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Abstract

We study the problem of syncing the lip movement in a

video with the audio stream. Our solution finds an optimal

alignment using a dual-domain recurrent neural network

that is trained on synthetic data we generate by dropping

and duplicating video frames. Once the alignment is found,

we modify the video in order to sync the two sources. Our

method is shown to greatly outperform the literature meth-

ods on a variety of existing and new benchmarks. As an ap-

plication, we demonstrate our ability to robustly align text-

to-speech generated audio with an existing video stream.

Our code is attached as supplementary.

1. Introduction

With the advancement of video technology, one may as-

sume that lip syncing would become a thing of the past.

However, with the ongoing shift form captured media to

generated media, coupled with a surge in user generated

content apps, the need for effective methods is rapidly grow-

ing.

Consider, for example, the scenario of a generated video.

It could involve the head of one actor, extracted from an old

footage, the lips of another actor, added to match the script,

and the voice of a Text to Speech (TTS) robot. Syncing the

different sources, and especially the lip motion to the audio,

to which viewers are very sensitive, poses a challenge.

As another example, consider the trending lip syncing

apps. Users try their best to align their lips with a song

they choose. In many cases, this alignment is only partly

successful and the acquisition process needs to repeat itself.

Despite the well-defined task and the clear application

need, the literature is relatively limited. Many of the exist-

ing solutions perform a global shift, which cannot address

many of the modern use cases. Other methods rely on un-

realistic assumptions and are only partly trained. In addi-

tion, while modifying the video without causing artifacts is

much easier than modifying the audio, the existing meth-

ods choose the latter, creating metallic voices and other ar-

tifacts.

In this work, we employ an end to end temporal autoen-

coder to perform the alignment. The method projects simple

video and audio features to a joint space, where their mu-

tual distances are considered. An LSTM autoencoder, with

an added attention layer is then used to predict the correct

alignment for temporal windows of up to one second. A

straightforward matching method is then used to align se-

quences of unlimited length.

In an extensive series of experiments, we compare our

method to the literature algorithms and show a sizable im-

provement in accuracy. Our method is robust enough to

work in real-world scenarios and the vast majority of users

cannot tell the difference between a video that was modified

and an untouched video, even when matching to the audio

track of a different speaker.

2. Related Work

Dynamic time warping (DTW) [1], [17] uses a dynamic

programming to align multiple time-series. DTW mea-

sures the similarity and finds an optimal match by insert-

ing frames. Anguera et al. [3] use a predefined simi-

larity between graphemes and phonemes. Tapaswi et al.

[30] introduce a similarity between visual scenes and sen-

tences based on appearance of same characters to align TV

shows and plot synopses. Other dynamic programming ap-

proaches have also been used for multi modal alignment

of text to speech [14] and video [34]. DTW was extended

using canonical correlation analysis (CCA) for learning a

mapping [26], [32], [33]. CCA based DTW models aren’t

able to model nonlinear relationships. This has been ad-

dressed by Deep Canonical Time Warping (DCTW) [29],

which learns non-linear, correlated and temporally aligned

representations of multiple time-series.

The earliest methods in the field of lip motion syn-

chronization, employ phoneme recognition for the audio

stream [19, 22] and align them with the mouth posi-

tions [19] or with visemes [22], which are face templates

that correspond to a specific configuration of the face during

speech production. Zoric and Igor classified the MFFC rep-

resentation of the audio signal into visemes and then aligned

them with a parametric face model [35].
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Other methods perform the alignment without employ-

ing visemes or phonemes. Argones et al. used co-inertia

analysis and a coupled hidden Markov model [4]. Sargin

et al. used canonical correlation analysis for speech and lip

texture features [24].

Within the domain of deep learning methods, [21] used

a network that operates on predefined audio and visual fea-

tures, in contrast to our work where we predict a shift for

each frame and learn the visual features directly. Chung

et al. used a CNN model called SyncNet to learn visual

features directly from the video stream, and audio features

from the MFCC representation of the audio [9]. They then

find the optimal global shift by computing the contrastive

loss over all frames. In contrast, we employ an alignment

network and are not limited to a global shift.

In contrast to the metric learning approach of SyncNet,

Chung et al. learned audio-visual embeddings as a multi-

class classification task [10]. Their method classifies one

visual frame into one multiple possibly matching audio

frames obtained at N different locations. The decisions are

integrated in order to obtain a global shift.

Realizing that in many cases a single global shift is sub-

optimal, Halperin et al. have shown that a network that is

similar in structure to SyncNet can be leveraged to achieve

a dynamic temporal alignment [12]. This is done by using

the Dijkstra algorithm as a post processing step, in order to

find the optimal path in the graph of pairwise distances.

A related task is that of reconstructing a 3D mesh anima-

tion, or generating a video of a talking face, which is aligned

to an input audio signal. Karras et al. predict 3D vertex co-

ordinates of a target face model, given a waveform of any

source speaker, and aim to control the emotional states of

the generated face [15]. ObamaNet [18] uses a recurrent

neural network (RNN) in order to predict a PCA represen-

tation of normalized mouth key-points, given a raw wave-

form created by a text to speech module. The key-points

are then used to condition a generator that synthesizes a

video of a target identity. Suwajanakorn et al. trained an

RNN on many hours of Obama’s weekly address footage

to map from the MFCC representation of the input audio

stream into mouth shapes [28]. Then, they synthesized a

talking face video of Obama. Son Chung et al. proposed an

encoder-decoder model that learns the joint embeddings of

a given audio and a target face images, and then generates a

lip-synced talking face video [27].

3. Proposed Method

An overview of our method is shown in Fig. 1. The

inputs to our model are unsynchronized audio and visual

streams. The visual stream and the audio stream are both

encoded to represent the local neighborhoods as tensors. A

temporal encoding is obtained by considering pairwise dis-

tances between the video and the audio tensors. The tem-

poral encoding then goes through an attention modulated

LSTM decoder. At every time step, the decoder attends the

encoder’s outputs and predicts an index of the input’s video

stream.

3.1. Inputs

As a preprocessing step for the video stream, facial key-

points and rotations are extracted using Openface [6, 31].

We then extract the mouth area, align it to the vertical axis,

and normalize its size to 120 × 120 pixels. Each video in-

put is a temporal stack of five consecutive video frames,

and the stride of consecutive video inputs is one frame, see

Fig. 2(a).

The alignment network has a temporal receptive field of

three seconds at 25 FPS, i.e., 75 frames. Each frame is rep-

resented by a tensor of size 5 × 120 × 120, where the five

channels correspond to the five consecutive frames above.

This redundant representation, in which the same cropped

mouth frames appear in multiple tensors, follows the early

fusion model suggested by Chung and Zisserman [8].

The input audio is sampled at 16kHz. Each single audio

input (“audio frame”) consists of 20 time steps of MFCC

features which are corresponding to a 0.2 second input sig-

nal. Specifically, 13 Mel-frequency bands are used for the

MFFC features, with a window length of 25 ms and a win-

dow step of 10ms. The stride between consecutive audio

inputs is 40ms, which is the same as one video frame at 25

FPS. An example of a single audio input frame is shown in

Fig. 2(b).

The network has a receptive field of one second, i.e., 25

audio frames, where each frame is represented by a matrix

of size 13×20, corresponding to the 20 time steps of MFCC

features detailed above.

Note that in our method, video and audio are not treated

in a symmetric way, and we match a second of audio to

three seconds of video. The underlying reason is that we

want to allow for each audio frame a search window of 25

video frames on both sides.

3.2. Method and Architecture

For given audio and visual tensors of lengths n = 25
and m = 75, respectively, each audio and visual input is

encoded using the audio or visual encoder into feature vec-

tors of size 1024:

ψai
= Ea(ai) i ∈ {1, ..., n}

ψvj
= Ev(vj) j ∈ {1, ...,m}

(1)

Where ψai
(ψvj ) are the embeddings of audio (video) in-

put at time step i (j). In order to emphasize our method’s

advantage over the literature, we employ the same archi-

tecture for the audio and video encoders (Ea and Ev) as

the one used in SyncNet [9]. This architecture consists of

3D convolutions (operating also on the temporal domain)
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Figure 1: Overview of our method. For every audio feature a vector of Euclidean distances is computed with all video

features. The vectors are fed into an LSTM encoder followed by LSTM decoder, in order to predict a sequence of indices

from the visual stream.

(a) (b)

Figure 2: Input preprocessing. (a) Each video input is

a temporal stack of five consecutive video frames of the

mouth area. (b) Each audio input consists of 20 time steps

of 13 Mel-frequency bands MFCC.

with max-pooling layers, ending with fully connected lay-

ers. Batch normalization layers are added after each convo-

lutional layer.

Next, for each ψai
we calculate the Euclidean distance

with all ψvj and obtain the Euclidean distances features vec-

tors of length m:

~ρi = [di,1, ..., di,m] (2)

where di,j = ‖ψai
− ψvj

‖.

The sequence of vectors ρ = [ ~ρ1... ~ρn] is then encoded

using a recurrent neural encoder that produces outputs oe

and hidden states vectors he:

oei , h
e
i = RNNe

(

~ρi, h
e
i−1

)

(3)
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and then decoded using a recurrent neural decoder followed

by a multi-layer perceptron (MLP). As suggested by Bah-

danau et al. [5], in order to allow the decoder to attend the

entire encoded sequence at every output step, we are us-

ing an attention mechanism. At every output step k, the

decoder produces state vectors hdk and output vectors odk,

based on the previous step context vector ck−1, the decoder

state vector hdk−1
and the predicted visual frame index yk−1.

The latter is obtained by an MLP that is applied to the out-

put vector odk−1
and the context vector ck−1.

Written explicitly, the RNN decoder has the following

input-output structure:

odk, h
d
k = RNNd

(

hdk−1, yk−1, ck−1

)

, (4)

where, the next step context vector ck is computed using the

attention model:

ek,i = UT tanh
(

Whdk + V oei + b
)

(5)

αk,i = Softmax (ek,·) =
exp (ek,i)

∑n

i′=1
exp (ek,i′)

(6)

ck =
∑

i

αk,io
e
i (7)

where U , W , V and b are learned weights, and αk,i are the

attention weights, which are obtained by a softmax operator

applied to the pre-weights ek,i.

The context vector ck is concatenated with the output

vector odk and fed into the MLP, which outputs a vector of

size 1 × m. Then the predicted index of the visual frame

that matches audio frame k is given by applying a softmax

layer:

p = P (yk|v, a, yk−1) = Softmax
(

MLP
(

odk, ck
))

(8)

yk = argmaxi pi (9)

At k = 1, the context vector c0 is set to 0, the input y0 is

set to a special symbol that indicates a start of a sequence,

and the decoder state hd0 is set to the last encoder’s hidden

state hen.

The architecture of the RNN encoder and decoder con-

sists of three LSTM layers with hidden sizes of 512. The

MLP consists of two linear layers with 512 and 256 hid-

den units respectively, followed by a ReLU activation and

another linear layer that outputs a vector of size 75.

3.3. Loss Function

By predicting sequences of indices of the visual stream,

we are treating the problem as a multiclass classification

problem. Therefore we use the cross entropy loss:

L(p, t) = − log

(

exp(pt)
∑

j exp(pj)

)

, (10)

where p is the vector of assignment probabilities, given in

Eq. 8 and t is the ground truth index of the video frame that

matches the current audio frame. This loss is aggregated

across all audio frames in all sequences of the training set.

3.4. Training Details

In order to train the model for predicting the local frames

shifts, we created a synthetic training dataset out of the

LRS2-BBC dataset [2] as described in Sec. 5.

We employ a two phase training. In the first, we employ

a version of the LRS2-BBC in which only a single shift is

performed, and pretrain for 20 epochs the input encoders

Ea and Ev . The full model, including all networks, is then

trained for 30 epochs, with a batch size of four, using the

full-blown synthetic data set.

The LSTMs are initialized using semi-orthogonal matri-

ces as suggested by Saxe et al. [25], the convolutional and

linear layers were initialized using Xavier Normal [11] and

the batch normalization layers were initialized with a nor-

mal distribution (1±0.02). We use an Adam optimizer [16]

with a learning rate of 10−6 and beta coefficients of 0.5 and

0.999. At train time, we apply dropout with 0.1 probability

on the LSTM decoder’s previous-step output-embeddings.

In order to improve performance and reduce overfitting,

we applied data augmentations for the visual input at train

time. We multiplied the tensor of the visual information by

a random value and randomly flipped, scaled, rotated and

translated all images in the tensor.

4. Finding Optimal Alignment at Inference

We assume that at the starting point of the sequence,

the optimal alignment distance of the video and the audio

streams is up to two seconds. If the shift is larger, a global

alignment step is first required.

The learned method is applied to a second of audio and

three seconds of video. At inference time we are required

to align, in a coherent manner, long sequences of visual

frames. In addition, a direct inference may be suboptimal,

even for short sequence. Recall that at each time step, the

decoder outputs a probability for each of multiple indices of

the video stream. A greedy approach would predict for each

audio frame the most probable visual frame index. This in-

dex, due to the decoder’s structure, is conditioned on the

past frames, but not on the future frames.

In order to overcome these challenges, we perform the

following steps. First, we apply the method multiple times

with a stride of ten frames. At each application, we em-

ploy a three second temporal window in the video domain

that is centered around the one second window in the audio

domain. As a result, for each audio frame we obtain up to

three votes for a prediction of a video frame index.

We treat these votes as equal and consider for each au-

dio frame, as possible matching candidates, only the set of
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indices with the maximal number of votes. For example, an

audio frame can be associated twice with index i1 and once

with index i2. In this case, we only consider the index i1
as a potential match. In other cases, three different indices

may be potential matches.

We then perform dynamic programming in order to find

the longest sequence of matches with monotonically in-

creasing indices. In other words, the search assigns matches

to one audio frame at a time, going sequentially over all au-

dio frames. It only considers future matches that do not go

back (multiple votes to the same video frame are possible),

and stops the sequence, if no such further matches are possi-

ble. The length of such monotonic sequences is optimized.

At the end of the obtained sequence, there is at least one

frame for which a match cannot be found without going

back. We skip such frames and continue with a longest se-

quence search when an audio frame has a possible match

that does not break monotonicity.

In order to smooth the matching results and fill-in the

missing matches, we apply an adaptive smoothing proce-

dure as suggested by Halperin et al. [12]. The procedure

employs a Laplacian filter with a parameter σ and a smooth-

ness criterion. It searches for the lowest σ such that the

criterion is met. This is done with one such parameter for

the entire video sequence. Predictions that are shorter than

the audio stream are padded with the last visual predicted

frame.

5. Datasets

Our network is trained on a dataset that is derived from

the LRS2-BBC dataset [2]. Another split of this dataset is

used for evaluation. We also perform evaluation by switch-

ing the audio between two TCD-TIMIT [13] speakers utter-

ing the same test.

5.1. LRS2BBC

LRS2-BBC consists of thousands of spoken sentences

from BBC television. Videos are of frame size of 160 ×
160, with a frame rate and audio rate of 25 FPS and 16kHz

respectively. For training, we use the pre-train set, which

consists of 96,318 utterances. The test set, which consists of

1,243 utterances, is used for evaluation in our experiments.

The dataset itself is well-synchronized and we adapt it to

our purposes by augmenting the data. In the video stream,

frames are randomly dropped and duplicated, while main-

taining a maximal distance of 25 frames from the frame’s

original position, which bounds the number of drops and

duplications. We also restrict the augmetnation such that

the maximal number of occurrences for a single frame is

four.

The target prediction is set such that if a visual frame is

dropped, the corresponding audio frame is mapped to the

closest remaining frame, and if a visual frame is duplicated,

the corresponding audio frame is mapped to the last occur-

rence of that frame. The audio stream is also augmented, by

adding a global random shift inside the three second visual

stream window. The size of the shift is [-25...25] frames.

An illustration of the process is shown in Fig. 3.

5.2. TCDTIMIT

The TCD-TIMIT dataset, developed for speaker and

speech recognition purposes, is used for evaluation only.

The dataset consists of 1, 920×1, 080 videos of 62 speakers,

both males and females, saying 6,913 sentences. Videos are

down-sampled by us into a frame rate and audio rate of 25

FPS and 16kHz respectively.

The sentences vary between speakers. However, at the

start of the session, all speakers say the same two sentences

– sa1 and sa2. For evaluation, we took sentences sa1 and sa2

of the first five speakers which are three males and two fe-

males. We then consider the various combinations of video

from one speaker and speech audio from another.

6. Experiments

We compare the performance of the proposed method

to existing methods for visual speech synchronization. We

evaluate both in the case in which synchronization is ob-

tained by applying a single shift for the entire video, and

in the case where the shift is different for each frame. For

the local shift case, we perform experiments where either

the audio or the video are modified. Out of these options,

we strongly advocate for a local form of synchronization

and for modifying the video. Local alignment allows for a

greater flexibility and generalizes the global shift. Modify-

ing the video results in changes that are far less noticeable,

while modifying the audio often results in metallic sounds

and other artifacts, which are not easy to overcome. The

reason that we evaluate our method with the other options

is to match the literature methods, in the same domain in

which these methods operate.

A summary of the literature baselines is given in Tab. 1.

Since no other method in the literature, as far as we know,

performs local shifts and warps the video, we created a suit-

able baseline method by modifying the Dynamic Tempo-

ral Alignment (DTA) method of Halperin et el. [12]. The

original method is local and warps the audio. We have im-

plemented their method for video augmentation by invert-

ing the search of the Dijkstra matching to be from audio to

video.

6.1. Single Shift Synchronization For LRS2BBC

In order to create the evaluation set for this experiment,

we uniformly shifted the audio of LRS2’s test set, by a ran-

dom shift of up to one second. We compare our method to

SyncNet and the modified DTA method (matching is per-

formed in the other direction). Despite some effort, we
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Figure 3: The creation process of a training audio-video pair, along with its ground trough labels. For a given audio-video

pair (1, 2), a sequence of random actions is taken (3) on the visual stream, to create an unsynchronized video stream (4) along

with the ground truth labels (5). The resulted training pair consists of the input audio (1) and the modified video stream (4)

and the task is to predict the ground truth labels (5). Note that the frames at the end of the modified video stream are removed

since they fall after the audio boundaries.

Method Global/local

alignment

Augments

video/audio

Ours both both

SyncNet global same

DTA both audio

Our modified DTA both video

Chung et al.[10] global same

Table 1: The literature baselines. The baseline below the

ruler were not available for evaluation. For global methods,

aligning the video is performed similarly to aligning the au-

dio.

could not make the original DTA method work well on this

dataset. SyncNet is run in the accurate mode, in which it

is applied multiple times at different strides followed by a

voting procedure. Our method is run only once.

The results are reported in Tab. 2. As can be seen, our

method outperforms the other methods by a significant mar-

gin. In 88% of 1,200 videos, our prediction was exact.

Moreover, the error for our method was never more than

one frame. The results of our method without the attention

mechanism are added to the table in order to study the im-

portance of this module. As can be seen, the performance

without the attention mechanism is not competitive.

Method Mean

shift

error

(frames)

Max

shift

error

(frames)

Top-1 accuracy

per video

SyncNet 0.45 36 60%

Modified DTA 0.25 27 83%

Ours 0.12 1 88%

Ours (no Att.) 0.61 13 45%

Table 2: Single shift performance evaluation for LRS2. The

top-1 accuracy per video indicates the percentage of videos

where the global shift was predicted exactly.

6.2. Dynamic PerFrame Shifts For LRS2BBC

As detailed in Sec. 5, using the same pipeline that was

used for creating the training set, an evaluation set for

LRS2-BBC was created.

The results for the modified DTA method as well as

for our method are reported in Tab. 3. The original DTA

method, which is the only other local alignment method,

cannot be applied here since the video is modified and the

audio remains unchanged. As can be seen, our method

greatly outperforms the baseline method in both the average

shift error and in the percent of frames that were assigned

the correct alignment. The table also contains the results of

our method without the attention mechanism. The results

for this method are considerably worse than those of our
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Method Mean shift error (frames) Top-1 accuracy

Modified DTA 1.94 25%

Ours 0.85 60%

Ours (no Att.) 1.60 26%

Table 3: Results on the LRS2-BBC benchmark, where

shifts vary locally. We have measured the average shift er-

ror in frames and the percentage of frames where the local

shift was predicted exactly (Accuracy).

complete method.

6.3. Shift PerFrame Synchronization For TCD
TIMIT

For the TCD-TIMIT benchmark, the videos for sen-

tences sa1 and sa2 of the first 5 speakers were used. All

permutations between source and destination speakers, for

each of the two sentences, were evaluated, resulting in 40

different experiments.

In each experiment, we have the video of speaker a

aligned to the audio of speaker b. In order to evaluate per-

formance, we can compare the modified video of speaker

a to the video of speaker b. We perform this comparison

by considering the correlation of facial keypoints in those

videos.

The OpenFace [6] software is used to extract these key-

points, and we calculate the Pearson correlation in the

mouth height (measured as the vertical distance between

key points 63 and 67) and in the mouth width (horizontal

distance between facial key points 61 and 65). A high cor-

relation indicates better alignment.

We compare the correlations along both the x and y axes

with no alignment, as well as the modified DTA method

(since the video is modified) and our method. The results,

listed in Tab. 4, indicate that the proposed method outper-

forms the modified DTA method.

In addition to measuring the correlation between the

aligned video and the original video that is associated with

the voice, the quality of the generated video also needs to

be evaluated. When a video is generated by duplicating or

deleting frames, it is desirable to duplicate and delete as

few frames as possible. In addition, we would prefer sit-

uations in which consecutive frames in the original video

remain consecutive in the modified version of it. Lastly,

we would like to cover as many of the original frames, i.e.,

have as many unique frames as possible present in the mod-

ified video. As Tab. 5 shows, our method has a sizable ad-

vantage in all four criteria (number of duplicates, number

of deletions, number of consecutive frames copied sequen-

tially, and number of unique frames in the modified video).

Method corr x corr y

No alignment 0.31 0.46

Modified DTA 0.40 0.47

Ours 0.42 0.50

Table 4: Average Pearson correlation for mouth height (cor-

relation y) and width (correlation x) on the TCD-TIMIT

cross speaker benchmark.

Method dup↓ del↓ conseq↑ unique↑

Modified DTA 67.10 80.25 20.48 40.85

Ours 38.45 44.85 58.95 76.25

Table 5: Number of deleted and duplicated frames on the

TCD-TIMIT benchmark, as well as the number of frames

in which the matching frame is the consecutive frame of

the match of the previous frame and the number of unique

frames.

In addition, we have also repeated the experiment such

that the audio is aligned to the video, as is done in the un-

modified DTA method. For our method, this required mod-

ifying it to perform the alignment in the other direction. For

this purpose, we replace the roles of audio and video and let

each distance vector ~ρk represent the distances of 75 audio

frames to a single video frame, out of 25 such frames. We

do this without retraining the network, assuming symmetry

in the alignment process. Additional performance may be

gained by training specifically for this scenario.

For evaluation, we need to compare the warped audio of

speaker b to the original audio of speaker a. This is done us-

ing the Mel Cepstral Distortion (MCD) measure. The closer

the sequences are, the lower the MCD score. A second

variant of this distortion (MCD-DTW), employs Dynamic

Time Warping to minimize the MCD score. In the context

of alignment methods, MCD-DTW measures the extent to

which content is maintained during the alignment process.

In other words, one can obtain a relatively low MCD score,

while removing part of the original audio, instead of map-

ping it. The MCD-DTW score performs its own alignment

and is more sensitive to such neglect.

For a fair comparison, we normalized the audio of the

reference and warped inputs for all methods into -30 dBFS.

The Mel generalized cepstral analysis is done with a frame

length of 64 ms and hop length of 5 ms, in order to ex-

tract 60 length features for the warped and reference audio

streams. The obtained scores are reported in Table 6. Our

method outperforms DTA with respect to both MCD and

MCD-DTW.
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Method MCD MCD-DTW

DTA 10.37 ± 1.84 5.64 ± 1.19

Ours (audio warp version) 9.13 ± 2.11 3.92 ± 1.48

Table 6: MCD and MCD DTW scores for TCD-TIMIT

(Mean ± SD; lower is better)

Answer Real video Modified video

“The video is real” 86% 83%
“The video is fake” 14% 17%

Table 7: User study results. The 20 users were asked to

specify for a set of four videos, which ones are real and

which are fake.

6.4. User Study

In order to quantitatively evaluate the performance of our

method, we conducted a user study. TCD-TIMIT dataset

was used in order to synthesize eight different videos, where

the audio of a source speaker was synchronized with the

video of a different target speaker. All pairs are both either

males or females and the videos consist of seven different

speakers, four males and three females, saying sentences

sa1 and sa2.

The participants were presented with the videos and

were asked to tag each video with a real or a modified la-

bel. The participants were told that we may present any

combination of real and modified videos, while, in reality,

we always presented two real and two modified videos that

were randomly selected and ordered.

The participants were given ample time, were able to

watch the videos an unlimited number of times, and were

challenged to do their best. The videos were watched on a

27 inch computer monitor, and were displayed at a resolu-

tion of 1920 × 1080. Ten males and ten females between

the ages of 20–50 participated in the study. The results are

shown in Tab. 7. As can be seen, the results clearly demon-

strate that most of the time participants are not able to dis-

tinguish between real and modified videos, which indicates

the artifact-free nature of the modified video and that these

videos are extremely well-synchronized.

6.5. Application to TTS Voices

Our method allows synchronizing the audio and the

video streams of two different speakers, where the tempo

of the two streams is completely different. One potential

usage is for same-language dubbing, which is a standard in-

dustry practice known as looping. Same-language dubbing

is required for cases where filming special effects shots or

in the presence of a background noise. Another common

case is with shows aimed at preschoolers where dubbing is

done in order to ensure the usage of a ”right accent”, as

they learn to speak their native tongue. Another use case

are animation films and musicals, where the actor’s singing

ability may not be good enough, and may be dubbed by a

professional singer.

In order to illustrate the capabilities of our method for

same-language dubbing, we use a text to speech module

in order to dub variety of speakers. We use free online

services as the text to speech system, and a variety of

YouTube videos, including hosting shows, Obama’s weekly

addresses, etc. as the video stream. The results are very

convincing and are available as part of the supplementary

videos.

6.6. Runtime

The proposed method and the modified DTA baseline are

both running significantly faster than real-time. Our method

is 1.7 times faster than the modified DTA baseline, once the

input tensors have been prepared. However, the run time

of both is negligible in comparison to the time it takes to

extract the facial keypoints.

7. Conclusions and Future Work

We present a novel method for lip syncing. The method

obtains a sizable gap in accuracy over the literature on mul-

tiple benchmarks. Applying the method, even in challeng-

ing scenarios where the audio and the video do not perfectly

match, results in an artifact-free, well-aligned video. As we

demonstrate, users find it hard to distinguish, based on ei-

ther quality or the accuracy of the audio-video alignment,

between the modified video and the original unmodified

video. While we have demonstrated compelling results, fur-

ther improvements may be considered. In order to eliminate

the post-processing step, a monotonic attention mechanism

[23], [7], [20], may be utilized, in order to force the de-

coder to produce a monotonically increasing alignment. In

addition, monotonic constraints could be added to the loss

function, as well as using an Euclidean or an ordinal loss

function, in order to weight the magnitude of the predic-

tion error. Our code and scripts for training and running

the method are attached as supplementary and would be re-

leased as open source.
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