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Abstract

Achieving robust pose tracking and mapping in highly

dynamic environments is a major challenge faced by exist-

ing visual SLAM (vSLAM) systems. In this paper, we in-

crease the robustness of existing vSLAM by accurately re-

moving moving objects from the scene so that they will not

contribute to pose estimation and mapping. Specifically, se-

mantic information is fused with motion states of the scene

via a probability framework to enable accurate and robust

moving object extraction in order to retain the useful fea-

tures for pose estimation and mapping. Our work highlights

the importance of distinguishing between motion states of

potential moving objects for vSLAM in highly dynamic en-

vironments. The proposed method can be integrated into

existing vSLAM systems to increase their robustness in dy-

namic environments without incurring much computation

cost. We provide extensive experimental results on three

well-known datasets to show that the proposed technique

outperforms existing vSLAM methods in indoor and outdoor

environments, under various scenarios such as crowded

scenes.

1. Introduction

Visual Simultaneous Localization and Mapping (vS-

LAM) is a key component of modern autonomous systems,

augmented reality and visual positioning systems [3, 30].

vSLAM explores the static correspondences in images to

simultaneously estimate the pose of the ego-object and map

of the environment as a joint problem. Maximum consen-

sus schemes (e.g. RANSAC [22, 9]) are generally adopted

to remove the dynamic outliers from the static inliers, un-

der the assumption that the majority of the scene contains

static elements. In recent years, vSLAM has achieved good

progress. For instance, ORB-SLAM2 [20], a state-of-the-

art SLAM algorithm, is able to achieve ∼ 1% (of trajec-

tory length) average translation error on KITTI odometry

datasets [11] and about 0.015 meter Root Mean Square Er-

ror (RMSE) on TUM-static datasets [25]. However, the ac-

curacy of these vSLAMs [20] reduce significantly in dy-

namic environments, such as those found in TUM-dynamic

[25] and Apollo datasets [14]. This inconsistency in perfor-

mance is due to the presence of large amount of moving ob-

jects (e.g. car, bicycle, pedestrian, etc.) in the scenes, which

violates the assumption required by maximum consensus

schemes. These dynamic elements, which are prevalent in

realistic environments, can cause failures in pose tracking

and irreversible corruptions in the map.

To address this problem, existing works [17] attempt to

remove features associated with potential moving objects

so that they will not contribute to pose estimation and map-

ping. However, this direct feature removal step can re-

sult in losing useful information in scenes where, poten-

tial moving objects are motionless, for example parked ve-

hicles or pedestrians waiting at a traffic intersection. Our

experiments show that in scenes containing large number

of parked vehicles (e.g. sequences 17 and 16 of Apollo

datasets [14]), the direct removal approach leads to reduc-

tion in features for pose estimation that cause a significant

drop in pose accuracy.

In this paper, we aim to increase the robustness of vS-

LAM in all scenarios, e.g. indoor, outdoor, and highly dy-

namic scenes, by introducing a preprocessing step to re-

move moving objects before the vSLAM pipeline. In par-

ticular, semantic information is fused with motion states of

the scene objects in a probability framework to enable accu-

rate and robust moving region extraction in order to retain

the useful features for pose estimation and mapping.

Our work shows the importance of distinguishing be-

tween motion states of potential moving objects for vSLAM

in highly dynamic environments. The proposed method

consists of the following steps. First, a lightweight scene

flow estimation and clustering method is proposed to extract

the moving regions in the scene. Second, semantic segmen-

tation method is utilized to extract the semantic knowledge

in the scene. Finally, to tackle the uncertainty in the ex-

tracted knowledge both for the moving regions and seman-

tic maps, a probability framework is proposed to fuse the

motion states cue with the semantic cue to detect the mov-

ing regions in a robust way. By excluding the features cor-

responding to the final determined moving regions, remain-

ing features contain less outliers for the following vSLAM
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pipeline processing. Extensive experiments are undertaken

on TUM [25], KITTI [11], and Apollo [14] datasets to eval-

uate the effectiveness of the proposed technique. Our ex-

periment results show that the proposed technique is able

to enhance the robustness of existing vSLAMs in various

scenarios from indoor to outdoor scenes, and from low dy-

namic to crowded scenes.

The rest of the paper is organized as follows. Sec-

tion 2 discusses the existing work in vSLAM particularly

those that tackle the problem of dynamic environment. In

Section 3, we describe the proposed framework to extract

semantic-aware motion states for accurate moving region

extraction in vSLAM. Experiments and comparison with

existing state-of-the-art vSLAMs are presented in Section

4. Finally, Section 5 concludes this paper.

2. Related Work

Modern vSLAMs use either stereo [11], monocular [4]

or RGB-D [25] images to localize itself and map the en-

vironment. vSLAM estimates the pose by exploiting the

geometric relationship between the static correspondences

observed in the images. The existing vSLAMs and visual

odometry (VO) can be classified into three categories: in-

direct [23, 20, 12], direct [21, 7] and hybrid methods [10].

Indirect (i.e. feature-based) methods use distinct image fea-

tures, while direct (i.e. appearance-based) approaches uti-

lize image intensity information. Hybrid methods leverage

on both feature and appearance-based benefits [24].

The state-of-the-art ORB-SLAM2 [20] is one of the most

versatile feature-based vSLAM algorithms that performs

well for both indoor and outdoor scenarios. It achieves high

pose estimation accuracy in static or slightly dynamic envi-

ronments such as those found in KITTI odometry datasets

[11] and static TUM RGB-D datasets [25]. However, the

pose estimation accuracy of ORB-SLAM2 degrades when

a significant part of the scene is occupied by moving ob-

jects (e.g. vehicles) [31]. Similar behaviour is observed in

other vSLAM [23] and VO [12] systems as well. This is

contributed by the fact that the maximum consensus out-

lier removal schemes (like RANSAC [12, 20] can remove

outlier features corresponding to moving objects only when

the proportion of its features in the scene is small com-

pared to those associated with the static objects. When sig-

nificant number of features corresponding to moving ob-

ject/s are present, they constitute to a motion field that im-

pairs the effectiveness of the maximum consensus approach

[17, 31, 33]

To address this problem, a number of works detect the

moving regions in the scene and remove them before the vS-

LAM processing pipeline. Wang et al. [28] and MVO [16]

proposed to detect moving regions by performing clustering

of the point trajectories over time. In [28], image segmen-

tation is done by performing clustering of the optical flow.

It then refines the over-segmented and under-segmented re-

gions by splitting-merging of groups. This produces dense

moving segmentation, and incurs high computational com-

plexity. MVO uses feature tracked over several frames to

perform multi-motion clustering. But it significantly suffers

from lack of track-lets and feature dropouts, and has been

tested only in controlled scenarios. Fang et al. [8] uses

dense optical flow to estimate dynamic objects by apply-

ing uniform sampling method, but has lower accuracy and

the computation complexity is still high when using dense

sampling. On the other hand, some works, e.g. MaskSLAM

[17] and Detect-SLAM [33], try to remove all features be-

longing to semantically labelled dynamic class of objects

such as car, bicycle, pedestrian etc., irrespective of their ac-

tual motion state (moving or not). This results in the loss of

many stationary features (as some of these objects are not

in a moving state) that could have contributed to effective

pose estimation, for example, the scenes with many parked

vehicles (motionless state) occupy large parts of the scene

(sequence 00 and 08 [11]).

Instead of exploiting either the geometric motion cue or

semantic cue alone as mentioned above, some work tries to

fuse the two cues together. DS-SLAM [31] first identifies

outliers using moving consistency check, which is based on

RANSAC, and is thus subjected to the limitations of max-

imum consensus. It then searches if any of these outliers

falls in regions which are semantically labelled as dynamic

objects. Due to the presence of random outlier distribution,

consistency check do not guarantee true motion. Thus, it re-

sults in over-removing large number of stationary features

as well.

The proposed method in this paper also exploits both

the geometric motion cue and semantic cue to complement

to each other. However, unlike [31], we do not rely on

RANSAC based moving consistency check for geometric

moving object detection, which will not work in scenarios

where the majority of the features belong to non-static ele-

ments. Instead, a graph based method is proposed to cluster

the scene flow to detect the geometric moving region. In ad-

dition, taking into consideration that there exist uncertain-

ties both in the extracted geometric motion cue and seman-

tic cue, a probability framework is proposed to fuse them

in a robust way. This enables us to distinguish two nearby

objects with different motion states as separate components,

hence increasing the robustness of the method.

3. Proposed Method

The motion of the static scene with respect to the cam-

era is the inverse of the motion of the camera, which is

installed rigidly on a moving vehicle. Hence, the camera

pose can be estimated by exploiting the motion pattern of

the static scene correspondence in the captured images. The

real world, however, is dynamic in nature and contains a lot
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Figure 1: Proposed moving feature removal technique can

be integrated into any existing vSLAM to make it robust for

dynamic environments.

of moving objects. Outlier removal schemes like RANSAC

[22] are generally adopted to separate the outliers from the

inliers before estimating the pose. However, when the scene

is highly dynamic, a large proportion of the image is often

occupied by moving objects, as exemplified in the dynamic

TUM [25] and Apollo [14] datasets. Thus, the assumption

for RANSAC is violated and the accuracy of the estimated

pose degrades significantly. Our work focuses on improving

the vSLAM capability in dynamic environments by remov-

ing large proportions of outlier features related to moving

objects. This increases the robustness of maximum consen-

sus based outlier removal in dynamic scenes as the neces-

sary condition for outlier removal is now satisfied, i.e. ma-

jority of features satisfy one dominant motion (the camera

motion).

Due to the movement of the camera, the projected re-

gion in the image corresponding to the static world also

encodes motion. In order to differentiate the two types of

motion and segment the moving regions from static world,

two main approaches are adopted in the literature: 1) mo-

tion clustering based on optical flow (i.e. 2d velocity) [13]

or scene flow (i.e. 3d velocity) [27, 18]. These works are

based on the foundation that motions from different objects

exhibit discontinuities in the flow. 2) Movable object identi-

fication via object detection [33] or semantic segmentation

[17]. Once regions are associated with a dynamic object

class, they are regarded to be in motion. However, both of

these two approaches have their own limitation. The for-

mer suffers from the noise incurred from the computation

of the optical flow or scene flow. For the latter method,

object detection / semantic segmentation only provides the

category information about the object, but cannot guarantee

their motion state at a particular time instant. The motion

states are important as stationary features from dynamic ob-

ject classes e.g. parked cars must be retained as they con-

tribute to effective pose estimation.

In this work, we proposed a new approach to detect the

moving object regions in the scene by exploring both the ge-

ometric motion pattern and semantics in the scene. First, a

lightweight scene flow estimation and clustering method is

proposed to compute the geometric moving region (Section

3.1). Second, semantic segmentation maps are generated

using state-of-art semantic segmentation methods (Section

3.2). Finally, a probability framework is designed to fuse

the geometric motion cue and semantic maps (Section 3.3).

The proposed probability framework takes into considera-

tion the uncertainties within the geometric motion cue and

semantic map to detect the moving objects more robustly.

Once the moving object regions are detected, features cor-

responding to these regions are discarded and the remaining

features are fed into the existing vSLAM pipeline to esti-

mate the camera pose and map points (shown in Fig. 1).

3.1. Sparse Scene Flow based Segmentation

3.1.1 Sparse Scene Flow Estimation

It has been shown in LibViso2 [12] that the viso2 features

are lightweight and distinctive enough for feature matching.

As such, we have adopted viso2 features [12] to compute

the correspondences between previous and current frame

for the 2d optical flow and also the correspondences be-

tween left and right images for the disparity in the case of

stereo camera setup. In the case of RGB-D input, the depth

values (i.e. disparity d) can be directly obtained [25].

Given the ith feature point pit−1(u
i
t−1, v

i
t−1, d

i
t−1) at

time step t − 1 and its correspondence pit(u
i
t, v

i
t, d

i
t) at

time step t, where u, v represents the horizontal and ver-

tical coordinates in the image coordinate and d refers to the

disparity value, the corresponding 3D coordinates, P i
τ =

(Xi
τ , Y

i
τ , Z

i
τ )

T can be reconstructed via camera triangula-

tion process:

Xi
τ =

(ui
τ − cu) · b

diτ
, Y i

τ =
(viτ − cv) · b

diτ
, Zi

τ =
b · f
diτ

,

for τ = t− 1, t
(1)
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where b is stereo baseline and (cu, cv) is principal point.

The reconstructed world coordinates P i
t−1 and P i

t using Eq.

(1), takes the camera pose at time t − 1 and time t as their

coordinate origin, respectively. Assume, T̃t−1,t = [R̃|t̃] is

the approximate relative camera pose from t− 1 to t. And,

the relative pose T̃t−k,t is estimated with respect to last

keyframe (at time t − k), which we call as fast-tracking1.

Then,

T̃t−1,t = T̂t−1,t−kT̃t−k,t (2)

where T̂t−1,t−k is known from previous frame tracking1.

After compensating for the motion due to camera, the

coordinates P̃ i
t = (X̃i

t , Ỹ
i
t , Z̃

i
t)

T are given by (Eq. (3)),

P̃ i
t = R̃P i

t−1 + t̃ (3)

The position difference V i
t = (∆Xi,∆Y i,∆Zi)T , then

represents the scene flow:

∆Xi = X̃i
t −Xi

t , ∆Y i = Ỹ i
t − Y i

t , ∆Zi = Z̃i
t − Zi

t (4)

Ideally, if {R̃, t̃} = {R, t} and feature correspondences are

free of matching errors, then scene flow vector for all static

points would be zero-magnitude or close to zero-magnitude.

This enables a simple thresholding operation to separate

static features from moving features. However, in prac-

tice, this is not always possible. Due to incorrect feature

matching or the use of motion approximation in Eq. 3, even

static points may be associated with large magnitude scene

flow. In the following section, a graph based clustering tech-

nique is proposed to distinguish between the static points

and moving points.

3.1.2 Scene Flow Clustering

Scene flow clustering generally relies on the basis that scene

flow corresponding to the same moving rigid body follows a

uniform unique motion pattern, while scene flow associated

with the static world is incurred from computation noise and

exhibits a random pattern [16]. Many clustering methods

have been proposed in the literature. However, clustering

methods such as K-means or K-Nearest Neighbors (KNN)

require the number of clusters as the prior knowledge which

is difficult to obtain in practice [15]. Other clustering meth-

ods such as subspace clustering is computationally expen-

sive [6]. In our work, we adopted the Delaunay triangula-

tion 2 based graph clustering method for scene flow cluster-

ing due to its non-parametric property, low computational

complexity, and capability in processing data that contains

spatial geometric information [18]. Using this clustering

approach, only few edges are connected compared to the

number of vertices and efficiently clustered using connected

component search [26]. In addition, we prune the graph

1Keyframe contains relatively stable features, and estimation can be

done in less time than full pose estimation (see supplementary for details).
2No other vertex lies inside the circumcircle of a triangle.

using both Mahalanobis and Euclidean distance, and final

moving regions are obtained using convex hull.

After scene flow is computed for all the feature points, a

threshold is applied to remove the feature points whose Ma-

halanobis magnitude of the scene flow is very small and are

confidently regarded as static features. We denote the re-

maining feature points as potential moving points (PMP).

Building the Delaunay triangulation graph on the set of

PMP will lead to significant savings in computation cost.

Given the set of PMP, a weighted graph is constructed

using the scene flow and the positions (Fig. 1(b)). Each ver-

tex represents a PMP (feature point) by its flow vector V i
t

and its position P i
t . Vertices in the graph are connected us-

ing Delaunay triangulation based on the adjacency of their

positions. Then, the edges of the graph are weighted based

on the Mahalanobis distance ∆(Vi
t,V

j
t ) of the associated

scene flow vectors V i
t , V

j
t as,

∆(Vi
t,V

j
t ) = (Vi

t −V
j
t )

TΣ−1
ij (Vi

t −V
j
t ) (5)

which takes into account the uncertainty incurred in the re-

constructed position P i
t , P

j
t due to measurement noise. The

uncertainty is modelled as Σij = Σi + Σj . Each Σi rep-

resents the covariance noise defined by Σi = JiSJi
T . S

is the measurement noise matrix taken as S=diag(0.5) pixel

and Ji is the Jacobian of scene flow [5].

Once the weighted graph is constructed, the anomalous

edges are removed if their weights are large (Eq. 5). We set

the threshold for Mahalanobis distance based on the prob-

able speed of moving objects in the scene. For outdoor

dataset this threshold is set as 0.15×camera fps, and for in-

door dataset as 0.01×camera fps. A lower threshold value

is set for indoors as most of the moving objects are people,

who move relatively slow (∼ 0.1-1.5 m/s). This enables us

to achieve separate clusters of objects with different speed.

On the other hand, for outdoor scenes, the moving objects

(mostly vehicles) have faster speeds (∼ 2.7-30 m/s) and are

easily distinguishable by using a higher threshold. We also

removed any long edges based on the inter-node 3D Eu-

clidean distance (di,j = ‖P i
t −P j

t ‖) , because most of these

long edges connect different objects in the real world. Such

long edges may occur when different objects move with

similar motion, leading to a cluster spanning large image

space and potentially covering even the unoccupied static

region. We set a threshold of 3 metres for outdoors and 1

metres for indoors, considering the size of moving objects.

This pruning process rapidly removes edges between far

features in 3D coordinates and the edges with significantly

different scene flow vectors between nodes. After the graph

refinement, only the highly similar nodes with close prox-

imity stay connected and forms clusters. We represent each

cluster by its convex hull, which is extracted by finding the

connected vertices in the pruned graph, as shown in Fig.

1(b). This scene flow clustering approach efficiently identi-
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fies the moving cluster of points and all the features within

the hull region can be considered as moving and are omitted

from pose estimation and mapping.

The proposed scene flow clustering approach is able to

identify the moving objects in the scene correctly in most

cases. However, it still suffers from noise incurred during

the computation of scene flow. A single false point (graph

vertex) can cause incorrect removal of some static (good)

features. To further improve the robustness, we explore the

use of semantic cues as discussed in the following section.

3.2. Semantic Segmentation

We utilize the semantic information as an additional cue

to assist final moving object decision making. Although any

state-of-the-art semantic segmentation like [32] and [29]

can be utilized, but for fair comparison with the baselines

(e.g. [31]) we use SegNet [1]. In particular, the moving

cluster regions identified in the previous section will be con-

sidered valid only when they are also classified as movable

class (vehicle, person, etc.). However, due to the significant

uncertainties in both the obtained geometry cue and seman-

tic cue, a simple ”AND” or ”OR” operation for fusing both

information will either lead to over-removal of large num-

ber of static regions or failure in removing several moving

outliers. Hence, a probability framework is proposed to fuse

the two cues in a robust way as described in the next section.

3.3. Fusion of Geometric and Semantic methods

Scene flow based geometric clustering (Section 3.1) in-

dicates which part of the images corresponds to moving re-

gions as shown in Fig. 2(a). A corresponding binary image

G is generated to denote the observed moving region map

obtained from geometric clustering. Each pixel xi in G is

labelled as 1 if it is estimated as moving point (if it lies

inside cluster boundary), otherwise 0 if it is a static point

(if it lies inside cluster boundary), as shown in Fig. 2(b).

Semantic segmentation from Section 3.2 provides another

observation on which part of the images corresponds to dy-

namic classes(potential moving objects). Similarly, a cor-

responding binary image S is generated to denote the ob-

served semantic map. All pixels in S will have a value 1
if corresponding pixels are labelled as one of the dynamic

classes, otherwise value 0 (Fig. 2(c)).

G and S introduce uncertainty especially on the bound-

ary of the regions corresponding to moving regions or dy-

namic class. As such, decision of the final moving re-

gions cannot be made directly on G and S. Instead, we

introduce a probability model, to compute the probabil-

ity p(gi = mov|xi) that pixel xi in original image corre-

sponds to moving region based on G and the probability

p(si = dyn|xi) that pixel xi correspond to dynamic class

based on S. A technique called distance transform [19] is

utilized to convert G and S into a distance map and Gaus-

sian modelling is then utilized to estimate the probability.

The intuition is that the likelihood should decrease with the

distance to the nearest region observed as moving region

(value 1) in G or dynamic class (value 1) in S. The proba-

bility model takes into consideration the uncertainty, and G
and S can be fused in a more robust way.

Given the binary geometric observation map G, a dis-

tance map DTg is created using the distance transform tech-

nique, where Euclidean distance is adopted as the distance

metric in this work, as illustrated in Fig. 2(d) and defined in

equations Eq 6 and Eq 7.

D[i][j] = min{Distance[(i, j), (x, y)] : B[x][y] = 1} (6)

Distance[(i, j), (x, y)] =
√

(i− x)2 + (j − y)2 (7)

Here, B refers to the binary map. Based on the distance map

DTg , we define the probability p(gi = mov|xi) that pixel

xi correspond to moving region (mov) as

p(gi = mov|xi) =
1√
2πσg

e
−

1

2σ2
g

DTg(xi)
2

(8)

where σg models the uncertainty in the scene flow based

geometric segmentation.

Similarly, given the binary semantic observation map S,

another distance map DTs is created using Eq 6 and Eq 7.

Based on DTs (Fig. 2(e)), the probability p(si = dyn|xi)
that pixel xi correspond to dynamic class (dyn) is defined

as

p(si = dyn|xi) =
1√
2πσs

e
−

1

2σ2
s

DTs(xi)
2

(9)

where σs models the uncertainty in the semantic image clas-

sification.

Since semantic segmentation S and scene flow based ge-

ometric segmentation G are independently estimated, we

can reduce the individual uncertainty of detecting actual

moving regions by fusing both the estimates as follows to

get true moving object likelihood p(fi = trueM |xi).

p(fi = trueM |xi) = p(si = dyn|xi) · p(gi = mov|xi) (10)

=
1

2πσsσg

e−
(DTs(xi)

2

2σ2
s

+
DTg(xi)

2

2σ2
g

)

(11)

The fused region can then be computed as shown in Fig.

2(f), based on σs = 40 pixels and σg = 80 pixels. These

values depend on the individual quality of segmentation.

The final mask for moving region is evaluated by threshold-

ing this estimated fusion probability as shown in Fig. 2(g).

The threshold is taken as 0.85 in the current implementa-

tion, which is selected based on the qualitative experiments.

As illustrated in the first row of Fig. 2, the cluster (red

bounding region Fig. 2(a)) is not able to extract the com-

plete moving person, while, the semantic segmentation is

able to extract the most of the region of the person (Fig.

2(c)). However, the semantic segmentation detects both the

static person (on left side in Fig. 2(a)) and moving person
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(a) clusters (red)

and edges (green)

(b) geometric

map (G) of (a)

(c) semantic map

(S)

(d) distance trans-

form DTg of (b)

(e) distance trans-

form DTs of (c)

(f) probability of

moving regions

(g) final mask ob-

tained from (f)

(h) clusters (red)

and edges (green)

(i) geometric map

(G)

(j) semantic map

(S)

(k) distance trans-

form DTg of (i)

(l) distance trans-

form DTs of (j)

(m) probability

after fusion

(n) final mask ob-

tained from (m)

Figure 2: The process of fusion between geometric clustering and semantic segmentation to get the moving region segmen-

tation mask (g and n) is depicted for sample input frames (a and h).

(on right side in Fig. 2(a)). Hence, after applying the pro-

posed fusion approach to get probability distribution Fig.

2(f), we can finally extract more accurate mask for the mov-

ing person as shown in Fig. 2(g). The second advantage

of this fusion approach is that it removes unwanted regions

which are falsely segmented as dynamic by semantic seg-

mentation. For example, as shown in Fig. 2(j), the monitor-

screen has been segmented as human, but the binary mask

obtained from geometric clustering shows that only the per-

son is moving. Hence, after probabilistic fusion, the moni-

tor is removed.

4. Experiments

In our experiments, we have employed the widely-used

ORB-SLAM2 as our base vSLAM system. It is worth men-

tioning that the methods proposed in this work can be ap-

plied to other vSLAM systems to increase the robustness.

We integrate the proposed technique with ORB-SLAM2

and denote it as proposed-SLAM. In this section, an exten-

sive experimental study will be presented to demonstrate the

effectiveness of the proposed technique in various scenar-

ios, i.e. indoor with both static and crowded scenes (TUM

[25]), and outdoor with static (KITTI [11]) and crowded

scenes (Apollo [14]). In addition to ORB-SLAM2, the

recent dynamic SLAM systems DS-SLAM [31], Detect-

SLAM [33] and DynaSLAM [2] are chosen as baselines.

DynaSLAM is available in both RGB-D and Stereo config-

urations.

TUM dataset suggests the error metric ATE (absolute

trajectory error) to be used for SLAM evaluation. The re-

sults in this paper are generated through their online evalu-

ation kit [25]. For the KITTI and Apollo datasets, the poses

have been evaluated using the RMSE of relative pose errors

(RPE) as defined by KITTI [11]. It measures the average

deviation (in translation and rotation) of the estimated poses

with respect to ground truth averaged over 100m to 800m

intervals i.e. translation errors in % and rotation errors in

deg/100m.

4.1. Ablation Studies

We compare the SLAM performance of our three ap-

proaches: 1) Using only semantic labels to remove the mov-

ing features (B+S), 2) using only graph-clustering based

moving features removal (B+G), and 3) fusion of both geo-

metric and semantic information (B+G+S). The experimen-

tal results of these three configurations and ORB-SLAM2

(without using our proposed approach) i.e. B are shown in

Table 1, 2 and 3 for three different datasets.

On the TUM dataset (Table 1), it can be observed that

the geometric method B+G and semantic method B+S have

lower average ATE errors than the baseline B in most se-

quences. This is because these sequences contain large part

of moving objects in the scene and removing the features in

these regions improves the pose estimation accuracy. How-

ever, when both information are fused together, i.e. in

B+G+S, there is a reduction of about 90% in pose errors

compared to the baseline B. This is due to the fact that se-

mantic method B+S removes all features of semantic class

of movable objects (e.g. people), irrespective of their actual

motion state. But, features on stationary person are useful

in cases where, the rest of features (wall, desk etc.) are in-

sufficient in number. On the other hand, geometric method

B+G sometimes could not segment the entire region of the

moving object due to noisy sparse flow, and only provides

an idea about the likelihood of moving objects. Hence, the

fusion B+G+S overcomes the limitation of both B+S and

B+G, by extracting true moving regions as shown in Fig.

2(g). A similar behaviour is observed on KITTI (Table 2)

and Apollo datasets (Table 3), where B+G+S has the low-

est errors on most sequences, but B+S over-removes some

of the useful features (parked cars) e.g. in sequence 17 23
(Table 3). Occasionally, B+G also removes few stationary

features, e.g. in sequence 16 3A A2 19(Table 3). This hap-

pens when the geometric clusters extend beyond the mov-
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Table 1: Results on TUM RGB-D dataset, showing RMSE of absolute trajectory errors (ATE) in meters. The proposed

graph-clustering only SLAM (B+G), proposed semantic only (B+S) and proposed fusion (B+G+S) are compared with the

Baseline ORB-SLAM2 (B) and recent dynamic vSLAMs DS-SLAM, Detect-SLAM and DynaSLAM.

Sequences B (ORB-SLAM2) DS-SLAM Detect-SLAM DynaSLAM B+G B+S B+G+S

fr3 wlk xyz 0.7521 0.0247 0.0241 0.017 0.1458 0.0253 0.015

fr3 wlk stat 0.3900 0.0081 - 0.007 0.0806 0.0168 0.007

fr3 wlk rpy 0.8705 0.4442 0.2959 - 0.3376 0.3000 0.029

fr3 wlk half 0.4863 0.0303 0.0514 0.026 0.2627 0.0345 0.025

fr3 sit stat 0.0087 0.0065 - 0.007 0.0078 0.0063 0.006

fr3 sit xyz 0.0091 0.0183 0.020 0.015 0.0091 0.0145 0.011

fr3 sit half 0.0264 0.0260 0.0231 0.028 0.0259 0.0209 0.019

ing object due to noisy sparse flow. However, the fusion

approach B+G+S overcomes this problem. In sequences

where moving vehicles are continuously visible in front of

camera, e.g. KITTI sequence 04 (Table 2), the B+G+S error

reduction is more noticeable.

4.2. Evaluation on TUM Dataset (RGB­D)

The TUM RGB-D dataset [25] consists of several low-

dynamic (sitting people) to highly dynamic sequences

(walking people). In extreme cases, more than half of

the images are occupied with moving objects e.g. TUM

(sequence fr3 wlk half ) [25]. In walking sequences, peo-

ple are walking in front of the camera, and static, half,

rpy and xyz denotes the four types of camera motion.

The quantitative comparison results of ORB-SLAM2 (B),

DS-SLAM, Detect-SLAM, DynaSLAM and the proposed-

SLAM (B+G+S) are shown in Table 1. The RMSE ATE

errors are very high for ORB-SLAM2. This is due to the

fact that their outlier removal method is impaired in the

case where the scene is majorly occupied by moving ob-

jects. In addition, DS-SLAM and Detect-SLAM have larger

errors in all sequences than the proposed-SLAM. This is be-

cause many semantically dynamic pixels are removed even

though they are in static motion state. These features could

have contributed to better pose estimation. DynaSLAM per-

forms better than DS-SLAM and Detect-SLAM in some se-

quences, because it use motion detection with semantics. In

very low dynamic sequence fr3 sit xyz, a few noisy clus-

ters slightly increase the errors for B+G+S, but the pro-

posed B+G+S consistently achieves very low errors in all

sequences.

4.3. Evaluation on KITTI Dataset (Stereo)

The KITTI visual odometry dataset is another popular

benchmark. It provides stereo sequences captured from a

moving vehicle in mostly static environment i.e. very few

moving objects are present in the scenes. Table 2 shows

the comparison of the average translation and rotation er-

rors between proposed-SLAM (B+G+S), ORB-SLAM2 (B)

and DynaSLAM. As KITTI dataset contains very few mov-

ing objects in the sequences, and ORB-SLAM2 is able to

remove most these few dynamic features through its outlier

removal, the improvements are minor. However, it is notice-

able that the improvements in proposed (B+G+S) are more

pronounced in sequences which contain more moving vehi-

cles. For example in sequence 04, a moving van is perpet-

ually in front of the camera. Hence, a slight error reduction

is observed in this sequence. Apart from this, in sequence

07, a truck is present for few frames, and sequence 08 also

contains a few moving vehicles. Overall, error reduction of

B+G+S over ORB-SLAM2 is 4.5% in translation errors and

0.3% in rotation.

4.4. Evaluation on Apollo Dataset (Stereo)

We chose the newly released dataset called Apollo [14]

for our experiments since it has more comprehensive sce-

narios than KITTI and contain significant number of mov-

ing vehicles and pedestrians. Apollo provides outdoor

self-localization stereo dataset [14]. The stereo dataset is

however not rectified and contains noisy data and miss-

ing frames. Hence, we rectified and re-sized the images

to fit to the KITTI type stereo frames. Apollo also pro-

vides the groundtruth poses for evaluation. To evaluate the

poses, we use popular outdoor average % translation and

average rotation error matrices defined by KITTI [11]. The

average errors are higher (∼15-20 times) on this dataset as

compared to KITTI dataset. This is because camera goes

through highly varying speeds and the camera-motion is not

as smooth as KITTI. Hence, low number of features can

be tracked in successive frames. Also this dataset contains

more prominent rotations than KITTI and thus is more chal-

lenging for localization.

The quantitative comparison results are shown in Table

3. The translation errors of ORB-SLAM2 increase to large

value in some of the sequences (up to 30%). These se-

quences contain large number of moving objects including

vehicles and pedestrians in the scene [14]. The comparison

shows that proposed (B+G+S) overcomes the limitation of

ORB-SLAM2 (B) in highly outdoor dynamic environments

as well, by removing the features related to the moving ob-

jects in the scene. For instance, the translation error re-

duces from 33% to 22% on 17 26 and from 36% to 26% on
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Table 2: KITTI dataset: the translation errors t (%) and rotation errors r (deg/100m) for B, DynaSLAM, B+G, B+S and

B+G+S are shown.

Sequences
B (ORB-SLAM2)

t r

DynaSLAM

t r

B+G

t r

B+S

t r

B+G+S

t r

00 0.70 0.25 0.74 0.26 0.68 0.24 0.69 0.26 0.68 0.25

01 1.39 0.21 1.57 0.22 1.40 0.22 1.36 0.22 1.36 0.22

02 0.76 0.23 0.80 0.24 0.78 0.24 0.76 0.23 0.76 0.21

03 0.71 0.18 0.69 0.18 0.71 0.18 0.69 0.17 0.73 0.20

04 0.48 0.13 0.45 0.09 0.45 0.12 0.47 0.14 0.39 0.12

05 0.40 0.16 0.40 0.16 0.39 0.18 0.40 0.17 0.38 0.16

06 0.51 0.15 0.50 0.17 0.49 0.15 0.55 0.19 0.48 0.15

07 0.50 0.28 0.52 0.29 0.51 0.31 0.53 0.30 0.47 0.29

08 1.05 0.32 1.05 0.32 1.03 0.34 1.04 0.34 1.03 0.31

09 0.87 0.27 0.93 0.29 0.95 0.32 0.85 0.32 0.84 0.27

10 0.60 0.27 0.67 0.32 0.60 0.27 0.59 0.29 0.56 0.26

Table 3: Results on Apollo datasets, translation errors t (%) and rotation errors r (deg/100m). B, B+S, B+G and B+G+S are

compared below.

Sequences
B (ORB-SLAM2)

t r

B+G

t r

B+S

t r

B+G+S

t r

17 26 33.03 14.36 22.48 4.18 23.85 4.16 22.44 3.46

17 23 22.69 3.98 24.02 5.30 25.92 7.45 20.49 0.77

17 05 18.75 4.53 16.63 3.48 18.41 6.00 17.77 4.77

16 3A A2 15 36.50 14.06 30.79 6.35 25.91 6.84 26.13 6.16

16 3A A2 19 20.07 1.98 21.75 2.28 21.45 2.18 20.09 1.02

16 2E D2 06 32.19 8.64 25.27 6.86 26.66 8.86 24.85 6.16

16 2E D2 10 27.94 4.06 19.21 2.12 27.18 4.34 19.71 2.61

16 2E D2 23 19.46 1.04 19.00 1.78 20.03 1.8 18.87 1.10

16 2E D2 26 17.95 1.38 17.96 2.26 18.55 1.54 17.89 1.21

15 03 22.58 6.43 24.94 6.18 24.61 17.36 23.15 6.12

Table 4: Timing evaluation the proposed B +G+ S.

Feature Scene Flow Geometric Pose

Module extraction Computation Clustering Fusion Estimation

Time (ms) 19 7.11 5.42 5.18 21.5

16 3A A2 15. However, in sequence 15 03, the rotation er-

rors of the proposed-SLAM are slightly higher. This is due

to highly incorrect semantic labels in certain frames, where

some vehicles are classified as static background and hence

even the fusion approach could not remove corresponding

moving outliers. Overall, the proposed (B+G+S) errors de-

creased by 12.8% in translation and 33.1% in rotation errors

compared to ORB-SLAM2.

4.4.1 Timing Evaluation

The timing results of the proposed B+G+S are shown in

Table 4 on Intel-Xeon CPU@3.50GHz 6 cores. The base-

line B takes 53 ms, whereas the proposed B +G+ S takes

57.24 ms. This includes additional moving feature removal

time (16.74 ms), but, since more accurate and smaller num-

ber of features are used, the computation time of pose es-

timation is reduced by 12.5 ms compared to B, leading to

minor increase in the overall timing. The average computa-

tion time for semantic segmentation is 29.15 ms, which run

in a parallel thread on Nvidia GeForce GTX1080 Ti GPU.

This semantic output is used by fusion module (Fig. 1).

5. Conclusion

We proposed a technique to enhance the robustness of

vSLAM in a highly dynamic environment by accurately re-

moving features on moving objects. This increases the ro-

bustness of maximum consensus based outlier removal in

dynamic scenes as the necessary condition for outlier re-

moval is now satisfied. The proposed technique is based

on the fusion of semantic and geometric information to

detect moving regions. Our ablation study highlights the

importance of distinguishing between motion states of po-

tential moving objects for vSLAM in highly dynamic en-

vironments. To demonstrate the effectiveness of the pro-

posed technique, experiments were conducted on challeng-

ing datasets, i.e. TUM, KITTI and Apollo. The results show

that the proposed vSLAM outperforms DS-SLAM, Detect-

SLAM, DynaSLAM and ORB-SLAM2 in various scenar-

ios.

6. Acknowledgement

We thank Dr. Shitala Prasad (Nanyang Technological
University) for useful insights in doing clustering.

2771



References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. IEEE transactions on pattern analysis and

machine intelligence, 39(12):2481–2495, 2017.

[2] B. Bescos, J. M. Fcil, J. Civera, and J. Neira. Dy-

naslam: Tracking, mapping, and inpainting in dynamic

scenes. IEEE Robotics and Automation Letters, 3(4):4076–

4083, Oct 2018.

[3] D. Chekhlov, A. P. Gee, A. Calway, and W. Mayol-Cuevas.

Ninja on a plane: Automatic discovery of physical planes for

augmented reality using visual slam. In Proceedings of the

2007 6th IEEE and ACM International Symposium on Mixed

and Augmented Reality, pages 1–4. IEEE Computer Society,

2007.

[4] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.

Monoslam: Real-time single camera slam. IEEE Transac-

tions on Pattern Analysis & Machine Intelligence, (6):1052–

1067, 2007.

[5] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic the-

ory of pattern recognition, volume 31. Springer Science &

Business Media, 2013.

[6] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-

gorithm, theory, and applications. IEEE transactions on pat-

tern analysis and machine intelligence, 35(11):2765–2781,

2013.

[7] J. Engel, J. Stckler, and D. Cremers. Large-scale direct

slam with stereo cameras. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages

1935–1942, Sept 2015.

[8] Y. Fang and B. Dai. An improved moving target detecting

and tracking based on optical flow technique and kalman fil-

ter. In 2009 4th International Conference on Computer Sci-

ence & Education, pages 1197–1202. IEEE, 2009.

[9] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: A paradigm for model fitting with applications to im-

age analysis and automated cartography. Commun. ACM,

24(6):381–395, June 1981.

[10] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-

direct monocular visual odometry. In 2014 IEEE Inter-

national Conference on Robotics and Automation (ICRA),

pages 15–22, May 2014.

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[12] A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d

reconstruction in real-time. In 2011 IEEE Intelligent Vehicles

Symposium (IV), pages 963–968, June 2011.

[13] B. K. Horn and B. G. Schunck. Determining optical flow.

Artificial intelligence, 17(1-3):185–203, 1981.

[14] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang,

Y. Lin, and R. Yang. The apolloscape dataset for autonomous

driving. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops, pages 954–

960, 2018.

[15] M. Jaimez, M. Souiai, J. Stückler, J. Gonzalez-Jimenez, and

D. Cremers. Motion cooperation: Smooth piece-wise rigid

scene flow from rgb-d images. In 2015 International Con-

ference on 3D Vision, pages 64–72. IEEE, 2015.

[16] K. M. Judd, J. D. Gammell, and P. Newman. Multimotion

visual odometry (mvo): Simultaneous estimation of camera

and third-party motions. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages

3949–3956. IEEE, 2018.

[17] M. Kaneko, K. Iwami, T. Ogawa, T. Yamasaki, and

K. Aizawa. Mask-slam: Robust feature-based monocular

slam by masking using semantic segmentation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 258–266, 2018.

[18] P. Lenz, J. Ziegler, A. Geiger, and M. Roser. Sparse scene

flow segmentation for moving object detection in urban en-

vironments. In 2011 IEEE Intelligent Vehicles Symposium

(IV), pages 926–932. IEEE, 2011.

[19] K.-N. Lianos, J. L. Schonberger, M. Pollefeys, and T. Sattler.

Vso: Visual semantic odometry. In Proceedings of the Eu-

ropean conference on computer vision (ECCV), pages 234–

250, 2018.

[20] R. Mur-Artal and J. D. Tards. Orb-slam2: An open-source

slam system for monocular, stereo, and rgb-d cameras. IEEE

Transactions on Robotics, 33(5):1255–1262, Oct 2017.

[21] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:

Dense tracking and mapping in real-time. In 2011 Inter-

national Conference on Computer Vision, pages 2320–2327,

Nov 2011.

[22] D. Nistér. Preemptive ransac for live structure and motion es-

timation. Machine Vision and Applications, 16(5):321–329,

Dec 2005.

[23] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and
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