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Abstract

Zero-shot Learning (ZSL) aims to learn a classifier to

recognize unseen categories without training samples. Most

ZSL works based on embedding models handle the visual

space and the semantic space through a common metric

space and then apply a simple nearest neighbor search

which directly leads to the hubness problem, one of the main

challenges of ZSL. Contrary to recent works, whose conclu-

sions about hubs are drawn based on Euclidean and specific

models like ridge regression, we adopt cosine metric and

for the first time prove cosine is model-agnostic to alleviate

the hubness problem in ZSL. Assuming that the normalized

mapped semantic vectors follow a uniform distribution, we

provide theoretical analysis which demonstrates that hubs

can be better reduced with a higher-dimensional cosine

metric space. Moreover, we introduce a diversity-based reg-

ularizer with the cosine metric which underpins the assump-

tion about the uniform distribution and further improves

the model’s discriminative ability. Extensive experiments

on five benchmarks and large-scale Imagenet dataset show

that our method can improve the performance, surpassing

previous embedding methods by large margins.

1. Introduction

Zero-shot learning (ZSL) has recently gained great pop-

ularity in both machine learning and computer vision com-

munities. The aim of ZSL is to recognize the test sam-

ples of unseen classes with the help of the shared knowl-

edge explored from the training samples of seen classes. To

learn the transferable recognition ability from seen to un-

seen classes, ZSL introduces the semantic space to bridge

the visual space and the label space [17].
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Figure 1. Six unseen classes of AWA2 are visualized by t-SNE

[26] by different metric spaces. Dots and squares denote the

mapped visual features and attributes respectively. The results

intuitively shows that Cosine metric space demonstrates superior

performance in bridging the gap between visual features and at-

tributes over Euclidean metric space. The best viewed in color.

Recent works differ in utilizing the semantic space and

can be roughly divided into two categories: (1) embedding

models [10, 15, 20, 36, 39, 40, 53–56] map visual features

extracted from images in the visual space and semantic vec-

tors defined by experts in the semantic space to a common

metric space and then apply a non-parameterized classi-

fier, a simple nearest neighbor (NN) search, to recognize

new instances of unseen classes during the test stage. (2)

generative models [9, 16, 28, 38, 45, 50] most generates

fake samples with semantic vectors from unseen classes

and then train a parameterized classier with these fake sam-

ples to recognize the real unseen test samples. However,

they violate the ZSL assumption that the unseen class is

prohibitively seen at training [6]. Meanwhile, [31, 46]

also point out that due to using unseen classes attributes

in model learning most generative models follow the class-

transductive setting while embedding models belong to the

class-inductive setting.

In this paper, we mainly focus on the embedding models
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Figure 2. An illustration of our method, including three components: (1) ϕ(sp) learns deep embedding for each semantic vector of the

semantic space and φ(xn) is a projection for each visual feature of the visual space. (2) a diversity-based regularizer Φ which encourages

the pairwise embedded semantic vectors different from each other as certain as possible. (3) a prediction classifier with cosine metric

instantiated by the nearest neighbor search. The best viewed in color.

under the class-inductive setting and alleviate the hubness

problem, one of the main challenges of ZSL. The hubness

problem [19, 32, 33, 39] means that some semantic vectors

(“hubs”) appear in the top neighbor lists of many test sam-

ples. Hubs are always harmful to the prediction accuracy

of typical ZSL task, due to the fine-grained and huge label

space [39]. In order to understand and alleviate the hubness

problem in ZSL, some works [19, 39, 56] propose different

solutions based on Euclidean metric. [39] proposes using

linear ridge regression with a mapping direction opposite to

that in existing work. Like [39], [56] applies deep networks

to project the semantic vectors. However, these solutions all

depend on their specific models, rather than general models.

For the greatest applicability, we propose a novel method

which can be generalized to different models. The concep-

tual diagram of our method is demonstrated in Figure 2.

We are the first to prove that cosine is a model-agnostic

metric to alleviate the hubness problem in zero-shot learn-

ing and draw the conclusion that a higher-dimensional co-

sine metric space can better suppress the emergence of these

hubs. Specifically, assuming the normalized embedded se-

mantic vectors follows a uniform distribution, we conduct

a theoretical investigation which shows that the hubness is

inversely proportional to the dimensionality of the metric

space.

Particularly, our conclusion is the sufficient and unnec-

essary condition to previous findings in [39, 56]. Due to the

dimensionality of the visual features is larger than that of se-

mantic vectors, reasoning from our conclusion we also can

deliver the same solution with [39, 56] that mapping from

the semantic space to the visual space is better to alleviate

hubness than the opposite direction in other works. There-

fore, our conclusions have more general applicability for

different models and metric spaces’ dimensions, rather than

being restricted to ridge regression with Euclidean metric or

choosing from only two embedding dimensions.

Moreover, we introduce a diversity-based regularization

with the cosine metric to underpin satisfy the assumption

of theoretical analysis, the normalized embedded semantic

vectors follow a uniform distribution, and endow the model

with great discriminative ability. Our diversity regularizer

encourages a smaller mean of the cosine metric between

pairwise mapped semantic vectors and a smaller variance

of that. A smaller mean indicates that pairwise embedded

semantic vectors share less cosine similarity and are more

different from each other, while a smaller variance implies

that the embedded semantic vectors spread out as uniformly

as possible to different directions. Similar idea [51] applies

the diversity on the angles between pairwise hidden units

to regularize the restricted Boltzmann machine and use the

lower bound of the diversity for avoiding the hard optimiza-

tion. In contrast, we simplify the diversity with the cosine

metric rather than angels and directly optimize it by seam-

lessly incorporating into the embedding process.

The major contributions can be summarized in the fol-

lowing three aspects:

• We are the first to prove that cosine is a model-

agnostic metric to alleviate the hubness problem in

ZSL. We provide theoretical analysis which demon-

strates that hubness can be better handled with co-
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sine metric through a higher-dimensional metric space,

which brings a better understanding of hubs and gives

a useful guide to develop new ZSL models.

• We introduce a diversity-based regularization. It can

underpin the theoretical assumption about uniform dis-

tribution and further improve the performance of our

model by incorporating diversity to increase the dis-

criminative ability.

• We apply a plain embedding model and conduct exten-

sive experiments on five benchmark datasets and the

large-scale Imagenet dataset to show that our method

can consistently improve the performance by large

margins compared to previous embedding methods.

2. Related Work

Zero-shot learning has generated widespread research at-

tention in diverse research fields. We review the related

work in terms of embedding models, loss functions, the

hubness problem and distance metrics.

Embedding models. Embedding models in ZSL aims to

transfer the shared knowledge from seen to unseen cate-

gories by projecting the low-level visual features to their

corresponding semantic vectors. Early works were based

on the Bayesian formulation [17, 18, 58]. The direct at-

tribute prediction (DAP) and the indirect attribute predic-

tion (IAP) are two-stage approaches, which suffer from the

domain shift problem [49]. After that, traditional regres-

sion models, e.g., ridge regression, have also been explored

[15, 36, 39, 55] as the embedding functions to grasp the re-

lationship between visual space and semantic space. More-

over, deep embedding models [10, 20, 39, 40, 53, 54, 56]

have also been investigated for zero-shot learning, and they

mainly differ in choosing the metric space.

Hubness problem. ZSL suffers from the hubness prob-

lem due to the use of nearest neighbor search in the test

stage. To alleviate this problem, a few recent approaches

[39, 53, 56] have used the visual space as the metric space.

[39] discussed the effect of hubness in zero-shot learning

when ridge regression is used to find the mapping from the

visual space to the semantic space. This indicates it is better

to choose the visual space as the metric space to alleviate

the hubness problem. [56] argued that in the visual space

the nearest neighbor search can suffer much less from the

hubness problem and thus become more effective. How-

ever, those conclusions are drawn based on the Euclidean

and ridge regression, so they may not be applicable to other

specific models.

Loss functions. Different loss functions have also been in-

vestigated in the setting of zero-shot learning [11]. Most

previous work [15, 36, 40, 56] straightforwardly adopted

the least square loss, which however is not optimal for ZSL

because of the huge semantic gap between visual and at-

tribute spaces. The margin-based loss is used by regarding

the nearest neighbor search evaluation as a ranking problem

[1, 2, 10, 34, 54]. [20] combined three training losses, in-

cluding the least square loss, margin-based loss and a binary

cross-entropy loss.

Distance metrics. Existing ZSL methods mainly use the

Euclidean distance [13, 15, 39, 40, 52, 56] or dot product

[6, 10, 20, 36] as the metric to find the most appropriate

metric space. In addition, the cosine similarity has recently

been explored in diverse visual recognition tasks [3, 22–

25, 43, 44]. Especially, PSRZSL [3] uses cosine metric to

measure the semantic relationships in ZSL but does not re-

veal the relationship between the cosine metric and hubness

problem. In contrast, we are the first to prove that cosine is

a model-agnostic metric to alleviate the hubness problem in

the metric space. The theoretical conclusions further inspire

us to introduce a diversity-based regularizer for enhancing

the model’s discriminative ability.

3. Method

In this section, we mainly discuss the effect of hubness

in zero-shot learning, which is directly related to embedding

models. We first describe a simple and general embedding

model for ZSL in Section 3.1. Based on the embedding

model, we prove the model-agnostic metric for hubness in

Section 3.2, followed by introducing a diversity-based reg-

ularizer in Section 3.3.

Following the GBU setting in [49], we begin by defining

the three important spaces in zero-shot learning: the visual

space X, which consists of visual features extracted by pre-

trained models like GoogLeNet [42] and ResNet [12]; the

label space Y, which labels each visual feature according

to its category; and the semantic space S, which provides

high-level semantic vectors for each training or test cate-

gory. The semantic vector can be represented by either at-

tributes annotated by humans to describe the visual patterns

[18], or word embeddings generated by Word2Vec [27]. Let

Ytr = {yp}Pp=1 and Yts = {yq}Qq=1 denote disjoint seen

and unseen classes, Ytr ∩ Yts = ∅. P denotes the num-

ber of seen classes, while Q denotes that of unseen classes.

Meanwhile, Str = {sp}Pp=1 and Sts = {sq}Qq=1 denote the

corresponding seen and unseen semantic vectors. With the

help of semantic space S, zero-shot learning aims to learn

a hypothesis f : X → Y and apply it to predict the test

sample from unseen classes.

3.1. A General Embedding Model

According to the utilization of semantic space, recent

works can be roughly divided into embedding models and

generative models. In this paper, we mainly focus on tra-

ditional embedding models. For clear clarification, we first

describe a simple and general embedding model with the

backbone architecture, which is further developed in Sec-

tion 3.2 and Section 3.3.
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Backbone architecture. The backbone architecture con-

sists of a visual projection and a semantic embedding net-

work. We adopt a basic multi-layer perceptrons (MLP)

as our semantic embedding network like [21, 56], which

takes a k-dimensional semantic vector sp ∈ R
k as the in-

put and outputs a D-dimensional embedded semantic vec-

tor ϕ (sp) ∈ R
D. Meanwhile, following [5], we apply the

PCA projection as the visual projection, which takes a d-

dimensional visual feature xn ∈ R
d as the input and outputs

an projected visual feature φ(xn) = Mxn, M ∈ R
d×D is

the PCA projection matrix computed over training data of

the seen classes. To sum up, φ (xn) and ϕ (sp) are visual

projection of visual features and semantic embedding of se-

mantic vectors in the common D-dimensional metric space.

Loss function. In the train stage, there are N labelled train-

ing samples from seen classes. For optimizing the model’s

parameters, we adopt cross-entropy loss with softmax over

training samples from seen classes Ytr:

L = −
N
∑

n=1

P
∑

p=1

yn,p log











ef(φ(xn),ϕ(sp))

P
∑

p′=1

ef(φ(xn),ϕ(sp′))











, (1)

where f (·, ·) denotes the similarity metric between the pro-

jected visual feature and the embedded semantic vector, e.g.

Euclidean and cosine; the ground truth of the training exam-

ple yn,p = 1 if yn = p and 0 otherwise.

Prediction function. In the test stage, the nearest neighbor

search is applied for making the predicted label y(xt) of test

visual feature xt:

y(xt) = argmax
c

f(φ (xt), ϕ (sc)). (2)

In the conventional ZSL setting, test visual features only

come from unseen classes and thus the search scale is un-

seen classes, c ∈ Yts. In the generalized ZSL setting, the

test visual features are not sure from seen or unseen classes.

Thus, its search scale is the union set of all seen and unseen

classes, c ∈ Ytr ∪Yts.

3.2. ModelAgnostic Metric for Hubness

Based on the embedding model in Section 3.1, we prove

cosine is the model-agnostic metric for alleviating the hub-

ness problem in ZSL. The theoretical analysis of hubness

is closely related to the expectation and variance of the em-

bedded semantic vectors’ coordinates. Thus, before provid-

ing the analysis, we first introduce the assumption about the

distribution of the embedded semantic vectors and infer the

statistics.

Before the specific analysis, we first instantiate the sim-

ilarity metric f (·, ·) in the loss function (1) and prediction

function (2) as cosine metric and review it by normalization,

f (φ(x), ϕ(s)) = cos (φ(x), ϕ(s)) = a
T
b, (3)

where a = ϕ(x)
‖ϕ(x)‖ and b = φ(s)

‖φ(s)‖ denotes the normalized

projected visual feature and the normalized embedded se-

mantic vector in the cosine metric space. Due to the norm of

a = [a1, a2..., aD]
T

and b = [b1, b2..., bD]
T

are equal to 1,

the cosine metric space can be viewed as a D-dimensional

unit sphere. We provide the visualization of Euclidian and

cosine metric spaces to show the difference between them

in the Figure 1. Especially, Cosine measures the angle dif-

ference corresponding to the semantic difference, which en-

ables us to better distinguish different semantic classes.

Assumption about the distribution. We assume that the

normalized embedded semantic vectors follow a uniform

distribution on the cosine metric space.

As the prototypes of the nearest neighbor search, the em-

bedded semantic vectors have a great influence on the clas-

sifier’s discriminative ability. The smaller similarity of pair-

wise embedded semantic vectors indicates the classifier has

the larger discriminative ability for test samples from the

two classes. Intuitively, different embedded semantic vec-

tors should be diversified as certain as possible. Therefore,

we assume that the normalized embedded semantic vectors

follow a uniform distribution on the cosine metric space.

Based on this assumption, we can get the marginal prob-

ability density of components bi(i = 1, ..., D) of the nor-

malized embedded semantic vectors like Theorem 1 from

previous work [41].

Theorem 1 ([41]). If b = [b1, b2..., bD]
T

follows an uni-

form distribution on the D-dimensional unit sphere, the

marginal probability density of the component bi is

fD (bi) = κD

(

1− bi
2
)

(D−3)
2 I(−1,1) (bi) ,

where κD =
Γ(D

2 )
Γ( 1

2 )Γ(
D−1

2 )
, and I(−1,1) (bi) is a indicator

function that indicates the definitional domain is (−1, 1).

Statistics of the component. From the Theorem 1, we fur-

ther infer the expectation and variance of the component bi
of the normalized embedded semantic vector. Due to this

marginal probability density is a symmetric function, intu-

itively the expectation of bi is zero.

Hereby, we are more interested in the result of the vari-

ance, which is also negatively related to the dimension of

the unit sphere. Theoretically, the following proposition

shows that the variance of the component is indeed only

inversely proportional to the dimension of the cosine met-

ric space. The full proof of Proposition 1 is included in the

supplementary material.
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Proposition 1. If b = [b1, b2..., bD]
T

follows an uniform

distribution on the D-dimensional unit sphere, the variance

of the component bi is

Var [bi] =

∫ +1

−1

bi
2fD (bi) dbi =

1

D
.

Therefore, we get the mean and variance of the compo-

nent of the normalized embedded semantic vectors which is

assumed to be uniformly distributed.

Hubness phenomenon with cosine metric. The statistics

of the component are applied for analyzing the effect of

hubness in ZSL. The hubness phenomenon is concerned

with the nearest neighbor search during the test stage of

ZSL. Hubs, a small number of prototypes in the embedding

space, may occur as the nearest neighbor of multiple visual

features whose labels are inconsistent with the central hub.

In order to explicitly describe the effect of hubness, fol-

lowing [32, 39] we adopt the expected difference between

the squared distances from the two random normalized em-

bedded semantic vectors b1 and b2 to the normalized pro-

jected visual feature a, which can guide us to understand

and alleviate the hubness in ZSL. Specifically, the smaller

absolute value the expected difference has, the harder for

b1 and b2 to be hubs.

Proposition 2. Let a = [a1, a2..., aD]
T

be a point sampled

from a distribution X on the D-dimensional unit sphere.

Let b = [b1, b2..., bD]
T

follows an uniform distribution

S on the D-dimensional unit sphere. ε is the norm of

expectation of a, and we assume that ε 6= 0. Further,

let a∗ = E[a]
‖E[a]‖ be the normalized expectation of a, and

σ =
√

VarS [cos(a∗,b)] be the standard deviation of

cos (a∗,b). Consider two fixed samples b1 and b2, such

that the cosine metric cos (a∗,b1) and cos (a∗,b2) are γσ

apart. In other words,

cos (a∗,b1)− cos (a∗,b2) = γσ.

The expected difference ∆ between the squared distances

from b1 and b2 to a, i.e.,

∆ = EX

[

‖a− b2‖2
]

− EX

[

‖a− b1‖2
]

is given as follows:

∆ =
2εγ√
D
. (4)

In Proposition 2, a and b denotes the normalized pro-

jected visual feature and the normalized embedded seman-

tic vector on the cosine metric space, respectively. ∆ repre-

sents the expected difference between the chord length from

b1 and b2 to a.

From Equation (4), we conclude that the absolute

value of the expected difference is inversely pro-

portional to the dimensionality of the metric space.

This conclusion based on cosine metric indicates

that a higher-dimensional embedding space can bet-

ter alleviate the hubness problem. Compared with

commonly-used dimensionality of the metric space

(D = 64, 128, 256, 512, 1024, 2048, 2560, 3072, 4096),

our method sets the dimensionality of the cosine metric

space as 2048. Experimental results can be found in

Sec.4.4.

Importantly, we would like to highlight that our con-

clusion based on the cosine metric is general and model-

agnostic, which is not restricted to any specific model, e.g.,

ridge regression [39]. The full proof sketch is provided in

the supplementary material.

3.3. Diversity regularizer

The assumption in Section 3.2 originates from the intu-

ition, different embedded semantic vectors should be diver-

sified as certain as possible. Inspired by this, we introduce

a diversity-based regularization to underpin the assumption

and further enhance the model’s discriminative ability.

In order to clearly state the regularizer, we first review

the cosine metric between pairwise mapped semantic vec-

tors by normalization as follows,

f (ϕ(si), ϕ(sj)) = cos (ϕ(si), ϕ(sj)) = bi
T
bj . (5)

Same with Equation (3), b represents the normalized em-

bedded semantic vector.

Our diversity regularizer encourages a smaller mean of

the cosine metric between pairwise mapped semantic vec-

tors and a smaller variance of that. A smaller mean indicates

that pairwise embedded semantic vectors share smaller co-

sine similarity and more different from each other, while a

smaller variance implies that the embedded semantic vec-

tors uniformly spread out to different directions. To be spe-

cific, manipulating all semantic vectors from seen classes,

the regularizer takes the following form:

Φ = Ei,j

[

bi
T
bj

]

+Vari,j

[

bi
T
bj

]

, (6)

where i, j ∈ Ytr and E [·] and Var [·] denote the mean and

variance of the cosine metric between pairwise mapped se-

mantic vectors.

Minimizing Φ can enhance the diversity of the embed-

ded semantic vectors in the metric space, which further pro-

motes the aforementioned uniform distribution.

Finally, we obtain the final objective function of our

method by combining (1) and (6), as follows:

min
ϕ

L+ λΦ+ γΨ(ϕ), (7)
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Figure 3. The N1 skewness on four datasets for evaluating three kinds of embedding models based on cross-entropy, max-margin and

cosine-embedding objective functions, which all apply the cosine metric in their formula. For fair comparisons, we apply the same

backbone architecture for the three embedding models. The x-axis and y-axis represent the skewness values and the metric space’s

dimensions, respectively. For the three models, the skewness value of measuring hubness decreases consistently for the above datasets

when the metric space dimension increases. The best viewed in color.

Table 1. Statistics of datasets used in our experiments.
Dataset Semantic/Dim Image Seen/Unseen Classes

AWA1 A/85 30475 40/10

AWA2 A/85 37322 40/10

SUN A/102 14340 645/72

CUB A/312 11788 150/50

aPY A/64 15339 20/12

Imagenet W/1000 254000 1000/360

where λ and γ are the hyper-parameters, which are fixed as

1 in our experiments; Ψ(ϕ) represents the weight decay of

the learnable semantic network in Section 3.1. We minimize

the objective function (7) by applying the Adam optimizer

[14] with a learning rate of 10−4 during the training stage.

4. Experiments and Results

4.1. Datasets and Experimental Setting

We evaluate our method on five widely-used bench-

mark datasets and one large-scale dataset in our experi-

mens: Animals with Attributes (AWA1) [17], Animals with

Attributes 2 (AWA2), SUN attribute dataset (SUN)[30],

Caltech-UCSD-Birds 200-2011 (CUB) [47], Attribute Pas-

cal and Yahoo dataset (aPY) [8], and Imagenet dataset [37].

Datasets and their statistics are summarized in Table 1.

For fair comparisons, attributes [18] are adopted as the

semantic vectors for the five benchmark while word2vec

representations [27] of each class are used as the semantic

vectors for large-scale Imagenet dataset.

We follow the proposed splits on the evaluation work

[49] for the above five datasets. Moreover, we also apply

the 2048 dimensional visual features extracted from Resnet-

101 [12], which was pre-trained on the ImageNet dataset

[35] provided by [49].

For Imagenet dataset, 1000 classes from ILSVRC 2012

[37] are used for training, while non-overlapping 360

classes from the ILSVRC 2010 data are used for test. We

follow the settings in [15, 16] adopt GoogLeNet [42] fea-

tures for this dataset.

4.2. Hubness with Different Models

In Section 3.2, we prove cosine is model-agnostic for

alleviating the hubness problem and conclude that a higher-

dimensional embedding space with cosine metric can better

alleviate the hubness problem. Particularly, we provide ex-

perimental results about the hubness problem with different

models to verify our conclusions. To be specific, we eval-

uate three kinds of models based on cross-entropy, max-

margin and cosine-embedding objective functions, which

all apply the cosine metric in their formula. For fair com-

parisons, we apply the same backbone architecture in Sec-

tion 3.1 for the three models.

We adopt the widely-used skewness of the (empirical)

Nk distribution [33, 39, 56] to measure the degree of hub-

ness in the nearest neighbor search on those metric spaces

of different dimensions. The skewness is defined as follows:

SNk(s) =
E [Nk(s)− E [Nk(s)]]

3

Var [Nk(s)]
3
2

,

where Nk(s) denotes the number of times each prototype

s occurs among the k nearest neighbors of all test samples,

and E [Nk] and Var [Nk] denote its mean and variance.

The results have been reported in Figure 3. The x-axis

and y-axis represent the skewness values and the metric

space’s dimensions, respectively. We observe that as the

dimension of the cosine metric space increases, the value of

N1 in different datasets and models decreases consistently

which indicates that the emergence of hubs is suppressed.

Agreeing with the conclusions of Proposition 2, this obser-

vation demonstrates that cosine is a model-agnostic metric

for alleviating the hubness problem and a higher dimen-

sional metric space can better reduce the hubs. In addi-

tion, cross-entropy based embedding model (in the left of

Figure 3) have smaller average skewness values than other

models, which indicates that embedding models with cross-

entropy are more appropriate for alleviating the hubness

problem in ZSL. Thus, we adopt the cross-entropy objec-

tive function in the subsequent experiments.
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Table 2. Average per-class accuracy (%) of ZSL for the five bench-

marks on the proposed split (PS). ‘-’ means that no reported results

are available. The best result is marked in red, the second best in

blue.
Method AWA1 AWA2 SUN CUB aPY

DAP [18] 44.1 46.1 39.9 40.0 33.8

IAP [18] 35.9 35.9 19.4 24.0 36.6

CONSE [29] 45.6 44.5 38.8 34.3 26.9

CMT [40] 39.5 37.9 39.9 34.6 28.0

SSE [57] 60.1 61.0 51.5 43.9 34.0

LATEM [48] 55.1 55.8 55.3 49.3 35.2

ALE [1] 59.9 62.5 58.1 54.9 39.7

DESIVE [10] 54.2 59.7 56.5 52.0 39.8

SJE [2] 65.6 61.9 53.7 53.9 32.9

ESZSL [36] 58.2 58.6 54.5 53.9 38.3

SYNC [4] 54.0 46.6 56.3 55.6 23.9

SAE [15] 53.0 54.1 40.3 33.3 8.3

DEM [56] 68.4 67.1 61.9 51.7 35.0

RN [53] 68.2 64.2 - 55.6 -

PSRZSL [3] - 63.8 61.4 56.0 38.4

ZSKL [55] 71.0 70.5 61.7 57.1 45.3

SP-ANE [6] - 58.5 59.2 55.4 24.1

MLSE [7] - 67.8 62.8 64.2 46.2

Ours w/o diveristy 71.1 70.2 62.1 54.0 46.2

Ours 72.7 72.0 62.6 59.6 47.3

Table 3. Average per-class accuracy (%) of ZSL for the Imagenet

dataset.

Method Accuracy

DESIVE [10] 12.8

CONSE [29] 15.5

DEM [56] 25.7

SAE [15] 27.2

Ours w/o diveristy 27.3

Ours 27.6

4.3. Compared with ClassInductive Methods

We start our evaluations in the conventional ZSL set-

ting followed by the generalized zero-shot learning setting

(GZSL). Test samples defined in conventional ZSL all be-

long to unseen classes and their search space is thus limited

to the unseen classes. Meanwhile, for practical considera-

tions, GZSL not only considers the accuracy of samples for

the unseen classes but also that of the samples belonging to

seen classes. The search space of GZSL is the union set of

seen and unseen classes.

Conventional Zero-Shot Learning. For the conventional

ZSL setting, we first train our simple and general embed-

ding model with the objective function of Equation (7) on

all training samples from seen classes. We then apply the

nearest neighbor search of Equation (2) using the semantic

vectors from unseen classes. The nearest neighbor search

is used to predict the test examples from unseen classes.

The average per-class accuracy for the five benchmarks and

large-scale Imagenet dataset is reported in Table 2 and Ta-

ble 3, respectively.

Experimental results show that the improvements are

consistent across scale in the five middle-scale benchmarks
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Figure 4. Confusion matrixes evaluated on the AWA2 dataset un-

der the ZSL setting. The x-axis and y-axis represents the predicted

labels and the true labels of the test samples from unseen classes,

respectively.

and large-scale Imagenet dataset. Specifically, in Table 2,

our proposed method outperforms state-of-the-art embed-

ding models (upper part of the table) on AWA1, AWA2 and

aPY by 1.7%, 1.5% and 1.1% Top-1 accuracy, respectively.

We observe a large increase in performance when we add

the diversity regularization to the model. This shows that

the diversity regularizer is beneficial for improving the dis-

criminative ability of the embedding space. Meanwhile, in

Table 3, our method outperforms SAE by 0.4% on Ima-

genet dataset, which verifies our method’s applicability for

the large-scale dataset.

In addition, to further assess the effectiveness of the

diversity-based regularizer, we provide the visualization

about the confusion matrixes for our method with and with-

out diversity on AWA2 dataset in Figure 4. The visualiza-

tion shows that more test samples from unseen classes are

classified corrected by our method with diversity than ours

without diversity, which indicates that diversity-based reg-

ularizer can enhance our model’s discriminative ability.

Generalized Zero-Shot Learning. The GZSL setting pre-

dicts the test examples from both the seen and unseen

classes, with no prior distinction between them. The train-

ing process of the model is the same as that of the ZSL set-

ting. Table 4 presents our results for generalized zero-shot

learning (GZSL). ts and tr indicate the average per-class

accuracies of test samples belonging to unseen classes and

seen classes, respectively. H is the harmonic mean of ts

and tr, which balances their quality of performance.

We first note that our method outperforms state-of-the-

art embedding models on AWA2, CUB and aPY by 0.2%,

3.2% and 1.4%, respectively, in terms of the generalized

harmonic mean H . Meanwhile, our method also outper-

forms the state-of-the-art embedding approaches on AWA2,

CUB and aPY by 0.8%, 3.5% and 0.7%, respectively, in

terms of indicator ts. In addition, we also observe that our

method with diversity is noticeably better than that without

diversity on all five benchmarks, especially for the evalu-

ation ts. When the search space of GZSL becomes larger

than that of the conventional ZSL, the diversity regularizer

shows better performance on improving the discriminative

ability of our model.
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Table 4. Results on GZSL under the GBU setting. ‘-’ means that no reported results are available. The best number is marked in bold.

AWA1 AWA2 SUN CUB aPY

Method ts tr H ts tr H ts tr H ts tr H ts tr H

DAP [18] 0.0 88.7 0.0 0.0 84.7 0.0 4.2 25.1 7.2 1.7 67.9 3.3 4.8 78.3 8.0

IAP [18] 2.1 78.2 4.1 0.9 87.6 1.8 1.0 37.8 1.8 0.2 72.8 0.4 5.7 65.6 10.4

CONSE [29] 0.4 88.6 0.8 0.5 90.6 1.0 6.8 39.9 11.6 1.6 72.2 3.1 0.0 91.2 0.0

CMT [40] 0.9 87.6 1.8 0.5 90.0 1.0 8.1 21.8 11.8 7.2 60.1 8.7 1.4 85.2 2.8

SSE [57] 7.0 80.5 12.9 8.1 82.5 14.8 2.1 36.4 4.0 8.5 46.9 14.4 0.2 78.9 0.4

LATEM [48] 7.3 71.7 13.3 11.5 77.3 20.0 14.7 28.8 19.5 15.2 57.3 24 0.1 73.0 0.2

ALE [1] 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3 23.7 62.8 34.4 4.6 73.7 8.7

DESIVE [10] 13.4 68.7 22.4 17.1 74.7 27.8 16.9 27.4 20.9 23.8 53 32.8 4.9 76.9 9.2

SJE [2] 11.3 74.6 19.6 8.0 73.9 14.4 14.7 30.5 19.8 23.5 59.2 33.6 3.7 55.7 6.9

ESZSL [36] 6.6 75.6 12.1 5.9 77.8 11.0 11.0 27.9 15.8 12.6 63.8 21 2.4 70.1 4.6

SYNC [4] 8.9 87.3 16.2 10.0 90.5 18.0 7.9 43.3 13.4 11.5 70.9 19.8 7.4 66.3 13.3

SAE [15] 1.8 77.1 3.5 1.1 82.2 2.2 8.8 18.0 11.8 7.8 54.0 13.6 0.4 80.9 0.9

DEM [56] 32.8 84.7 47.3 30.5 86.4 45.1 20.5 34.3 25.6 19.6 57.9 29.2 11.1 75.1 19.4

RN [53] 31.4 91.3 46.7 30.0 93.4 45.3 - - - 38.1 61.1 47.0 - - -

PSRZSL [3] - - - 20.7 73.8 32.3 20.8 37.2 26.7 24.6 54.3 33.9 13.5 51.4 21.4

ZSKL [55] 18.3 79.3 29.8 18.9 82.7 30.8 21.0 31.0 25.1 24.2 63.9 35.1 11.9 76.3 20.5

SP-ANE [6] - - - 23.3 90.9 37.1 24.9 38.6 30.3 34.7 70.6 46.6 13.7 63.4 22.6

MLSE [7] - - - 23.8 83.2 37.0 20.7 36.4 26.4 22.3 71.6 34.0 12.7 74.3 21.7

Ours w/o diversity 25.2 82.7 38.6 23.9 84.9 37.2 19.4 38.3 25.7 22.7 57.8 32.6 13.2 68.8 22.2

Ours 30.8 81.5 44.7 31.3 83.2 45.5 21.6 39.1 27.8 41.6 63.2 50.2 14.4 71.4 24.0

4.4. Detailed analysis

We provide extend experiments to show the advantage

of PCA and investigate the upper bound of dimension in

the metric space. We choose two different strategies (PCA

and MLP) for projecting visual features into the common

metric space. We set the dimensionality of the metric space

as 64, 128, 256, 512, 1024, 2048, 2560, 3072 and 4096.

Especially, PCA(D=2056/3072/4096)-based visual features

concatenate the projected features of PCA(D=2048)-based

and PCA(D=512/1024/2048)-based.

Advantage of PCA. We choose PCA as the dimensional re-

duction strategy for concreteness. Nevertheless, our method

is also applicable to other dimensional reduction strategies.

Figure 5 shows that the PCA-based method outperforms

the MLP-based method on different-dimensional embed-

ding space by a large margin. Compared with the non-

parametric strategy (PCA), the MLP with parameters needs

more training times and is more prone to overfitting [5].

Thus, in our paper, we choose PCA as the dimensional re-

duction strategy. See additional results on other datasets in

the supplementary material.

Upper bound of dimension in the metric space. Due to

various complicated factors, the performance of our method

should have the upper bound with the increase of the di-

mensionality of the metric space. Figure 5 shows that the

average per-class accuracy obtains the peak value at the di-

mensionality equal to 2048. When the dimensionality is

less than or equal to 2048, the metric space with higher di-

mensionality has better performance as also indicated in our

theoretical analysis. Meanwhile, when the dimensionality

is more than 2048, the performance decreases because the

backbone network has more parameters and then are more

prone to over-fitting to seen classes. Thus, in our paper, the
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Figure 5. Performance of our proposed method on AWA2 dataset

when visual features are projected into different dimensional em-

bedding space by MLP and PCA. The best viewed in color.

upper bound of the dimension in the metric space is 2048.

5. Conclusions
In this paper, we are the first to prove that cosine is a

model-agnostic metric to alleviate hubness in ZSL and con-

clude that a higher dimensional cosine metric space can bet-

ter suppress the emergence of these hubs, which provides

useful guidance in designing ZSL algorithms. Moreover,

we introduce a diversity-based regularizer which underpins

the theoretical assumption about the uniform distribution

and further improves our model’s discriminative ability. Ex-

tensive experiments on five benchmarks and large-scale Im-

agenet dataset demonstrate our method consistently delivers

high performance across scales and substantially surpasses

previous embedding models.
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