
Frustum VoxNet for 3D object detection from RGB-D or Depth images

Xiaoke Shen

The Graduate Center, CUNY

New York City, USA

xshen@gradcenter.cuny.edu

Ioannis Stamos

Hunter College & The Graduate Center, CUNY

New York City, USA

istamos@hunter.cuny.edu

Abstract

Recently, there have been a plethora of classification and

detection systems from RGB as well as 3D images. In this

work, we describe a new 3D object detection system from

an RGB-D or depth-only point cloud. Our system first de-

tects objects in 2D (either RGB, or pseudo-RGB constructed

from depth). The next step is to detect 3D objects within the

3D frustums these 2D detections define. This is achieved by

voxelizing parts of the frustums (since frustums can be re-

ally large), instead of using the whole frustums as done in

earlier work. The main novelty of our system has to do with

determining which parts (3D proposals) of the frustums to

voxelize, thus allowing us to provide high resolution rep-

resentations around the objects of interest. It also allows

our system to have reduced memory requirements. These

3D proposals are fed to an efficient ResNet-based 3D Fully

Convolutional Network (FCN). Our 3D detection system is

fast, and can be integrated into a robotics platform. With

respect to systems that do not perform voxelization (such as

PointNet), our methods can operate without the requirement

of subsampling of the datasets. We have also introduced a

pipelining approach that further improves the efficiency of

our system. Results on SUN RGB-D dataset show that our

system, which is based on a small network, can process 20

frames per second with comparable detection results to the

state-of-the-art [16], achieving a 2× speedup.

1. Introduction

Classification and object detection are significant prob-

lems in the fields of computer vision and robotics. 2D ob-

ject detection systems from RGB images have been signif-

icantly improved in recent years due to the emergence of

deep neural networks and large labeled image datasets. For

applications related to robotics though, such as autonomous

navigation, grasping, etc., a 2D object detection system is

not adequate. Thus 3D object detection systems have been

developed, with input coming from RGB-D or depth-only

sensors. In this paper we describe a new 3D object detection

Figure 1. Overview of the whole system. Upper left: RGB im-

age and detected 2D bounding boxes. Upper right: DHS (Depth

Height and Signed angle) image, and detected 2D bounding boxes.

A DHS image is a pseudo-RGB image generated by a depth image

(see text). Bottom: The final 3D detected objects from the asso-

ciated 3D range image. The 3D detection not only provides an

amodal bounding box but also an orientation. The red point is the

center of the bounding box and the green one is the front center.

The detected 2D bounding boxes from either and RGB or DHS

image, generate 3D frustums (which are prisms having as apex the

sensor location and extend through the 2D bounding boxes to the

3D space). They are then fed to our Frustum VoxNet network,

which produces the 3D detections.

system that incorporates mature 2D object detection meth-

ods as a first step. The 2D detector can run on an input RGB

image, or pseuso-RGB image generated from a 3D point

cloud. That 2D detection generates a 3D frustum (defined

by the sensor and the 2D detected bounding box) where a

search for a 3D object is performed. Our main contribu-

tion is the 3D object detection within such as frustum. Our

method involves 3D voxelization, not of the whole frustum,

but of a learned part of it. That allows for a higher resolu-

tion voxelization, lower memory requirements, and a more

efficient detection.

1698

Figure 1 illustrates the overview of our system. In the

upper left we see a 2D RGB image, along with the 2D de-

tected bounded boxes (a chair and a desk). On the upper

right we see a 2D pseudo-RGB image that was generated

from the associated 3D range image (see [28]), along with

similarly detected 2D bounded boxes. We call this pseudo-

RGB image a DHS image, where D stands for Depth, H for

Height, and S for Signed angle. The depth is a normalized

distance of the associated 3D point, height is a normalized

height of the 3D point, and the signed angle is a normalized

approximation of the normal at the 3D point (see [28]). We

can apply traditional 2D detectors on this pseudo-RGB im-

age, making our method applicable even when no RGB in-

formation is available. 3D frustums are then extracted from

these 2D detections. A 3D frustum is a prism having as apex

the sensor location and extending through the 2D bounding

boxes into the 3D space. Learned parts of the 3D frustum

are being voxelized. These voxelizations are fed to Frustum

VoxNet, which is a 3D Fully Convolutional Neural Network

(FCN).

The key contributions of our work can be summarized as

follows:

• We demonstrate the power of using a 3D FCN ap-

proach based on volumetric data to achieve accurate

3D detection results efficiently.

• We provide a novel method for learning the parts of

3D space to voxelize. This allow us to provide high

resolution representations around the objects of inter-

est. It also allows our system to have reduced memory

requirements and leads to its efficiency.

• Compared to systems that do not perform voxelization

(such as [17, 16]), our methods can operate without

the requirement of subsampling the datasets. Also, our

approach is more efficient and can be used in robotics

applications.

• Compared to systems that do voxelize (such as [29]),

our system does not voxelize the whole space, and thus

allows a higher-resolution object representation.

• We compare the 3D detection performance of using

different input channels (RGB or DHS).

• We provide a more efficient variation of our method

that involves pipelining, geared to robotics applica-

tions.

• The parameters of our network are much smaller than

leading methods. That results in faster inference time.

We start by reviewing related work and then proceed

with the description of our 3D detection system along with

our experimental results. Since our final goal is indoor

robotic navigation, our current system has been evaluated

based on an indoor SUN-RGBD dataset[23].

2. Related Work

2D methods RGB-based approaches can be summarized

as two-stage frameworks (proposal and detection stages)

and one-stage frameworks (proposal and detection in par-

allel). Generally speaking, two-stage methods such as

R-CNN [4], Fast RCNN [3], Faster RCNN [20], FPN

[11] and mask R-CNN [6] can achieve a better detection

performance while one-stage systems such as YOLO[18],

YOLO9000[19] and RetinaNet [12] are faster at the cost of

reduced accuracy. For deep learning based systems, as the

size of network is increased, larger datasets are required.

Labeled datasets such as PASCAL VOC dataset [2] and

COCO (Common Objects in Context) [13] have played im-

portant roles in the continuous improvement of 2D detection

systems.

3D methods Compared with detection based on 2D im-

ages, the detection based on 3D data is more challenging

due to several reasons [22]: 1) Data representation itself is

more complicated. 3D images can be represented by point

clouds, meshes, or volumes, while 2D images have pixel

grid representations. 2) Due to the extra dimension, there

are increased computation and memory resource require-

ments. 3) 3D data is generally sparser and of lower res-

olution compared with the dense 2D images, making 3D

objects more difficult to identify. Finally, 4) large sized

labeled datasets, which are extremely important for super-

vised based algorithms, are still inferior compared with

well-built 2D datasets. Below we summarize the basic ap-

proaches.

Project 3D data to 2D and then employ 2D meth-

ods There are different ways to project 3D data to 2D fea-

tures. HHA was proposed in [5] where the depth image is

encoded with three channels: Horizontal disparity, Height

above ground, and the Angle of each pixels local surface

normal with gravity direction. The signed angle feature de-

scribed in[26] measures the elevation of the vector formed

by two consecutive points and indicates the convexity or

concavity of three consecutive points. Input features con-

verted from depth images of normalized depth(D), normal-

ized relative height(H), angle with up-axis(A), signed an-

gle(S), and missing mask(M) were used in [28]. We are us-

ing DHS in this work to project 3D depth image to 2D since

as shown in [28] adding more channels did not affect classi-

fication accuracy significantly. Keeping the number of total

channels to three, allow us to use networks with pre-trained

weights for starting our training.

2D-Driven 3D Object Detection from RGB-D Data

Our proposed framework is mainly inspired by 2D-driven

3D object detection approaches as in [10, 16]. First a 2D

detector is used to generate 2D detections. The differences

1699

of our work with [10] are: 1) the 2D detector in [10] is

only based on RGB images and our proposed system ex-

plores both RGB-D and Depth only data. 2) 3D detection

in [10] uses a MLP regressor to regress the object bound-

aries based on histograms of points along x, y, and z direc-

tions. Converting raw point clouds to histograms results in

a loss of information. The main differences of our system

to Frustum PointNets [16] are the following: 1) in the 2D

detection part, Frustum PointNets is based on RGB inputs,

while our system can support both RGB-D and depth-only

sensing. 2) in the 3D detection part, our system is using

voxelized data, while Frustum PointNets is consuming raw

point clouds via PointNet [17]. PointNet uses a fully con-

nected neural network and max pooling, so it cannot support

convolution/deconvolution operations well. We believe 3D

convolution/deconvolution can play important roles in both

3D semantic segmentation and object detection. 3) Point-

Net’s computation complexity is increased if more points

are available as the framework’s input is N ×K where N is

the number of points and K is the number of channels. 4)

Random sampling is required in PointNet, but is not needed

in our voxelization approach.

A recent method [15] that is based on PointNet and

Hough Voting, achieves improved detection results without

the use of RGB images. Our method is still more efficient in

inference time, and thus more appropriate for robotics ap-

plication. Also, our approach does not need to subsample

the 3D point cloud as required by [15].

3D CNNs VoxelNet [29] uses 3D LiDAR data to detect

3D objects based on the KITTI outdoor dataset, and uti-

lizes bird’s eye view (BEV) features (such as MV3D [1]

and AVOD [9])). The use of BEV is not helpful in indoor

applications. Also, the use of the whole range image for

voxelization lowers the resolution (and therefore the scale)

of the objects of interest. Early influential 3D detection

systems used two-stage approaches. The first stage gener-

ates proposals, while the second stage performs 3D detec-

tion. DeepSliding Shape[24] detects 3D objects based on

the SUNRGB-D dataset and it uses directional Truncated

Signed Distance Function (TSDF) to encode 3D shapes.

The 3D space is divided into 3D voxels and the value in

each voxel is defined to be the shortest distance between

the voxel center and the surface from the input depth map.

A fully convolutional 3D network extracts 3D proposals at

two scales corresponding to large size objects and small size

objects. For the final 3D detection, this method fuses the 3D

voxel data and RGB image data by using 3D and 2D CNNs.

Our approach, one the other hand, first focuses on the frus-

tum to voxelize, and then selects the part to be voxelized

based on training. That allows us to achieve higher resolu-

tion around the objects of interest.

We refer readers to [22] for latest, comprehensive com-

parisons of different 3D detection systems.

3. Dataset

We are focusing on the indoor SUN RGBD dataset[23].

SUN RGBD dataset splits the data into a training set which

contains 5285 images and a testing set which contains

5050 images. For the training set, it further splits into a

training only, which contains 2666 images and a validation

set, which contains 2619 images. Similar to [24, 10], we

are training our model based on the training only set and

evaluate our system based on the validation set. We call the

only training dataset as train2666 in the future description.

4. Frustum VoxNet System Overview

First, 2D detections on RGB or DHS image generate 2D

bounding boxes of objects. The 2D detections generate 3D

frustums (defined by the sensor and the 2D detected bound-

ing box) where a search for a 3D object is performed. For

each such frustum we know the class of the object to be de-

tected by the 2D detection. Our system accurately localizes

the amodal 3D bounding box and the orientation of the de-

tected 3D object. To achieve this, we perform 3D voxeliza-

tion, not of the whole frustum, but a learned part of it. That

allows for a higher resolution voxelization, lower memory

requirements, and a more efficient detection. We explain

first how we decide which part of the frustum to use.

4.1. Frustum Voxelization

Given a 3D frustum (defined as a 3D prism from the sen-

sor and the 2D detected bounding box into the 3D space),

our goal is to voxelize only a part of it. We define that part

as axis-aligned 3D bounding boxes enclosed in the frustum.

We call that bounding box a 3D Cropped Box (3DCB for

short). Given a specific object class (for instance a table), an

ideal 3DCB will be big enough to contain all the 3D points

belonging to the object, but also small enough to achieve

high resolution voxelization. In order to quantify the abil-

ity of a given 3DCB to tightly contain a given 3D object,

we define the metric 3D Intersection over Itself (IoI). Sup-

pose the object of interest lies in a bounding box 3DBBOX.

Then the IoI of the 3DBBOX wrt to a given 3DCB is defined

as the volume of intersection of the 3D bounding box with

the 3DCB over the volume of the 3D bounding box itself.

Therefore an IoI of 1.0 means that the 3DCB is perfectly en-

closing the object in 3DBBOX, while as this number tends

to 0.0 more and more empty space is included in the 3DCB.

The formula for 3D IoI is:

IoI3D =
volume3DBBOX ∩ volume3DCB

volume3DBBOX

From the definition, it is trivial to show that:

IoI3D = IoIXY ∗ IoIZ

1700

Figure 2. An example of 2DCB with two objects box A and box

B. All these boxes are square. A has length 1, B has length 2 and

2DCB has length 3. Half of B is overlapped with 2DCB

Figure 3. An example of equally subdividing a whole frustum into

3 × 3 subfrustums (best viewed in color). In this example, the

object is a desk. The upper one shows the 2D bounding box of

desk is equally divided into 9 small boxes. From each small box,

a subfrustum is generated as shown in the bottom image.

where IoIXY is the IoI in the XY plane and IoIZ is the

IoI along the Z axis.

IoIXY =
area3DBBOXXY

∩ area3DCBXY

area3DBBOXXY

IoIZ =
length3DBBOXZ

∩ length3DCBZ

length3DBBOXZ

3DBBOXXY and 3DCBXY are 2D projections of 3D

bounding box and 3DCB onto the XY plane. 3DBBOXZ

and 3DCBZ are 1D projections of 3D bounding box and

3DCB onto the Z axis.

We use this metric to choose the optimal 3DCB size. A 2D

example in Figure 2 is used to show the difference between

IoI and IoU (Intersection over Union). From this example,

box A is totally contained in 2DCB(XY plane projection of

a 3DCB) while only half of box B is covered by 2DCB. If

we use 2D IoU, we will get 0.11 for box A with 2DCB and

0.18 for box B with 2DCB.

Generating 3DCBs using an IoI metric During train-

ing, given a ground truth 2D bounding box of an object of

a given class (for example table) and given the ground truth

3D bounding box of the same object, we would like to cal-

culate the optimal 3DCB box. The 3DCB is represented by

its center, and width, depth, and height. We are adding the

constraint that width and depth are the same. This makes

sure that the object can freely rotate within the 3DCB along

the vertical axis. We proceed by equally dividing the 2D

bounding box along the Row and Column into FR × FC

2D boxes. Then we have FR × FC subFfrustums. We

will generate FR×FC candidate centers of 3DCBs in that

case. The center of each 3DCB is the centroid of the re-

spective frustum. One example of 3 × 3 subfrustums of a

desk is shown in Figure 3. If we set FR = FC = 1, then

there is only one 3D frustum to consider (and therefore one

3DCB center). Our goal is to calculate the optimal sizes of

respective 3DCBs for each object category.

A ground truth 3D bounding box will be recalled (i.e.

enclosed into the 3DCB) if the 3D IoI of this box is

greater than a threshold. Formally, we define this recall as

recallvolume:

recallvolume =
|3DCBpositive|

|3DCB|

where |3DCBpositive| is the cardinality of positive 3DCBs

and |3DCB| is the cardinality of all 3DCBs. A 3DCB

is positive when IoI3D = IoIXY ∗ IoIZ ≥ threshold.

To make the parameter setting simple, we are exploring

the recall of XY plane and Z axis separately. Similar

to recallvolume, recallXY and recallZ are defined as:

recallXY =
|3DCB

positive

XY
|

|3DCB| , recallZ =
|3DCB

positive

Z
|

|3DCB| ,

where |3DCB
positive
XY | is the cardinality of positive 3DCBs

in XY plane, |3DCB
positive
Z | is the cardinality of posi-

tive 3DCBs in Z axis and |3DCB| is the cardinality of all

3DCBs. A 3DCB is positive in XY plane when IoIXY ≥
thresholdXY and a 3DCB is positive in Z axis when

IoIZ ≥ thresholdZ .

Although, we can NOT naively have recallvolume =
recallXY ∗ recallZ , we have a nice inequality to guaran-

tee a lower bound of recallvolume:

recallvolume ≥ max(0, recallXY + recallZ − 1) (1)

The proof of this inequality is given in the appendix.

Both of thresholdXY and thresholdZ are set as 0.90.

We are generating both the average center and median

center from subfrustums and pick up the best one from

these FR × FC candidates to calculate the recall. The

average recall based on different setups of width/depth and

height are shown in Figure 4. From the results, we can

observe: 1) the performance of the average center based

3DCB is better especially when 1× 1 subfrustums are used

compared with the median center. The reason for this might

be the range of indoor depth sensor is limited and outliers

will not have too much influence to the results. 2) The

3DCB generated from 1 × 1 is better than 3 × 3 and 5 × 5
ones. Based on these observations, we are choosing both

1 × 1 and 3 × 3 during training to generate more samples

and make the training robust to the inaccurate bound-

ing box predictions. During inference, 1 × 1 subfrustum

1701

Figure 4. IoIXY and IoI
Z with the widths/depths and heights.

3DCB are generated from average/median center based on FR ×

FC subfrustums with different widths/depths and heights. In this

plot, average/median m n corresponds to recall based on aver-

age/median center in m× n subfrustums.

based 3DCB is used to speed up and get better performance.

Double Frustum Method To increase the accuracy of

the center calculations, we developed a double Frustum

framework. We use a smaller 2D bounding box to generate

a smaller frustum for the calculation of the 3DCB center.

The estimated center should now be more accurate since it

will concentrate on the central part of the object and thus

will avoid the use of other background objects. A 3DCB is

then selected from a larger frustum in order to contain back-

ground context points and possible false negative points.

The larger frustum is generated from a larger 2D bound-

ing box. During training, we generate large frustum by ran-

domly increasing the 2D bounding box width and height by

0% to 15% independently. For the small frustum, we ran-

domly decrease the 2D bounding box width and height by

0% to 10% independently. During inference, the large frus-

tum is generated by increasing the 2D bounding box width

and height by 5%. Original 2D detection bounding boxes

are used to calculate the 3DCB center.

Multiple Scale Networks In [24], two scales network

were used for different categories concerning the 3D

physical size. We are using 4 scales networks to voxelize

the 3D objects corresponding to the average physical size

of average height, maximum of average width and depth.

The mapping of 3D object categories to different scales

is shown in Table 1. We are calculating the recallXY

and recallZ for different objects with the different setups

for width/depth and heights. The curves of recallXY with

width/depth and recallZ with height are plotted for four

classes based on 3× 3 subfrustums (sofa is from large short

scale, chair is from medium short scale toilet is from small

short scale and bookshelf is from median tall scale) are

shown in Figure 5. From these curves, we can find out that

Short (h ≤ 0.55) Tall (h > 0.55)

Small (max(w, h) ≤ 0.3) toilet N/A

Medium
(0.3 < max(w, h) ≤ 0.55)

chair, nightstand, sofa chair,

garbage bin,bathtub bookshef
Large

(max(w, h) > 0.55)
table, desk,

sofa, bed, dresser N/A

Table 1: Objects are classified into 4 categories based on

there average physical size. Voxelization is processed based

on each category.

Figure 5. XY plane recall and Z axis recall for bed, chair book-

shelf and toilet with the widths/depths and heights based on

train2666 dataset.

medium tall scale category needs greater height and both

the large short and medium short categories need more

width/depth. We are selecting the minimum width/depth

and height which can guarantee all objects within that scale

network can meet the requirements of recallXY ≥ 0.90
and recallZ ≥ 0.95. This is based on 3 × 3 subfrustums.

From the equation 1, we can have the lower bound of the

recallvolume of 0.85. Although 0.85 is not high enough,

when based on 1 × 1 subfrustums, the lower bound of the

recallvolume can achieve 0.94 as recallXY ≥ 0.95 and

recallZ ≥ 0.99 for 3DCBs generating from 1 × 1. Since

we are using both 3DCBs from 1×1 and 3×3 subfrustums,

the recall is good enough to support the training.

The physical sizes(width/depth/height) of 4 scale networks

are shown in Table 2 based on the principles described

above. 3DCB are further voxalized(counting the number of

cloud points within each voxel) into a 3D tensor with the

shape of W × D × H . The W × D × H for each scale

network are selected to make it having a better resolution

as compared with [24]. The comparison of physical size,

resolution, tensor shape of the RPN and detection networks

of [24] and ours are also shown in Table 2.

1702

Method Network

3DCB
physical size

(m)
3DCB
Shape

Resolution
(cm)

DSS
[24]

RPN 2.5× 2.5× 2.5 208× 208× 100 5.2× 6.0× 2.5
Detection

(bed) 6.7× 6.7× 3.2 30× 30× 30 2.0× 2.0× 0.95
Detection
(trash can) 1.0× 1.0× 1.2 30× 30× 30 0.3× 0.3× 0.5

Ours

small short 1.6× 1.6× 1.5 198× 198× 102 0.8× 0.8× 1.5
medium short 3.2× 3.2× 1.7 198× 198× 102 1.6× 1.6× 1.7

large short 4.8× 4.8× 2.2 198× 198× 102 2.4× 2.4× 2.2
medium tall 2.8× 2.8× 3.0 134× 134× 134 2.1× 2.1× 2.2

Table 2: Resolution and shape comparison between Deep-

Sliding Shape[24] and ours. Anchors of the bed and trash

can from[24] are used as examples of proposal’s physical

size to make the comparison with ours.

4.2. 3D Object Detection

3D Bounding Box Encoding Similar to [24], we are us-

ing the orientation, center, width, depth and height to en-

code the 3D bounding box.

Network architecture We are using 3D FCN net-

works to build the 3D detection network by adapting the

network structure of ResNet[7] and Fully Convolutional

Network(FCN)[14]. We propose a fast 6 layer fully

convolutional 3D CNN model as shown in Figure 6.

Figure 6. ResnetFCN6 architecture (used for large short scale).

Every 3D CNN layer will be followed by a dropout layer. The

tensor shape shown here is the output shape of each block. It

provides the (width, depth, height, channel) information of the

network. The rest three scale networks have the same structure

with different input size as shown in Table 2. The architecture of

ResnetFCN35 will be provided in the Supplementary Material.

Inputs of our networks are voxelized images. Our

network will have C ∗ 7 outputs, where C is the number

of classes within the corresponding scale network, and 7

is the orientation, center xyz and size(width/depth/height)

predictions. The 2D prediction info is implicitly encoded in

the system since the prediction is based on each category.

Loss Function We are generating loss function for de-

tection by adjusting the loss function from YOLO9000[19].

Similar to [19], we use simple L2 distance instead of

KullbackLeibler divergence to evaluate the difference of

predited category probability distributions and the ground

truth distributions. For the regression part, for centers,

we normalize the x, y, z values to 0 and 1 and then use a

sigmoid function to make the prediction. For width(w),

depth(d) and height(h), we use anchor to support the

prediction. For each category, we set the anchor as the

average value of the train2666 samples for objects within

this category. The ratio of the bounding box to the related

anchors are used to drive the network to make the correct

prediction. The formal definition of the loss is given in the

formulas below.

L3D
detection = λ1Lorientation + λ2Lxyz + λ3Lwdh

Where Lxyz = Lx + Ly + Lz, Lwdh = Lw + Ld + Lh,

Lx = (x − x⋆)2, Ly = (y − y⋆)2, Lz = (z − z⋆)2,

Lw = (log w
aw

− log w⋆

aw
)2, Ld = (log d

ad
− log d⋆

ad
)2,

Lh = (log h
ah

−log h⋆

ah
)2. aw, ad, ah are width/depth/height

of anchors. λ1, λ2, λ3 are used to balance losses.

5. Training Process

For the 2D detection, we are using ResNet[7] 101 layer

as the backbone and using the feature pyramid layers pro-

posed by[11] which is based on Faster RCNN[20] approach.

The loss is the same as[11]. For the 2D detection, the net-

work is pretrained on COCO dataset. Then it is retrained

on SUN-RGBD dataset based on RGB or DHS images. Al-

though, the DHS images are different to the RGB images,

we find the pretrained weights can still speed up the whole

training process and improve the detection results. Data is

augmented by adding gaussian blur, random cropping and

image translating up to 10% of the original images.

For the 3D detection, we use the stochastic gradient

descent(SGD) with learning rate of 0.01 and a sched-

uled decay of 0.00001. For regulation we use batch

normalization[8]. The cloud points are randomly rotated

around z-axis and jittered during the voxelization process

before feeding them to the network.

6. Efficiency boost by Pipelining

Pipelining instructions is a technology used in central

processing units to speed up the computing. An instruc-

tion pipeline reads an instruction from the memory while

previous instructions are being executed in other steps of

the pipeline. Thus multiple instructions can be executed si-

multaneously. Pipelining can be perfectly used in our sys-

tem as we have two stages, one is 2D detection and one is

1703

Figure 7. Illustration of using pipelining to speedup the whole de-

tection framework.

3D detection. In the 3D detection, instead of using the 2D

detection of frame n, we can use the 2D detection results

of frame n-1 and generate frustums based on that. By us-

ing pipelining, our system can be sped up from t2D + t3D
to max(t2D, t3D), where t2D and t3D are the 2D and 3D

detection time, respectively. The disadvantage of using

pipelining is frustums generated from the previous 2D im-

age maybe not accurate under the fast movement of the sen-

sor of an object of interest. However, our system will not

suffer significantly as our results show, due to robustness on

frustum location. We use multiple candidates with different

centers during training to make it robust. Meanwhile, the

double frustum method used in our system makes our 3D

detections robust to slightly moved 2D detections. The il-

lustration of the pipelining method is shown in figure 7. By

using pipelining, our system can be sped up to 48 ms (this

is about 2.5× speedup to the state-of-the-art [16]) when use

YOLO v3 and ResNetFCN6. It can achieve 21 frames per

second which can well support real time 3D object detec-

tion.

7. Experiments Results

7.1. Effects of Batch Normalization [8], Group Nor-
malization [27] and Dropout[25]

Dropout is a powerful tool to prevent neural networks

from overfitting. Batch Normalization(BN) [8] is another

method we can use to speed up the training and prevent

overfitting. However, BN performs better when the batch

size is large enough. Since Frustum VoxNet is using 3D

CNNs, large batch sizes are not well supported when sin-

gle GPU is used. Some new technologies are introduced to

address the small batch size problem such as Group Nor-

malization(GN) [27]. We explore the performance of dif-

ferent combinations of these methods by evaluating the per-

formance of center and orientation predictions. Results are

shown in Figure 8. We do not use BN as our batch size

is small and the using of BN will lead to inconsistencies

between training and inference. Although when using the

GN, there are no inconsistencies between training and in-

ference, the performance of center prediction is worse com-

pared with not using any normalization. Therefore, our final

model does not use any normalization. However, dropout is

used in our final model as the performance of center predic-

tion is improved.

Figure 8. Performance comparison of different combinations on

using BN, GN and dropout. “gn w/o dropout” means using GN

without dropout. “no bn no gn w/o dropout” means using none.

“no bn no gn with dropout” means not using BN/GN, however,

the Dropout is used.

7.2. Evaluation of the whole system

First we evaluate the 2D detector in Table 3. The evalua-

tion is based on the standard mAP metric with IoU threshold

of 0.5. Comparing our RGB-based and depth-based (DHS

image) 2D detection, we see that in most cases RGB per-

forms better, but the depth-based 2D detector is compet-

itive. For few classes such as bathtubs, DHS results are

slightly better. The reason might be that some classes such

as bathtubs have special geometric shapes and they are eas-

ier to be detected by depth sensors. Comparing with state-

of-the-art methods, our 2D detector performs better in some

categories, and we are also introducing new categories. We

are on par with most other categories, except for bathtub,

desk, and bookshelf.

Full 3D detection results are shown in Table 4. We pro-

vide various variations in our system. First two variations

include RGB 2D detector, and the last two include depth

only (DHS) 2D detector. In all cases, we use a FPN for the

2D detector. For the 3D detection we have experimented

with ResNetFCN6 and ResNetFCN35. As in the 2D case,

our 3D detector is on par in most categories with the state-

of-the-art, and we have also incorporated more classes.

Looking at the computational performance of the 3D de-

tector only, we see that our implementation using ResNet-

FCN6 provides significant improvements on inference time.

Since the architecture is modular (i.e. we can swap out our

2D detector with one from the reported as state-of-the-art),

1704

bed toilet

night

stand bathtub chair dresser sofa table desk bookshelf
sofa
chair

kitchen
counter

kitchen
cabinet

garbage

bin microwave sink

RGB-D RCNN[5](RGB-D) 76.0 69.8 37.1 49.6 41.2 31.3 42.2 43.0 16.6 34.9 N/A N/A N/A 46.8 N/A 41.9

2D-driven[10](RGB) 74.5 86.2 49.5 45.5 53.0 29.4 49.0 42.3 22.3 45.7 N/A N/A N/A N/A N/A N/A

Frustum PointNets[16](RGB) 56.7 43.5 37.2 81.3 64.1 33.3 57.4 49.9 77.8 67.2 N/A N/A N/A N/A N/A N/A

OURS(RGB) 81.0 89.5 35.1 50.0 52.4 21.9 53.1 37.7 18.3 40.4 47.8 22.0 29.8 52.8 39.7 31.0

OURS(D) 78.7 77.6 34.2 51.9 51.8 16.5 48.5 34.9 14.2 19.2 48.7 19.1 18.5 30.3 22.2 30.1

Table 3: 2D detection results based on SUN-RGBD validation set. Evaluation metric is average precision with 2D IoU

threshold of 0.5.

bed toilet

night

stand bathtub chair dresser sofa table desk bookshelf
sofa
chair

garbage

bin

frustum proposal

runtime
3D detection

runtime
Total

runtime

DSS[24](RGB-D) 78.8 78.9 15.4 44.2 61.2 6.4 53.5 50.3 20.5 11.9 N/A N/A N/A N/A 19.55s

COG[21](RGB-D) 63.7 70.1 27.4 58.3 62.2 15.5 51.0 51.3 45.2 31.8 N/A N/A N/A N/A 10-30min

2D-driven[10](RGB-D) 64.5 80.4 41.9 43.5 48.3 15.5 50.4 37.0 27.9 31.4 N/A N/A N/A N/A 4.15s

Frustum PointNets[16](RGB-D) 81.1 90.0 58.1 43.3 64.2 32.0 61.1 51.1 24.7 33.3 N/A N/A 60ms 60ms 0.12s

OURS RGB-D (FPN+3D ResNetFCN6) 78.5 84.5 34.5 42.4 47.2 18.2 40.3 30.4 12.4 18.0 47.1 47.6 110ms 48ms 0.16s

OURS RGB-D (FPN+3D ResNetFCN35) 79.5 84.6 36.2 44.6 49.1 19.6 40.8 27.5 12.5 19.1 47.9 48.2 110ms 128ms 0.24s

OURS Depth only (FPN+3D ResNetFCN6) 77.1 76.1 32.4 42.0 45.9 14.1 35.8 25.3 11.7 16.8 48.5 35.0 110ms 48ms 0.16s

OURS Depth only (FPN+3D ResNetFCN35) 77.4 76.8 33.1 43.7 45.8 15.2 37.3 25.5 11.8 17.4 48.8 35.4 110ms 148ms 0.24s

Table 4: 3D detection results on SUN-RGBD validation set. Evaluation metric is average precision with IoU threshold of

0.25 as proposed by[23]. Both COG[21] and 2D-driven[10] are using room layout context to boost performance while ours,

DSS[24] and Frustum PointNets[16] are not. Frustum PointNets[16] is using the 3D segmentation information to train the

network to boost the 3D detection, while our system and DSS[24] are not.

we see that our approach can lead to significant efficiency

improvements, without a significant drop in detection accu-

racy. That will lead to a system geared to real-time robotics

applications.

We have also evaluated the efficiency and accuracy of

our system when a very fast 2D detector (Yolo v3) is be-

ing used. Table 5 shows the decrease in detection accuracy

as expected. Finally Table 6 provides a detailed analysis of

multiple network combinations in terms of efficiency, along

with the number of parameters to tune. As mentioned be-

fore we can achieve faster inference times in 3D detection,

and can thus lead to a faster system overall if we swap our

2D detector with the ones reported as state-of-the-art. Using

Yolo and pipelining approach, we can provide a significant

boost in total efficiency, with accuracy loss though.

2D network 3D network bed toilet chair sofa table

2D Detection
FPN 81.0 89.5 52.4 53.1 37.7

YOLO v3 71.8 73.7 38.5 51.4 22.1

3D Detection
FPN 3D ResNetFCN6 78.5 84.5 47.2 40.3 30.4

YOLO v3 3D ResNetFCN6 66.9 69.8 30.1 37.9 18.8

Table 5: 2D/3D detection results based on YOLO v3 V.S.

FPN. 2D detection is based on RGB images. 3D detection

is based on RGB-D images.

8. Conclusion and Future Work

We presented a 2D-based 3D detection system by using

2D/3D CNNs. Our method can operate in both Depth only

and RGB-D sensor modalities. We provide comparable re-

Methods
parameters Runtime (ms)

Frustum
proposal

3D
detection

Frustum
proposal

3D
detection Total

Frustum PointNets (FPN+Pointnet v1) 28M 19M 60 60 120

Frustum PointNets (FPN+Pointnet v2) 28M 22M 60 107 167

Ours w/o Pipeline (FPN+3D ResNetFCN6) 42M 2.5M 110 48 158

Ours w/o Pipeline (FPN+3D ResNetFCN35) 42M 23.5M 110 149 259

Ours w/o Pipeline (YOLO v3+3D ResNetFCN6) N/A 2.5M 29 48 77

Ours with Pipeline (YOLO v3+3D ResNetFCN6) N/A 2.5M 29 48 48

Table 6: Number of parameters and inference time compar-

ison between Frustum Pointnet and our system. For YOLO

v3, input resolution is 416 by 416 and the model FLOPS is

65.86 Bn.

sults to state-of-the-art, but with significantly more efficient

3D detection. This is due to the use of networks with fewer

number of parameters than competing methods. It is also

due to our ability to voxelize only parts of the 3D frustums.

This leads to decreased memory requirements and improved

resolution around the objects of interest. In future work we

will be integrating segmentation that we believe will further

boost the detection accuracy of our system.

9. Acknowledgement

This work was partially supported by NSF Award CNS-

1625843 and Google Faculty Research Award 2017 (special

thanks to Aleksey Golovinskiy, Tilman Reinhardt and Steve

Hsu for attending to all of our needs). We acknowledge the

support of NVIDIA with the donation of the Titan-X GPU

used for this work. We thank Jaspal Singh for data prepa-

ration and earlier discussion. We also would like to thank

Allan Zelener, James Kluz, Jaime Canizales and Bradley

Custer for helpful comments and advice.

1705

References

[1] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view

3d object detection network for autonomous driving. CoRR,

abs/1611.07759, 2016.

[2] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[3] R. B. Girshick. Fast R-CNN. In 2015 IEEE Interna-

tional Conference on Computer Vision, ICCV 2015, Santi-

ago, Chile, December 7-13, 2015, pages 1440–1448. IEEE

Computer Society, 2015.

[4] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. CoRR, abs/1311.2524, 2013.

[5] S. Gupta, R. B. Girshick, P. Arbelaez, and J. Malik. Learning

rich features from RGB-D images for object detection and

segmentation. CoRR, abs/1407.5736, 2014.

[6] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask

R-CNN. CoRR, abs/1703.06870, 2017.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

CoRR, abs/1502.03167, 2015.

[9] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander.

Joint 3D Proposal Generation and Object Detection from

View Aggregation. ArXiv e-prints, Dec. 2017.

[10] J. Lahoud and B. Ghanem. 2d-driven 3d object detection

in rgb-d images. In The IEEE International Conference on

Computer Vision (ICCV), Oct 2017.

[11] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detec-

tion. CoRR, abs/1612.03144, 2016.

[12] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Fo-

cal loss for dense object detection. CoRR, abs/1708.02002,

2017.

[13] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.

Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft COCO: common objects in context.

CoRR, abs/1405.0312, 2014.

[14] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. CoRR, abs/1411.4038,

2014.

[15] C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep hough

voting for 3d object detection in point clouds. In Proceedings

of the IEEE International Conference on Computer Vision,

2019.

[16] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum

pointnets for 3d object detection from RGB-D data. CoRR,

abs/1711.08488, 2017.

[17] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

CoRR, abs/1612.00593, 2016.

[18] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection.

CoRR, abs/1506.02640, 2015.

[19] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. CoRR, abs/1612.08242, 2016.

[20] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-

CNN: towards real-time object detection with region pro-

posal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,

M. Sugiyama, and R. Garnett, editors, Advances in Neural

Information Processing Systems 28: Annual Conference on

Neural Information Processing Systems 2015, December 7-

12, 2015, Montreal, Quebec, Canada, pages 91–99, 2015.

[21] Z. Ren and E. B. Sudderth. Three-dimensional object detec-

tion and layout prediction using clouds of oriented gradients.

pages 1525–1533, 06 2016.

[22] X. Shen. A survey of Object Classification and De-

tection based on 2D/3D data. arXiv e-prints, page

arXiv:1905.12683, May 2019.

[23] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2015.

[24] S. Song and J. Xiao. Deep sliding shapes for amodal 3d

object detection in RGB-D images. CoRR, abs/1511.02300,

2015.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, 2014.

[26] I. Stamos, O. Hadjiliadis, H. Zhang, and T. Flynn. On-

line algorithms for classification of urban objects in 3d point

clouds. In 2012 Second International Conference on 3D

Imaging, Modeling, Processing, Visualization Transmission,

pages 332–339, Oct 2012.

[27] Y. Wu and K. He. Group normalization. CoRR,

abs/1803.08494, 2018.

[28] A. Zelener and I. Stamos. Cnn-based object segmentation in

urban lidar with missing points. In 2016 Fourth International

Conference on 3D Vision (3DV), pages 417–425, Oct 2016.

[29] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for

point cloud based 3d object detection. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 4490–4499, June 2018.

1706

