same

start point, and if the curve is a straight line parallel to the

time axis (i.e., C(te;x0, θ) = x0), all events are mapped to

their original pixel locations.

The pixel values of the event image patch aligned along

the curve is the number of events falling at the pixel loca-

tions. Formally the event image patch I(x) is defined as

I(x; θ) =
∣

∣

{

e ∈ E | f(e;x0, θ) = x

} ∣

∣ . (2)

Note that we map the bilinearly interpolated value for real

coordinate x. In the following subsections, we formulate

the variance maximization using a Bézier curve, and the

long-term feature tracking algorithm utilizing the variance

maximization.

3.1. Variance Maximization for a Bézier Curve

Previous methods generate an event patch by stacking

the event using simply their pixel locations, or aligned along

a straight line. Although the straight lines are easy to esti-

mate, the events that change their positions rapidly cannot

be modeled by a straight line as shown in Figure 2 (a). Note

that this case happens quite frequently and we will discuss

this issue in more detail in the following section.

The quadratic Bézier curve is parameterized with three

control points p0, p1, and p2 as

B(t;p0,p1,p2) = (1− t)
(

(1− t)p0 + tp1

)

+ t
(

(1− t)p1 + tp2

)

, 0 ≤ t ≤ 1.
(3)

We use the quadratic Bézier curve because it can repre-

sent simple curves with minimal number of parameters. In

our case the start point is set to the end point of the curve

of the previous time window, and we assume that the times-

tamp of the control points are fixed at 0, T/2, and T , and the

event timestamp te is normalized by dividing by T . Thus

there are only 4 location parameters in 2 control points to

be estimated from the event stream, i.e., Cqb is the quadratic

Bézier curve function for θ
.
= (x1, y1, x2, y2)

⊤.

Gallego et al. [7] propose to use the alignment path that

maximizes the variance of the patch values. The variance of

an event image patch is defined as

Var(I; θ) =
1

N

∑

x

(

I(x; θ)− µ(I; θ)
)2

(4)

µ(I; θ) =
1

N

∑

x

I(x; θ), (5)

where N is the number of pixels of the patch. Intuitively

the monotonic images have 0 variance, and the images with

high contrast has high variance. In our application maxi-

mizing the patch variance is maximizing the contrast, and

minimizing the blur by misalignment. The Bézier curve for

the given events can be estimated by

θ∗ = argmax
θ

Var(I; θ). (6)

1660



Reference image Bézier curve Line Stacking

s
h
a
p
e
s

d
r
u
m

Figure 3. Event alignment test results. Right three columns show the aligned event images by the proposed Bézier curves, lines, and

stacking respectively. Color indicates the variance at each pixel.

p
l
a
n
e
s

s
h
a
p
e
s

Figure 4. Temporal template update results of planes and shapes datasets. The feature trajectories are shown in the reference grayscale

images, and the aligned event patches (upper row) and the integrated templates (lower row) along the time windows are shown on the right.

Note that the aligned event patches are noisy and some edges are missing depending on the camera motion, whereas the integrated templates

learn and maintain all scene structures. This property helps more robust feature tracking in challenging situations.

Datasets
Mean Variance

Bézier curve Line Stacking

shapes 22.30 20.21 7.77

drum 79.08 73.15 29.18

Table 1. Quantitative evaluation of event alignment. The mean

variance of the event images aligned by the proposed method is

much higher than those by the other algorithms.

3.2. Template Update for Long-term Tracking

As in the previous subsection, the event feature is de-

fined as a patch of the aligned event image. Fitting a Bézier

curve to the event stream gives the 2D motion of the patch

for the given time window as well as the aligned 2D event

image patch. One may perform feature tracking in the event

stream just by fitting Bézier curves consecutively, but this

has several drawbacks. First there is no reference patch

(template) for the tracked feature, thus the tracker can easily

drift from the target position. Second the motion estimation

is very sensitive to the choice of temporal window. If the

integration time window is too small, the event trajectories

are close to straight lines but the number of event patches to

track is too large (in conventional video, too high frame-per-

1661



second), and the integrated image patch would not contain

enough texture. For robust feature tracking it is important

to have a patch with enough texture. If the integration win-

dow is too large, the 2D motion in the window may not be

represented with a quadratic Bézier curve, which degrades

the tracking quality.

To fully utilize the modeled patch appearance, when

computing the patch variance we use both the values in

the template patch and those integrated in the current event

stream,

VarT (I; θ, IT ) =
1

N

∑

x

(

I(x; θ) + IT (x)− µT (I; θ)
)

2

(7)

µT (I; θ) =
1

N

∑

x

(

I(x; θ) + IT (x)), (8)

where IT (x) is the learned template patch. The best Bézier

parameter θ∗ for the current event stream is estimated by

maximizing VarT in the same way as Equation 6.

For robust feature tracking the tracker needs to know

how each patch looks like, to prevent drift and to find the

accurate motion. Depending on the scene texture and cam-

era motion, some edges may not be observable when the

camera moves along the edge direction. Such edges may be

revealed when the camera moves differently. Therefore the

reference template patch needs to be updated continuously,

but keep most of important visual information. In this pro-

cess, we use a simple temporal update model with exponen-

tial decay. In every iteration, the current patch is stacked to

maintain the history of tracked patches. Then we generate

the new reference template patch by integrating the stack of

patch history. The new template patch is calculated as,

I
(new)
T (x) =

n
∑

i

Ii(x) ∗ eρ(n−i), (9)

where ρ is the update rate for the template image, n is the

number of stacked patches. To update the appearance of

template changes along the time, we multiplied the large

exponent values to the more recent patches. Through this

simple method, long-term feature tracking is possible.

As shown in Figure 4, the temporally integrated template

image contains richer texture which reflects original scene

structure faithfully, whereas the aligned patches are noisy

and miss some of edges.

To initialize patch locations for feature tracking, we align

all events in the entire image for a short time period to con-

struct an aligned event image, and run the Harris corner de-

tector. We use this simple approach to bootstrap the pro-

posed feature tracker, and we plan to investigate better ways

for feature detection in event streams.

4. Experiments

We demonstrate the proposed event alignment and fea-

ture tracking algorithm with synthetic and real datasets.

Since the implementations of other tracking algorithms are

not publicly available, we compare the proposed algorithm

with Zhu et al. [29]. In the first experiment, we compare the

alignment performance with Bézier curves to with straight

lines using the same variance maximization. In the second

experiment, our feature tracking algorithm is compared to

Zhu et al. quantitatively in terms of tracking accuracy and

feature age for both synthetic and real sequences, and also

the qualitative comparison is shown. Finally, we show the

3D camera pose estimation accuracy using the tracked fea-

tures since the main application of event feature tracking

is camera pose estimation such as visual SLAM or visual-

inertial odometry. The variance maximization is imple-

mented in Matlab by using the built-in optimization func-

tion, and the initial Bézier curve is initialized as the line

parallel to the temporal axis.

4.1. Test Datasets

To test our work, three real sequences from the pub-

lic dataset and six synthetic sequences are used. Among

the real sequences in [18], we choose a simple black and

white scene (shapes) and two highly textured scenes

(posters, boxes). The six synthetic sequences are

called planes, desk, gate, wall, roof, and drum. In

all sequences, the ground-truth feature trajectories for any

feature points are available since we rendered both depth

and camera poses. The planes sequence in [18] is syn-

thetically captured by a camera moving in a circle without

any rotation in front of three planes in different depth. The

other five synthetic sequences are generated in-house using

ESIM simulator [21] while the camera moves rapidly along

random 3D spline trajectories seeing a single plane, to gen-

erate more realistic complex event streams. All rendered

datasets and rendering codes will be made public when the

paper is published.

4.2. Event Alignment Evaluation

In this section, we evaluate the performance of the pro-

posed event alignment algorithm using Bézier curves. For

quantitative evaluation, the variance of the pixel values of

the aligned image is compared since higher variance repre-

sents better event alignment. We compare three algorithms,

by stacking [29, 23], along a straight line [7], and along a

Bézier curve (proposed). The experiment is performed us-

ing event streams sampled from the shapes and drum se-

quences. Each event streams consists of 0.5 million events,

and the whole image of 240x180 is aligned by the estimated

poses. The quantitative and qualitative experimental results

are shown in Table 1 and Figure 3.

As shown in Table 1, the mean variance of the proposed

method is about 23.6% and 279.02% larger than those of

the straight line and the stacking methods respectively. The

red boxes of Figure 3 shows the alignment quality, as the

1662



Ours Zhu et al.’s
p
l
a
n
e
s

d
e
s
k

g
a
t
e

w
a
l
l

r
o
o
f

Figure 5. Qualitative results of feature tracking in synthetic dataset. The left two figures show the trajectories of tracked features in the

spatio-temporal domain, and the right graphs show the average position error and number of tracked features within 5-pixel threshold. Note

that our algorithm tracks the features more robustly and the error is maintained at lower level.

Datasets thr [px]
RMSE [px] Tracking age [s] Tracking length [px]

total time [s]
Zhu et al. Ours(w/o TU) Ours Zhu et al. Ours(w/o TU) Ours Zhu et al. Ours(w/o TU) Ours

planes

<10 3.66 2.11 1.52 0.68 0.71 1.43 57.42 60.31 110.06

2<5 2.00 1.78 1.41 0.33 0.32 1.43 27.74 25.66 107.43

<3 1.25 1.56 1.24 0.19 0.20 1.26 15.64 18.27 96.11

desk

<10 4.29 3.15 2.38 0.61 0.62 4.4 47.43 51.33 183.76

7.5<5 2.28 2.14 1.72 0.24 0.51 2.73 26.82 28.93 117.15

<3 1.37 1.41 1.26 0.14 0.31 1.29 17.84 21.02 69.78

gate

<10 4.87 3.88 3.62 2.54 2.43 4.95 118.99 47.43 222.83

14<5 2.81 2.96 2.61 0.62 0.67 2.05 49.26 53.10 101.74

<3 1.25 1.41 1.30 0.37 0.34 0.40 35.94 34.75 39.59

wall

<10 3.84 2.46 2.15 2.22 2.41 6.86 115.69 106.55 315.25

14<5 2.35 2.58 2.03 1.13 1.27 6.5 65.50 68.80 298.73

<3 1.26 2.01 1.60 0.51 0.77 1.89 39.48 40.56 101.60

roof

<10 4.31 4.67 2.35 1.47 0.67 4.76 77.43 72.11 216.11

14<5 2.23 2.34 1.94 0.56 0.40 4.27 40.94 40.08 193.10

<3 1.22 1.56 1.43 0.30 0.27 2.06 28.31 22.79 98.32

drum

<10 4.31 4.51 2.42 1.69 1.03 5.20 78.23 54.21 241.39

6<5 2.55 2.43 2.16 0.60 0.05 4.04 38.17 22.10 188.82

<3 1.90 1.76 1.65 0.23 0.21 0.43 22.9 17.5 41.82

Table 2. Quantitative evaluation of feature tracking in synthetic seqeunces. For each dataset, the root-mean-squared error, the average

tracking length and the average feature age of the feature tracks within the error threshold (thr) are compared. In addition, we test ours

without the template update(TU) for ablation study. Overall, our algorithm tracks the feature much longer than Zhu et al. [29], and the

error is smaller considering that the numbers, lengths and ages of our features are more than Zhu et al.’s. However, Our method without

TU shows similar performance to Zhu et al.

1663



Ours Zhu et al.’s
s
h
a
p
e
s

p
o
s
t
e
r

b
o
x
e
s

Figure 6. Qualitative results of feature tracking in real dataset. The left two figures show the trajectories of tracked features in the

spatio-temporal domain, and the right graphs show the average position error and number of tracked features within 10-pixel threshold.

Datasets thr [px]
RMSE [px] Tracking age [s] Tracking length [px]

total time [s]
Zhu et al. Ours Zhu et al. Ours Zhu et al. Ours

shapes

<10 4.79 2.03 1.37 2.77 38.66 142.05

3<5 2.98 1.8 0.85 2.6 27.26 131.503

<3 1.72 1.4 0.51 1.85 19.06 86.62

poster

<10 3.81 3.00 1.72 1.96 171.84 212.52

6<5 2.69 2.31 1.37 1.32 130.34 124.68

<3 1.54 1.83 0.91 0.41 87.24 50.94

boxes

<10 4.76 4.20 1.07 1.36 86.57 126.89

4<5 2.51 2.36 0.65 0.72 51.86 60.45

<3 1.65 1.59 0.44 0.50 33.50 35.36

Table 3. Quantitative evaluation of feature tracking in real sequences. We use same evaluation metric as shown in Table 2. In the shapes

and boxes sequence, our method shows better results than Zhu et al. in all metrics. Zhu et al. shows slightly better performance than ours

in poster sequence, except for the error threshold 10. Refer to the text for detailed discussion.

blurring is much smaller in Bézier results. Both quantitative

and qualitative evaluation shows that the proposed method

significantly outperforms the conventional methods.

4.3. Evaluation of Feature Tracking

In this section we evaluate the proposed feature track-

ing algorithm in various settings. In quantitative evalua-

tion, the accuracy is evaluated by the Root Mean Squared

Error (RMSE) between the estimated feature locations and

the ground truth locations, and the persistency of the feature

tracker is measured by the tracking length and the feature

age. The tracking length and tracking age mean the pixel

length of feature trajectory and the time of tracked feature,

respectively. In this experiment, we use three error thresh-

olds, 3, 5 and 10 pixels, to reject the erroneous features from

evaluation.

To show the performance of our method against the pre-

vious work, we compare our results to [29] which is one of

the state-of-the art event feature tracker. In this experiment,

we use the authors’ public implementation∗, and tune its

best parameters for our dataset. Although [29] are not the

latest work, it shows good performance compared to [1, 8]

and there is no public implementations of [1] and [8], thus

we use Zhu et al., as the baseline. For comparison, we mod-

ified the authors’ code to track only initial features without

feature re-detection.

In both methods, we use same 63 Harris corners [9] and

its corresponding 31×31 patches extracted at the initial lo-

cations. The corners are extracted uniformly from the event-

aligned image. The temporal update parameter ρ in equa-

tion 9 is fixed as 0.05 in whole sequences. The results of

feature tracking evaluation are given in Table 2, 3 and Fig-

ure 5, 6. The planes sequence is an easy one as due to its

simple camera motion there is little change in scale or ori-

entation. Zhu et al. [29] tracks the features for less than 1

second, which is only 34% of the whole sequence regardless

of the threshold. On the other hand, the proposed method

∗https://github.com/alexzzhu/event_feature_tracking

1664



p
l
a
n
e
s

w
a
l
l

Figure 7. 3D pose estimation results in planes and wall datasets. The ground-truth trajectory (black) and the trajectories estimated

by ours (blue), and Zhu et al.’s [29] (red) are shown on the left. The right plot shows the inlier ratio of tracked features. Note that our

trajectories are much better than Zhu et al.’s and the inlier ratio is much higher.

tracks the features for more than 1.2 seconds (≃70%). Es-

pecially when the threshold is 3 pixels, the average feature

age is 6 times higher.

To evaluate long-term feature tracking and robustness,

the other synthetic test datasets are longer and captured with

random rapid motions. As shown in Table 2, the average

feature age of the proposed method is 4 times longer than

that of Zhu et al. Note that the RMSE are computed only

for the features within the threshold, thus the error values

are roughly similar, whereas the feature age of the proposed

method is much longer. The temporal template update

method plays important role in tracking features longer by

constantly updating the template with most recent events.

Figure 6 and Table 3 Compared to the synthetic se-

quences, the event density of the real sequence is much

lower due to higher intensity threshold. In poster, the

results are not stable as most features are lost in the middle

as they goes outside of the image. The proposed algorithm

achieves better performance except the poster sequence.

4.4. Evaluation with 3D Pose Estimation

In this experiment, we use the tracked feature trajecto-

ries to estimate 3D poses of the camera. Since the quality

of tracked feature positions is critical in motion computa-

tion, this evaluation shows the effect of the improved feature

tracking to the applications such as visual SLAM or visual(-

inertial) odometry. We initialize the 3D feature points by

the ground-truth depth, and run the standard P3P-RANSAC

algorithm [11] and pose-only bundle-adjustment [26].

Figure 7 shows that the pose estimation with the features

by Zhu et al. fails shortly after the start, while the poses

from the proposed method are successfully constructed and

are close to the ground-truth. It also can be shown that

the number of pose inliers of the proposed method is much

higher. In this experiments, we show that our feature track-

ing result can be used to estimate the pose accurately not

only in the simple circling motion, but even in the case

which contains complicated 6-DOF motion, such as wall

case.

5. Conclusion

In this paper we propose a novel event alignment and fea-

ture tracking algorithm, which effectively aligns the event

stream generated in a three-dimensional space-time space

and simultaneously solves the data association problem in-

trinsically. The variance maximization along a Bézier curve

aligns the events more accurately than the previous meth-

ods using stacking or along a straight line. The proposed

local feature tracking algorithm constructs the template im-

age patch by temporally integrating the events and estimates

feature motion based on the above event alignment with the

template. Extensive experiments show the proposed algo-

rithm’s superior performance compared to the state-of-the-

art event alignment and feature tracking algorithms.

Acknowledgement

This research was supported by Next-Generation Informa-

tion Computing Development Program through National Research

Foundation of Korea(NRF) funded by the Ministry of Science,

ICT(NRF-2017M3C4A7069369), the National Research Founda-

tion of Korea(NRF) grant funded by the Korea government(MSIT)

(NRF-2019R1A4A1029800).

1665



References

[1] I. Alzugaray and M. Chli. Ace: An efficient asynchronous

corner tracker for event cameras. In 2018 International Con-

ference on 3D Vision (3DV), pages 653–661. IEEE, 2018. 2,

7

[2] I. Alzugaray and M. Chli. Asynchronous corner detection

and tracking for event cameras in real time. IEEE Robotics

and Automation Letters, 3(4):3177–3184, 2018. 2

[3] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-

fying framework. International journal of computer vision,

56(3):221–255, 2004. 2

[4] P. Bardow, A. J. Davison, and S. Leutenegger. Simultaneous

optical flow and intensity estimation from an event camera.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 884–892, 2016. 2

[5] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck.

A 240× 180 130 db 3 µs latency global shutter spatiotem-

poral vision sensor. IEEE Journal of Solid-State Circuits,

49(10):2333–2341, 2014. 1

[6] C. Brandli, L. Muller, and T. Delbruck. Real-time, high-

speed video decompression using a frame-and event-based

davis sensor. In 2014 IEEE International Symposium on Cir-

cuits and Systems (ISCAS), pages 686–689. IEEE, 2014. 1

[7] G. Gallego, H. Rebecq, and D. Scaramuzza. A unifying con-

trast maximization framework for event cameras, with appli-

cations to motion, depth, and optical flow estimation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3867–3876, 2018. 1, 2, 3, 5

[8] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza.

Asynchronous, photometric feature tracking using events

and frames. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 750–765, 2018. 2, 7

[9] C. G. Harris, M. Stephens, et al. A combined corner and

edge detector. In Alvey vision conference, volume 15, pages

10–5244. Citeseer, 1988. 2, 7

[10] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davi-

son. Simultaneous mosaicing and tracking with an event

camera. J. Solid State Circ, 43:566–576, 2008. 2

[11] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel

parametrization of the perspective-three-point problem for a

direct computation of absolute camera position and orienta-

tion. In CVPR 2011, pages 2969–2976. IEEE, 2011. 8

[12] J. Kogler, C. Sulzbachner, M. Humenberger, and F. Eiben-

steiner. Address-event based stereo vision with bio-inspired

silicon retina imagers. In Advances in theory and applica-

tions of stereo vision. IntechOpen, 2011. 1

[13] J. Kogler, C. Sulzbachner, and W. Kubinger. Bio-inspired

stereo vision system with silicon retina imagers. In Interna-

tional Conference on Computer Vision Systems, pages 174–

183. Springer, 2009. 1

[14] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza.

Low-latency visual odometry using event-based feature

tracks. In 2016 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), pages 16–23. IEEE, 2016.

2

[15] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B.

Benosman. Hots: a hierarchy of event-based time-surfaces

for pattern recognition. IEEE transactions on pattern analy-

sis and machine intelligence, 39(7):1346–1359, 2017. 2

[16] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. International journal of computer vi-

sion, 60(2):91–110, 2004. 2

[17] E. Mueggler, C. Bartolozzi, and D. Scaramuzza. Fast

event-based corner detection. In British Machine Vis.

Conf.(BMVC), volume 1, 2017. 2

[18] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and

D. Scaramuzza. The event-camera dataset and simula-

tor: Event-based data for pose estimation, visual odometry,

and slam. The International Journal of Robotics Research,

36(2):142–149, 2017. 5

[19] G. Munda, C. Reinbacher, and T. Pock. Real-time intensity-

image reconstruction for event cameras using manifold reg-

ularisation. International Journal of Computer Vision,

126(12):1381–1393, 2018. 2

[20] H. Rebecq, G. Gallego, and D. Scaramuzza. Emvs: Event-

based multi-view stereo. Technical report, 2016. 2

[21] H. Rebecq, D. Gehrig, and D. Scaramuzza. Esim: an open

event camera simulator. In Conference on Robot Learning,

pages 969–982, 2018. 5

[22] H. Rebecq, T. Horstschaefer, and D. Scaramuzza. Real-time

visual-inertial odometry for event cameras using keyframe-

based nonlinear optimization. In British Machine Vis.

Conf.(BMVC), volume 3, 2017. 2

[23] H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza.

Evo: A geometric approach to event-based 6-dof parallel

tracking and mapping in real time. IEEE Robotics and Au-

tomation Letters, 2(2):593–600, 2017. 1, 2, 5

[24] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza. Events-

to-video: Bringing modern computer vision to event cam-

eras. arXiv preprint arXiv:1904.08298, 2019. 2

[25] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and

R. Benosman. Hats: Histograms of averaged time surfaces

for robust event-based object classification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1731–1740, 2018. 2

[26] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-

bon. Bundle adjustmenta modern synthesis. In International

workshop on vision algorithms, pages 298–372. Springer,

1999. 8

[27] V. Vasco, A. Glover, and C. Bartolozzi. Fast event-based

harris corner detection exploiting the advantages of event-

driven cameras. In 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 4144–4149.

IEEE, 2016. 1, 2

[28] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scara-

muzza. Ultimate slam? combining events, images, and imu

for robust visual slam in hdr and high-speed scenarios. IEEE

Robotics and Automation Letters, 3(2):994–1001, 2018. 2

[29] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-based fea-

ture tracking with probabilistic data association. In 2017

IEEE International Conference on Robotics and Automation

(ICRA), pages 4465–4470. IEEE, 2017. 2, 5, 6, 7, 8

[30] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis. Ev-

flownet: self-supervised optical flow estimation for event-

based cameras. arXiv preprint arXiv:1802.06898, 2018. 2

1666



[31] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis. Unsuper-

vised event-based learning of optical flow, depth, and ego-

motion. arXiv preprint arXiv:1812.08156, 2018. 2

[32] A. Zihao Zhu, N. Atanasov, and K. Daniilidis. Event-based

visual inertial odometry. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), July 2017. 2

1667


