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Abstract

Subsea hydrothermal vents, typically existing at water

depths below natural light penetration, contain diverse and

unique macrofaunal environments. Traditionally, long-term

ecological observation has been difficult as the extreme

depth, temperature and pressure make in situ video surveys

challenging. However, the introduction of subsea cabled ar-

rays has allowed for the long time series collection of high

definition imagery from these vents. To study the benthic

hydrothermal vent environment, we propose an inference

pipeline consisting of a U-Net followed by VGG-16 CNN

to perform instance segmentation of scale worms, a spe-

cific macrofaunal family. The developed pipeline exhibits

an average precision (AP) of 0.671 AP@[0.5], despite the

difficult camouflaged imagery and low training data inputs.

We further explore full pipeline training data requirements,

as the dynamic scene in question requires the pipeline to be

re-trained on an approximately monthly basis for effective

segmentation. We find that the VGG-16 CNN portion of the

pipeline is typically more sensitive to training data varia-

tion than the U-Net portion.

1. Introduction

The NSF-funded Ocean Observatories Initiative (OOI)

Regional Cabled Array (RCA) offers an unprecedented ca-

pacity for observation of deep ocean processes [2] [3]. In

operation since 2015, the RCA provides power and network

connectivity to multiple study sites in the Northeast Pacific,

enabling new forms of realtime, data-driven scientific in-

quiry into subsea geology, chemistry, biology and physi-

cal oceanography. A major study site on the RCA is Axial

Seamount, an active volcano located on the Juan de Fuca

plate spreading center ∼ 500 km off the Oregon Coast [21].

Axial caldera, located at the top of the volcano at ∼ 1500m

water depth, hosts a diversity of scientific instrumentation

for studying the tectonic and volcanic processes occurring

at Axial and the interaction between those processes and

the overlying water column. Axial also hosts a number of

Figure 1: Map of the OOI Regional Cabled Array. Axial

seamount, located approximately 500km off the Oregon coast, is

at the center of the image. Image Credit: UW/NSF-OOI.

sites where heated, mineral-laden seawater is expelled from

the seafloor, creating local prominences, or vent chimneys,

which host thriving chemotrophic ecosystems. A map of

Axial and the RCA is shown in Figure 1.

At one such vent site, the RCA has installed a high-

definition camera (CamHD in the system nomenclature),

which sits approximately 1.5m from Mushroom, a 2m tall

hydrothermal vent (Figure 2). Eight times per day, CamHD

conducts a ∼ 12 minute video survey of Mushroom, pan-

ning, tilting and zooming over the side of the vent facing

the camera. This HD video is archived within the OOI

data repository, with more than 11,000 such video sur-

veys archived at present. During each survey, the camera

observes the full extent of the vent (Figure 3), and per-

forms close examinations of a number of regions of interest

(Figure 4), capturing a diverse, benthic ecosystem, where

tube and palm worms, pycnogonidas, fish, and scale worms

thrive in the extreme conditions on the flanks of the vent.

As the camera follows a pre-programmed course, every

video shows a consistent set of locations on the vent, open-

ing the possibility of long-time-series studies of geological

and biological change at Mushroom. Unfortunately, due to

the sheer size of the historical record, the manual extrac-

tion of useful quantitative metrics is impractical. Therefore,
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Figure 2: CamHD looking at Mushroom. Image Credit: Credit:

UW/NSF-OOI/CSSF.

there is a strong incentive for the development of image

analysis-based tools for extracting geological and biologi-

cal metrics from CamHD video and imagery.

As an initial exploration, we investigate the use of ma-

chine learning to identify and segment benthic scale worms

(i.e. Polynoidae, a subsea worm family) [1] from CamHD

still images (with two examples shown in Figure 4). We

focus on this group of fauna because: 1) they are mobile,

and thus capable of migrating in response to local envi-

ronmental conditions; 2) they are present in relatively large

numbers and are common throughout the video record; 3)

they have a well-defined, stable outline (unlike, for exam-

ple, palm worms, which have an indistinct, frond-like out-

line and are in constant motion); 4) the coloration of many

individual scale worms (though not all) appears as a con-

trasting pink when lit by CamHD’s lights – bearing in mind

that any light is unnatural in the environment; and 5) as dis-

tant relatives of the “pill bug” insects in our gardens, they

are relatively charismatic.

The scene in question is difficult to segment for several

reasons:

1. The scale worms are well camouflaged against a com-

plex, dynamic background;

2. Schlieren (i.e. waviness in imagery due to heat) from

hot fluids emerging from nearby vents and cracks can

severely distort the image;

3. The absence of labeled training data; and

4. The sequence of images contain both slow change on

the scale of days to weeks, due to e.g., the growth of

bacterial mats (the white “fluff” shown in Fig 4); as

well as sudden, discontinuous changes, for example

when individual lights on the system fail.

The latter point is of particular interest, as the imag-

ing conditions at Mushroom evolve continuously through-

out the video record. The relationship between the perfor-

mance of image-segmentation algorithms and the temporal

Figure 3: Sample image from CamHD, taken at CamHD’s short-

est focal length (widest angle). This image shows the signif-

icant tube worm populations on Mushroom. It also shows a

freshly formed chimney (right) growing from the base of Mush-

room where mineral-laden hot water is emerging from the vent in

the seafloor. Image Credit: UW/NSF-OOI.

gap between training and realtime data, as well as the com-

putational costs for incremental algorithm retraining, is ex-

plored in the presented work.

In this paper, we develop a hybrid inference pipeline

consisting of a U-Net [25] followed by a VGG-16 CNN

[27], and evaluate its performance on still frames taken

from CamHD video of Mushroom. We show that this

model can achieve considerable average precision values,

despite the difficult scene and lack of substantial training

data. Additionally, we show that the VGG-16 portion of

the hybrid pipeline is typically more impacted by additional

training data than the U-Net portion, an important attribute

for model maintenance given the continuous change in the

video content.

We believe our work has two primary benefits: First,

we successfully demonstrate the segmentation of a spe-

Figure 4: Another sample image from CamHD, taken near

CamHD’s longest focal length (most zoomed in). This image

shows a number of macrofauna, including tube and palm worms,

white filamentous bacterial growth, and two scale worms identi-

fied by the bounding boxes Image Credit: UW/NSF-OOI.
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cific macrofauna species from CamHD video, opening the

possibility of algorithmically generating quantitative spa-

tial statistics about scale worm distributions throughout the

CamHD record. Second, we demonstrate that the presented

network architecture is capable of instance segmentation in

difficult, dynamic and camouflaged environments.

2. Related Work

The in situ study of benthic scale worms is dominated by

the cost and difficulty in collecting data. Mushroom, while

far from the most inaccessible scale worm habitat, is located

at 1500 m water depth, where the ambient pressure is ap-

proximately 147 bar (2100 psi). While manned submarines

and remotely-operated vehicles (ROVs) have been used for

short visits to hydrothermal vent sites, it is only with the

introduction of cabled observatories, like the RCA [3] and

the similar Ocean Networks Canada (ONC) Neptune ocean

observatory [4, 20], that true realtime, long-term observa-

tion of benthic habitats has become feasible. Cuvelier et

al., Leliev̀re et al., and Lee et al., specifically, have stud-

ied the behavior and migration patterns of different macro-

fauna species, including scale worms, on the Endeavour and

Lucky Strike vent fields [14, 5, 15, 6, 16] using conventional

uncabled instrumentation and ROV observation. However,

the Endeavour vent field is an active study site for the ONC

Neptune network, and cabled observations may play a role

in future Endeavour observation. While these previous stud-

ies do examine the rhythm, dynamics, and temporal macro-

fauna variation due to temperature and “astronomical and

atmospheric” variations, they have not utilized a deep learn-

ing image segmentation algorithm to help with continuous

data collection under challenging environments. We believe

our work could be leveraged to accelerate population as-

sessments such as those presented in this work.

The generalized study of object detection in imagery

using deep learning has been extensively studied in re-

cent years [8, 10, 17, e.g.,]. Some examples of attempts

of wildlife classification research are as follows. Norouz-

zadeha et al. studied the performance of different networks

on the ‘Snapshot Serengeti’ database, a large multi-million

African savanna image database [19, 28, 33]. Shi et al.

created ‘FFDet’, a network for the detection of coral reef

fish, and compared their network to other state-of-the-art

segmentation networks like YOLO [22, 23], SSD [18], and

Faster-RCNN [24] [26]. Xu and Matzner segmented fish

from image scenes near water power applications (e.g., ma-

rine energy converters) using the YOLO network [31]. Al-

though each of these previous architectures are appropri-

ate for their specific application, they have not been tested

in the camouflaged environments where our segmentation

takes place. Furthermore, the dynamic background scene

required network re-training. This, in turn, necessitated

the usage of a network with a small training dataset re-

quirement to reduce workload during each re-training cycle.

While YOLO did not fit these requirements, U-Net, a pop-

ular biomedical semantic segmentation network developed

by Ronneberger et al., works well in camouflaged environ-

ments and does not require a large training dataset [25].

3. Proposed Methodology: U-Net and VGG-16

Inference Pipeline

The U-Net architecture utilized here consists of an “up”

and “down” path, which forms a “U” shaped structure. The

up path i.e., the contraction/encoder step, captures image

features and context via a traditional stack of convolution

and max pooling layers, while the down path i.e., the sym-

metric expanding/decoder step, localizes the object [25]

[13].

For our network architecture, we added batch-

normalization layers after every convolution layer to in-

crease network convergence speed, and to add a regulariz-

ing effect [11]. This modified U-Net network used a binary

cross-entropy loss with an Adam optimization algorithm at

a learning rate of 10−3, and was trained for 300 epochs.

Furthermore, our network operates on individual patches,

i.e., smaller image subsets, and not full CamHD images.

A solo U-Net model, however, is not sufficient for accu-

rate segmentation in this environment as false positives are

high (while we do not provide U-Net false positive statistics

here, see Figure 7 (b) and (c) for an example). To that end,

we add a VGG-16 CNN model which verifies the U-Net

segmentation masks.

Specifically, the patch-level outputs from U-Net are

stitched to form a whole-image-segmentation-mask, and

they undergo probability and area thresholding. Additional

morphological operations, e.g., dilation, are applied to re-

move holes in the mask. Finally, connected components are

extracted and considered as candidate regions. Probability

and area thresholding removes smaller connected compo-

nents, and therefore overlapping region proposals are un-

likely. A complete description of our inference pipeline can

be seen in Figure 5.

In this work, we only analyzed the U-Net + VGG-16

CNN network that we developed, and did not compare per-

formance to other networks like MaskRCNN. We did not

conduct this comparison for two primary reasons: 1) the

amount of training data was limited, and we did not believe

that we had sufficient quantities of examples at the onset of

development for a comparison, and 2) we were motivated to

develop a more ‘modular’ network, where we could more

finely observe and tune the individual model elements. A

formal comparison to other deep learning networks for in-

stance segmentation like MaskRCNN is considered as fu-

ture work.
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3.1. Data Collection, Preprocessing and Training

Scale worm segmentation from Mushroom imagery fo-

cuses on three out of the 27 regions visited by CamHD on

each pre-programmed video collection sweep. These re-

gions are captured at the camera’s greatest level of zoom

(longest focal length), and are in regions which frequently

host scale worms. From these three scenes, we sampled 352

images from July to October, 2018 (4 months) to serve as

the training dataset.

We used the labeling tool LabelMe [30] to manually cre-

ate 537 segmentation masks from the sampled images for

our training set. Due to the difficulties in spotting cam-

ouflaged scale worms against the vibrant Mushroom back-

ground, we utilized a sparse-labeling approach, where only

a few scale worms per image were annotated. Patches iden-

tified from the sparse labeling procedure were used as train-

ing patches. The training patches were augmented via ro-

tation, width shift, height shift, shear, zoom, and horizontal

flip. As U-Net works on a pixel-level, no empty patches

were used for training.

A test-set consisting of 45 images, with equal represen-

tation from the three CamHD scenes, was used for network

testing. However, this test set was densely labeled, so that

every visible scale worm in each image was annotated. Note

that dense labeling of scale worms in these CamHD images

can be taxing, as some scale worms are very difficult to de-

tect, even for skilled human observers. Our full labeled data

is available online.1

During U-Net data processing, it was observed that scale

worms can be easily confused for tube worms and other

background objects when viewed from a full scale perspec-

tive. However, we noted that scale worms were more easily

recognizable when patch size was roughly equivalent to the

size of scale worms. Our pipeline, therefore, was trained

using small patch sizes, provided the patch size remains

large enough to encompass an entire scale worm. Ideally,

we believe, patch size will be approximately equivalent to

the largest potential scale worm detection size. Upon ob-

servation over several annotated masks, we determined that

a square having each side equal to 256 pixels to be an ap-

propriate patch size, as it was sufficiently large enough to

contain most scale worms.

3.2. Region Proposal

CamHD natively produces HD images (1920×1080 pix-

els). During image inference, the input images were split

into individual patches sized 256 × 256 px2, via a sliding

window with stride size of 128 px (half a patch size). Such

an overlapping stride size was chosen to ensure we capture

scale worms which may be split across different patches. U-

Net masks were then generated from these individual slid-

1https://www.camhd.science/categories/fauna segmentation/

Video	Frame

Trained	U-Net
Patchwise	Semantic	Segmentation

Strided	Patches

Center-Crop	Stitching	of	Mask-Patches

Predicted	Mask-Patches

Image	Processing:	Probability	and	Area	Threshold,
Morphological	operations

Stitched	Mask

Extract	Patches	around
Connected	Components	of	the	Mask

Post-Processed	Mask

Trained	VGG16
Patchwise	Binary	Classifier

Candidate	Object	Patches

Count	Valid	Objects,	and
Record	the	Coordinates	and	Sizes

Validated	Patches

Count	and	Location-Sizes

Figure 5: Flowchart depicting the hybrid U-Net + VGG-16 CNN

inference pipeline.

ing window patches, before being stitched back together to

form a single predicted whole-image-mask. As scale worms

may be split across two patches, we utilized a center-crop

stitch method. An example of this method is shown in

Figure 6, where dotted and solid lines (in red) represent

two subsequent patches. The scale worm in this exam-

ple clearly falls between the individual patches. However,

when the two patches are concatenated, the complete scale

worm segmentation representation is restored, as shown by

the dashed lines (green). This method works because the

U-Net model learns to produce the segmentation mask at

a pixel-level. The connected components in the resultant

whole-image-mask are considered as the proposed regions.

3.3. Incorporation of a VGG­16 CNN

The base U-Net model mainly learns color and texture,

and also considers the structural information. While the

color and texture information is typically useful for net-
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Figure 6: Center-crop stitch method across two subsequent

patches.

work performance, the similarities in the appearance be-

tween scale worms and the background Mushroom environ-

ment led to a high number of false positives from the U-Net

output, as shown in Figure 7(b). Probability and area thresh-

olding of this output did help in reducing the false positives,

however, they still remained troublingly high (see Figure

7(c)). Our solution was to add a patch-wise binary classifi-

cation CNN to reduce the false positives from the base U-

Net output. We chose a VGG-16 CNN network, which has

been found to be effective on the ImageNet dataset [29]. We

additionally add batch-normalization layers to improve con-

vergence and detection accuracy as it helps in limiting po-

tential over-fitting [27, 11]. Our full network architecture,

which also includes the VGG-16 CNN network portion, is

shown in Figure 5.

3.4. VGG­16 CNN Training

The VGG-16 CNN, operating as a binary classifier, was

trained on image patches (still at size 256 × 256 px2), out-

putting a probability score on the likelihood that the pro-

posed region from U-Net should be classified as a scale

worm. This network was trained on both valid (i.e. contain-

ing a scale worm) and invalid (i.e empty) patches. For valid

training images, the network simply used training patches

from the U-Net dataset. For invalid patches, we considered

two types of data: 1) randomly cropped patches from var-

ious video frames, and 2) manually labeled patches in the

regions typically occupied by scale worms. Further discus-

sion on these two invalid patch types can be found in section

4.1.

The network was trained to minimize cross-entropy loss

using the Adam optimizer with learning rate 10−3. The

VGG-16 CNN output was thresholded at 0.7, where scores

above that value were classified as scale worms.

3.5. Evaluation Metric

We consider Average Precision at a 50% IoU

(AP@[0.5]) as our primary evaluation metric. Scale worms

are typically located in neighborhoods having a high tube

worm density, and we observed that tube worms and other

background objects often occlude a portion of several scale

worms. Moreover, when scale worms are close to the tip

of a tube worm, it is very hard to manually distinguish

the boundary of the scale worm. Therefore, we believe it

is reasonable to discount such inaccuracies in our applica-

tion, and hence we chose an Intersection over Union (IoU)

threshold of 50%.

3.6. Ignoring Scale Worms in Training Data

The population of scale worms on Mushroom span a

broad range of sizes and colorations; including a significant

variation in appearance between individual scale worms.

The authors theorize that these individuals come from dif-

ferent species. Furthermore, previous work has found that

same-species appearances may vary substantially due to

size and sexual dimorphism [12, 9, 32] and age/growth rate

differences [7]. An example of the varying scale worm ap-

pearance is shown in Figure 8, where one scale worm ex-

hibits a red color, and one exhibits a darker green color.

Furthermore, the green-colored scale worms were typically

substantially larger than the red ones, occasionally surpass-

ing the 256 × 256 px2 patch size. To reduce potential

sources of confusion, we ignore these large, green scale

worms, which have highly unique appearance, within our

initial experiment.

3.7. Inference Pipeline Advantages and Limitations

The presented inference pipeline has several advantages

over other methods. First, our approach provides reasonable

performance with limited training data. This could be due to

the decoupling of the hard instance segmentation problem

into two relatively more tractable problems: 1) semantic

segmentation, where U-Net is effective with small amounts

of training data, and 2) binary classification for validation

in order to increase the precision. The limited training data

requirement is useful in situations where the collection of

large labeled datasets is not feasible.

Second, this pipeline requires only patch-level labeling,

enabling it to work effectively with sparse-labeled ground

truth video-frames. This is crucial for situations where

dense labeling is not feasible, as is the case in the presented

Mushroom environment where exhaustive dense tagging of

every scale worm in an image is extremely tedious, if not

impossible. Furthermore, the patch-wise approach reduces

computational requirements while training.

Third, the inference pipeline is easy to understand, debug

and maintain, as intermediate outputs are clear (Figures 5

and 9), and each network can be individually tuned and re-

trained.

However, there are certain limitations to our approach.

First, the predicted confidence score corresponding to each

instance segmentation is derived completely from the VGG-
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(a) (b) (c)

Figure 7: Example (a) input image to U-Net with scale worms shown in green, (b) base U-Net output having a large number of false

positives, (c) probability and area thresholded U-net output which has a reduced number of false positives, which is still high.

16 CNN model, and does not quantify the errors from the U-

Net model. Second, our experiments were conducted with

a relatively small test-set, as large densely-labeled testing

datasets were expensive to gather.

4. Results and Discussion

In this section, we discuss the individual performances

of our U-Net and VGG-16 models, followed by results from

the complete instance segmentation inference pipeline. Fi-

nally, we discuss disjoint model training through several ex-

perimental observations.

4.1. Training Data Sets

To gauge the amount of training data required for effec-

tive U-Net, VGG-16, and complete inference pipeline per-

formance, we split training data into several disjoint sets.

Set one (S1) and set two (S2) each contained manually

labeled patch-masks (pairs of a 256 × 256 image patch

and the corresponding labeled segmentation mask) from the

Mushroom scenes, where these sets contained 261 and 276

patches respectively. Additionally, we identified two types

of negative patches (patches that do not contain a scale

worm) specifically for VGG-16 network training:

1. Randomly Cropped Patches (RCP): negative patches

taken randomly from various “empty” Mushroom

scenes. These patches were manually inspected to en-

sure that they contain no (previously unnoticed) scale

worms; and

2. Manually labeled Custom Negative Patches (CNP):

(a) (b)

Figure 8: Variations in scale worm appearance. (a) The typical

small, ‘red’ scale worms, and (b) larger ‘green’ scale worms which

were ignored during model training.

Training Data Name Data

S1 261 custom labeled patch-masks

S2 276 custom labeled patch-masks

RCP 392 randomly cropped negatives

CNP 995 custom negatives

Table 1: Training datasets.

specifically chosen by the authors from Mushroom lo-

cations with high false positive rates (as per manual

observation), to specify to the model the difference be-

tween an actual scale worm and the environment it typ-

ically lives in.

Note that the curation of this dataset was more expen-

sive than the RCP dataset. However, as we will de-

scribe in section 4.3.1, we find that these patches sig-

nificantly improve model performance.

We identified 392 RCP and 995 CNP training patches.

These individual training datasets are shown in Table 1.

4.2. Individual Model Performance

Using the datasets described in section 4.1, two different

U-Net models were trained: version one (U-V1) with train-

ing data from S1, and version two (U-V2) with training data

from S1 and S2. The converged models produced a mean

IoU of 0.9267 and 0.9347 respectively, on the validation set.

We observed high recall and low precision from individual

U-Net outputs, where many regions with moderately simi-

Version Train Data Val. Acc. Val. m-IoU

U-V1 S1 0.9835 0.9267

VGG-V1 S1+RCP 0.9921 N.A.

U-V2 S1+S2 0.9821 0.9347

VGG-V2 S1+S2+RCP ≈ 1.0 N.A.

VGG-V3 S1+S2+RCP+CNP 0.9947 N.A.
Table 2: U-Net/VGG-16 Inference Pipeline Versions along with

the respective individual model performance showing validation

accuracy (Val. Acc.) and validation mean-IoU (Val. m-IoU).
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lar color and size structures were incorrectly segmented as

scale worms.

Similarly, three different VGG-16 CNN models were

trained. Version one (VGG-V1) was trained with patches

from S1, while versions two (VGG-V2) and three (VGG-

V3) were trained with patches from S1 and S2. All three

of these VGG-16 versions included the RCP patches. Ad-

ditionally, VGG-V3 was trained by including CNP patches

as well. Each of these models had high precision at the 0.7

threshold value, and they all converged to a validation ac-

curacy close to 0.99. The performance and description of

each U-Net and VGG-16 CNN model are listed in Table 2.

The mean-IoU (m-IoU) criterion, not validation accuracy, is

the primary evaluation parameter for the individual U-Net

models, whereas validation accuracy is the only evaluation

parameter for the individual VGG-16 CNN models. Note

that these individual model performance metrics are based

on patch-wise data.

In this paper, we do not present AP@[0.5] on the test-set

from any individual U-Net without a VGG-16 CNN model.

This was primarily motivated by empirical evidence from

the U-Net output showing a large number of false positives,

as shown in Figure 9. Given these high false positive rates,

we did not believe a comparison to the complete pipeline

was warranted.

4.3. Inference Pipeline Experimental Analysis

The complete inference pipeline (Figure 5) was tested

iteratively, with the different U-Net and VGG-16 CNN

trained versions from Table 2. The AP@[0.5] was used as

the primary model evaluation metric, as discussed in section

3.5.

4.3.1 Full Network Output

The full results of this analysis can be seen Table 3, where

the highest average precision occurs at configuration 6,

when the U-V2 and VGG-V3 models were utilized. An

example inference pipeline input, output, and intermediary

network steps, for configuration 6, is shown in Figure 9.

In Figure 9(a), a sample frame is strided and fed into U-

Net, as described in the flowchart shown in Figure 5. Figure

Configuration U-Net + VGG-16 version AP@[0.5]

1 U-V1 + VGG-V1 0.451

2 U-V1 + VGG-V2 0.556

3 U-V1 + VGG-V3 0.589

4 U-V2 + VGG-V1 0.487

5 U-V2 + VGG-V2 0.563

6 U-V2 + VGG-V3 0.671

Table 3: Inference pipeline AP@[0.5] scores for various pipeline

configurations.

9(b) shows the raw U-Net output, where false positives are

very high. False positives are reduced by applying prob-

ability and area thresholding as shown in Figure 9(c), but

still remain considerably high. The complete pipeline in-

stance segmentation output is shown in Figure 9(d) after the

validation performed by the VGG-16 CNN model, where

false positives are completely removed and individual scale

worms are identified (green boxes).

4.3.2 False Negatives

While the complete inference pipeline removed the major-

ity of false positives, false negatives (i.e. scale worms not

detected by our pipeline) still remain. From section 3.6,

the pipeline purposely ignores large, green scale worms,

and therefore, we do not consider those missed scale worms

to be false negatives (one scale such worm shown in 9(d),

lower left of image with gray, dotted bounding box). How-

ever, as is shown in Figure 9(d), the network did fail to find

some of the smaller scale worms it was trained to identify

(shown in red bounding boxes). These failures primarily oc-

curred when the scale worms were in odd poses, e.g., on its

side or back. We did not have enough data to properly train

for these scale worm orientations. However, we believe that

the network will properly identify these scale worms given

sufficient training data.

4.4. Impact of Training Data on Model Performance

From Table 3, there is a ≈ 10% increase in AP@[0.5]

between configurations 1 and 2, 4 and 5, and 5 and 6 as

more data is added. These observations follow intuitive un-

derstanding, as increasing data will typically result in better

performance.

Interestingly, however, the large AP@[0.5] increase

from configuration 5 to configuration 6 occurred without an

increase in U-Net model training data. Examining Table 3,

the AP@[0.5] appears to, typically, be primarily impacted

by the VGG-16 version. For example, the AP@[0.5] of con-

figuration 2 and configuration 5 is approximately equiva-

lent, as the VGG-16 versions were identical (VGG-V2).

This observation is critical, because a primary drawback

of a multi-network inference pipeline is the maintenance re-

quirement to retrain multiple networks. If complete pipeline

performance can be greatly improved by retraining only one

of the models in the pipeline, overall pipeline maintenance

becomes much simpler.

Two observed exceptions to the above analyses are:

1. A noticeable AP@[0.5] performance increase between

configuration 3 and configuration 6, when the U-Net

version did change.

2. An almost negligible AP@[0.5] improvement between

configuration 2 and configuration 3, despite changing

from VGG-V2 to VGG-V3.
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(a) (b)

(c) (d)

Figure 9: Example intermediate outputs from the inference pipeline (with configuration 6 as shown in Table 3), with (a) example input

frame, (b) stitched U-Net output mask, (c) post-processed mask after probability and area threshold, and (d) complete instance segmentation

pipeline predictions (solid, green boxes), hand identified false negatives (dashed, red boxes), and one ‘large, green’ scale worm, not included

in pipeline training routine (gray, dotted).

As the only difference between VGG-V2 and VGG-V3

is the inclusion of CNP to the VGG-16 CNN model, the

above two observations suggest that a certain quality out-

put from the U-Net model is required before the addition of

the CNP training set to the VGG-16 CNN model has a sig-

nificant impact on the inference pipeline output AP@[0.5].

This result does run counter to our other observations, and

suggests that a ‘bare minimum’ U-Net quality is required

before the VGG-16 model dominates the pipeline perfor-

mance.

5. Conclusion and Future Work

The presented work details an instance segmentation ap-

proach for the identification of scale worms from the im-

agery of a subsea hydrothermal vent. We developed a hy-

brid U-Net + VGG-16 CNN inference pipeline, designed

for instance segmentation of camouflaged objects with lim-

ited training data. As the core two networks of our pipeline

are disjoint, this method is easy to interpret, debug, and in-

dividually train. While fairly simple, this pipeline effec-

tively segments scale worms and is useful for identifying

structural information (i.e. size and location) in specific

Mushroom scenes. The model was demonstrated to have an

AP@[0.5] of 0.671 when trained on our full training dataset.

We furthermore discussed the impact that varying train-

ing data had on the complete pipeline performance. We

found that the VGG-16 CNN portion of the inference

pipeline was more sensitive to the addition of training data,

while the U-Net model was typically less improved by in-

creased quantities of training data. This implies that incre-

mental retraining can focus on the VGG-16 CNN model, re-

ducing the quantities of supplemental labeled data required

for the U-Net. For dynamic scenes where data addition and

retraining is regular (such as the presented scene), reducing

model training to only one network simplifies model main-

tenance.

There are several future work directions. First, the

expansion of the application to support multiple-class in-

stance segmentation to capture other genera of macrofauna

at Mushroom. Second, transfer-learning based approaches

may be impactful, given the limited labeled data. Third,

applying the presented pipeline to instance segmentation

tasks in other domains to understand if the observations are

generalizable. Finally, once a sufficiently robust automatic

segmentation algorithm has been achieved, it can be used

to extract meaningful spatial and temporal statistics about

the scale worm population at Mushroom. These statistics

can be correlated with observations of temperature, pres-

sure, tidal cycles, and volcanic activity collected elsewhere

on the RCA to increase the study of benthic marine life in

these important, yet observationally difficult, subsea envi-

ronments.
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