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Abstract

Recently CNN-centric object tracking methods have

been gaining tremendous success in ground-view videos,

however, it remains hard to cope with vehicle tracking

in unmanned aerial vehicle (UAV) videos. The key diffi-

culties mainly stem from lacking large-scale well-labeled

training datasets and view-invariant appearance model for

fast-moving drone-view vehicles. We enhance the vehicle’s

cross-view feature by exploring relations between the piv-

otal context and the target to facilitate unsupervised vehicle

tracking. The relation is modeled as the relevance of the

target and its contextual regions in the tracking task. Specif-

ically, we propose a contextual relation actor-critic (CRAC)

framework integrates an actor-critic agent with a dual GAN

learning mechanism, which aims to dynamically search the

related contextual regions and transfer the relations from

ground-view to drone-view videos while retaining the dis-

criminative features. We demonstrate that CRAC could be

applied to several state-of-the-art trackers by extensive ex-

periments and ablation studies on four public benchmarks.

All the experiments confirm that, our CRAC can improve the

performance of state-of-the-art methods in terms of accura-

cy, robustness, and versatility.

1. Introduction and Motivation

With the built-in advantages of high mobility and flex-

ibility, UAVs/drones are becoming more prominent in se-

curity surveillance and rescue-relevant applications in re-

cent years. Drone-view videos can capture large-scale

scene information more efficiently and conveniently than
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Figure 1. Contextual relations are stable across views. For exam-

ple, vehicles are more likely to appear on the road instead on the

tree. Red indicates the relations in KITTI dataset and yellow indi-

cates the relations in Drone2018 dataset.

the ground-view ones. Despite the widespread tracking

algorithms/techniques in computer vision field, it remains

a challenging task for the accurate tracking in drone-view

videos.

Two significant challenges hinder the drone-view track-

ing. First, the drone-view videos unavoidably leads to large-

ly changed vehicle appearances compared to the ground-

view videos due to different camera angles, relative veloc-

ity, and the intermittent top-view occlusions. Second, the

common obstacle for the deep learning methods is the heavy

dependence on a large amount of labeled data. However,

it is impossible to collect training datasets for all possi-

ble types of scenarios and vehicles. Besides, deep learning

methods pre-trained on existing vehicle datasets are hard to

be directly adapted to new scenario.

To alleviate, unsupervised tracking methods are pro-

posed, which aims to continuously identify and locate the

targeted vehicles without well annotated videos. Exist-

ing unsupervised transferring methods provide a viable ap-

proach for nature image recognition and segmentation [33,

23, 10], but the large appearance variation from ground

view to drone view makes it extremely hard to define u-

niversal features across different views, thus new improve-

ments are in urgent demand for the unsupervised cross-view

transfer learning.

In terms of the largely changed appearance, the relation

built on the target and surrounding regions provides clues
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Figure 2. The contextual relations of CRAC. Green boxes: con-

text window. Red boxes: predicted target boxes. (1) Enlarge: the

actions tend to find more clues in neighboring regions (e.g., trees,

traffic lanes); (2) Shrink: the actions tend to remove the confus-

ing and noisy parts in neighboring regions (e.g., occlusions, other

vehicles); (3) Terminate: the current context is good enough to

achieve good performance.

for the partially occluded parts and largely changed appear-

ance (e.g., road and trees deformation), as shown in Fig. 1.

Furthermore, the tracking task is to learn a discriminative

boundary between target and background. Therefore, the

relation between target and its neighboring context is the

essential element for tracking network. Existing trackers

rarely model the contextual relations due to the uncertainty

and complexity of the moving target. Instead, we model the

contextual relations as the relevance between contextual re-

gion and tracking target. The relation is affected by the size

of the contextual regions around the target: too small size

of contextual region around the currently predicted location

can not provide sufficient appearance clues, too large size of

contextual region may bring the noisy clues irrelevant with

the tracking task (in Fig. 2). Therefore, we dynamically de-

rive the size with an actor-critic agent under the guidance of

the tracking performance.

In terms of tracking the never-before-seen drone-view

vehicles without dense annotations, we find the contextu-

al relations are more universal than single objects’ appear-

ance features across views (e.g., low resolution, aspect ra-

tion changes). As shown in Fig. 1, even though the ob-

ject scales and views are totally different in the KITTI and

Drone2018 datasets, the involved vehicle-background rela-

tions appear to be stable in different views. Hence, to better

adapt to the drone views, we propose a dual GAN learning

mechanism consisting of a tracking-guided CycleGAN [38]

(T-GAN) and an attention GAN (A-GAN). This mechanism

bridges the gaps of appearance from drone view to ground

view. Enabled by this new mechanism, the contextual re-

lations are transferred by T-GAN, and further refined from

local contextual region to global image range by A-GAN.

The salient contributions of this paper can be summarized

as follows.

• We propose to efficiently model the contextual relation

as the relevance between the target and its contextu-

al regions. We further design an actor-critic agent to

dynamically make decisions on contextual relation for

the certain vehicle target to the largely changed appear-

ance feature across views.

• We propose a dual generative adversarial (GAN) learn-

ing mechanism to transfer the contextual relations

across views, which is dedicated to the effective trans-

fer of cross-view appearance features and refine it with

the generated attention map from local to global.

• We propose a unified contextual relation actor-critic

(CRAC) framework to seamlessly integrate the dynam-

ic context search with the dual GAN transfer. The

framework makes the actor-critic agent interactively

update the feedback from the dual GANs embedded

tracking network in an unsupervised way.

2. Brief Background Review

Visual Tracking. Visual tracking has undergone exten-

sive studies over several decades.

Some state-of-the-art trackers [13] train the tracking task

as a binary classification on a discriminative boundary be-

tween the tracking target and its background, which is re-

ferred as tracking-by-detection, such as MDNET [21], FC-

NT [34], VITAL [29]. Some recent works [37, 30, 24, 3, 12]

attempt to utilize the reinforcement learning to locate the

tracking target. However, this kind of methods need numer-

ous proposals, which leads to high computation cost.

Recently, to speed up the trackers, , siamese networks

based approaches have been introduced. Instead of learning

a discriminative classifier online, the idea is to train (offline)

a similarity function on pairs of video frames [31, 7]. Evo-

lutions of the fully-convolutional siamese networks based

approaches considerably improved tracking performance by

making use of region proposals [16], and augmentating the

positive samples [40]. The advantage of this kind of meth-

ods is high speed. However, the domain specific informa-

tion is not used, performance of these methods is not always

as good as tracking-by-detection based methods. Mean-

while, some correlation filters based methods are proposed,

such as, MOSSE [1], CREST [28], MCCT [35]. However,

these trackers have difficulties in obtaining a balance be-

tween the performance and speed.

Most existing methods are dependent on large scale of

training datasets (e.g.,VID [25]). Hence, they can not be

directly used to unsupervised drone-view vehicles.

Relation Modeling. Previous works tend to model the

object relations as a post-processing by hand craft features.

For example, DPM [5] modeled the relations between t-

wo objects as the co-occurrence probability by utilizing the

hand craft features. Recently, Hu et al. [11] exploit the

1708



Actions

Cross-View Contextual Relation Transfer

FC

Contextual Relation Search 

Contextual 

Relation 

Transfer
Ground ViewUAV View

A-GAN

Actions

Context-Critic Network

Context-Search Network

Actor-Critic Agent
Contextual 

Relation

Tracking 

Result

Vehicles Context

Input

SampleT-GAN

Dual GAN Learning Mechanism

Tracking net

Q value

Contextual Relation Actor-Critic Framework (CRAC)

Figure 3. The architecture of our CRAC. It includes two components: (1) Contextual relation search; and (2) Cross-view contextual

relation transfer. Within the actor-critic agent, the context-search network outputs coarse contextual regions for the tracking network, and

the context-critic network evaluates the action set and feeds the Q value back to iteratively improve possible actions. Within the tracking

network, the (improved) context is used to generate ground-view samples for UAV adaption, and A-GAN refines the critical regions via

attention maps. ‘⊗’ denotes the Hadamard product.

relations during learning process. Motivated by the two

works, we propose to learn the relations modeled as the co-

occurrence probability in a dynamic way to facilitate the

tracking performance. However, for deep learning based

trackers, there is no significant improvement in object rela-

tion representation, due to the complex relations are hard to

be directly modeled. Hence, we propose to learn the pol-

icy for searching the contextual relations, which does not

rely on the labeled relation dataset and can be adaptively

fit for the specific target. On the other hand, reinforcement

learning is a principled paradigm to solve the policy learn-

ing problem in general vision tasks, and achieves remark-

able success in the tasks that need interact with the envi-

ronment [8, 36, 15]. Motivated by the interaction cropping

method [18], which determines the boxes around the target,

we propose to search the context adaptively using reinforce-

ment learning.

Cross-View Domain Adaption. Most recent work-

s [33, 23, 10] utilize GAN mechanism to conduct domain

adaption tasks. Sankaranarayanan et al. [26] proposed to

generate source-like samples with classification constraints

to make the learned embedding domain adaptive. Different

from the previous works that transfer the sample’s appear-

ance features or styles, our new approach tends to trans-

fer the relation across views. Hence, we propose a dual

GAN learning mechanism to firstly generate the dataset lev-

el cross-view sample in local, then refine it by an attention

map in global range.

3. CRAC Framework

To transfer the cross-view appearance features, we mod-

el the relations as the view invariant contextual regions.

Specifically, given an input frame I with a single target ve-

hicle region bbv , we define a pair-wise relation between ve-

hicle region bbv and its surrounding contextual region bbc.

To use contextual relations, we need to define the rel-

evance to evaluate how much the contextual regions could

benefit the target vehicle’s tracking performance. We direct-

ly evaluate the tracking score output from tracking network

g for each bbc, which shows the contextual relations with

the target. The relation R is defined as:

R(I) = g(bbv, bbc). (1)

Here the relevance is higher, when the tracking performance

is better. Furthermore, the relations are always changing

even for the same target. To obtain a specific contextual

relation for each vehicle target, we propose to search it with

reinforcement learning framework.

To improve the unsupervised drone-view tracking per-

formance, we propose to fully and effectively utilize the

well-labeled ground-view datasets, which involves two sub-

tasks: (1) training an actor-critic agent to find the view in-

variant contextual relations for providing the context clues

from neighboring locations in drone view (detailed in Sec-

tion 4), and (2) transferring the ground-view tracking mod-

el to adapt for the drone-view videos by generating drone-

view samples with context and generating the attention map

of the contextual relations (detailed in Section 5). The entire

pipeline of this framework is highlighted in Fig. 3. Our pro-
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Figure 4. Actor-Critic Agent.

posed contextual relation actor-critic (CRAC) framework

jointly trains the actor-critic agent and the dual GAN by

maximizing the accumulated rewards from tracking task,

allowing the two networks cooperatively determine the con-

textual relations.

4. Contextual Relation Search

We search the contextual relations with an actor-critic

agent, which consists of a context-search network π and a

context-critic network V .

The actor-critic agent interacts with the environment,

and takes a series of actions at at each step t, to optimize the

context transferring policies with the reward from the track-

ing environment. The flow chart of the learning process

is illustrated in Fig. 4. The context-search network firstly

receives observations from image I in state, thereafter, it

executes the sampled action at to dynamically search the

contextual relation R. After that, the context-critic net-

work provides Q value according to the tracking score of the

newly-generated images. The context-critic network gets

the reward according to the tracking score in environment

(drone-view tracking).

The basic data flow (input image and contextual relation-

s search actions, etc.) is embedded as ‘state’ in this actor-

critic agent. The state st of the actor-critic agent is repre-

sented as a tuple st = (It, rt, ht), of which, ht is a vector

recording the history of the selected actions. The history

vector ht keeps track of the past 4 iterative actions at ∈ ht.

The current RGB image is It ∈ R
w×h×3, and the reward rt

is obtained from the tracking network.

4.1. ContextSearch Network

Context-search network π aims to determine the window

size of the related contextual region around the tracking tar-

get, t indicates the iteration times of the actor-critic agent.

Meanwhile, the context-critic network enforces π to search

the proper contextual relations benefitting the performance

in drone-view tracking.

Context-Search Action. In our framework, we design 3

spatial actions at ∈ A = {enlarge, shrink, terminate}. The

‘enlarge’ action changes the current windows size of the

contextual region by a factor of 0.2, while ‘shrink’ changes

it by 0.1. The ‘terminate’ action will terminate the cur-

rent episode. Otherwise, the agent will continue to search

more context clues until it reaches the preset maximum it-

eration number tmax. The action at is expected to reduce

T

T+4

a0 a1 a2 a3 a4 a5

Start Enlarge Enlarge Shrink Shrink Terminate

T T T T T

T+4 T+4 T+4 T+4 T+4

Figure 5. Example sequences of actions taken to adjust the window

size. Green circles denote the related context. Red ones denote the

irrelevant context.

the uncertainty of localizing the target, and allows the agent

to postpone decision (i.e., after obtaining the feedback of

performance from the tracking network) when the current

context is ambiguous. Fig. 5 exemplifies the case that both

noisy and distinct clues exist around the target in a cluttered

background. The agent decides whether to enlarge the con-

text window to obtain contextual clues or shrink to remove

the noises.

Context-Search Network. Given a single image I in

arbitrary view, the context-search network π should deter-

mine the actions at. Ideally, there should be two policy

learning processes for context search in two different views.

However, we assume that the contextual relation search pro-

cesses in different views have the consistent searching ac-

tions. Therefore, we simplify the context search actions of

both drone and ground views into a single network, the ac-

tions are separately evaluated by the context-critic network.

More concretely, the context-search network π uses a Vanil-

la residual network [9] as the backbone network. The last

layer of the context-search network is a 3-way softmax in

corresponding to 3 actions.

4.2. ContextCritic Network

The context-critic network evaluates actions from the

context-search network. The key components include the

reward function definition, and the structure of context-

critic network. We detail the two components as follows.

Reward of CRAC. The reward function is defined based

on the tracking score of network T (value is T (; θT )).
Based on Eq. 1, the function g is instantiated by T . Hence,

st is updated as the Rt dependent state st = (Rt, rt, at)
(which is estimated by A-GAN). We define the reward func-

tion of the CRAC as:

rt =

{

α · sign[T (st; θT )− T (st+1; θT )] if at 6=terminate,

sign[ǫ− T (st; θT ] otherwise.

(2)

Here the reward rt is independent of the predicted track-

ing results, which indicates the gain of the tracking score at

t-th time, ǫ is a threshold to discriminate whether the per-

formance gain compared with the performance in last time

is sufficient or not. The scale factor α and the threshold ǫ

are set to 0.1 and 0.05 empirically. Eq. 2 indicates that the
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agent receives a positive reward when the predicted action

improves the tracking score from the last fully connected

layer, and receives a penalty when it decreases the perfor-

mance. If the agent chooses to terminate the process, the

final tracking prediction must be good enough, otherwise, it

would receive a large penalty. Therefore, the reward encour-

ages the predicted contextual relations to benefit the track-

ing performance.

Context-Critic Network. As for the context-critic net-

work V (shown in Fig. 3), we propose to approximate the

Q value via a convolutional neural network, which has one

scalar output approximating the Q value, with all convo-

lution layers sharing the same structures with the context-

search network π. More concretely, the context-critic net-

work π uses a Vanilla residual network [9] as the backbone

network. The last layer of the context-search network is a

scalar in corresponding to Q value.

Optimization of Contextual Relation Search. We ul-

tize a variant of asynchronous advantage actor-critic (A3C)

algorithm proposed in [17] to optimize our CRAC frame-

work. Under the framework of reinforcement learning, the

goal of the contextual relation search is to maximize its ex-

pected reward over all the images. The objective function is

formulated as:

R(at, st) = E[
1

N

N
∑

i=1

tmax
∑

t=0

γtrit(st, π(st; θ))]. (3)

Here γ is a discount factor, which controls the effect of the

state in a long iteration times, rt is the immediate reward

based on the current state st, N is the total actions number,

and t denotes the t-th iteration step, θ denotes the param-

eter of π. By maximizing the expected rewards, the agent

learns the best policy to take actions and can explicitly bal-

ance accuracy (search for more clues in larger region) and

efficiency (stop early if have a high confidence value). We

use advantage function to compute the policy gradient. The

output of V at next state st+1 is the approximation of the

Rt+1 at st+1 and is used to update the agent’s parameters.

5. Cross-View Contextual Relation Transfer

To transfer the pre-trained model from the ground-view

dataset to the drone-view dataset, we propose to transfer

cross-view contextual relation with a dual GAN mecha-

nism, including the tracking-guided GAN (T-GAN) and

context attention GAN (A-GAN). The first tracking-guided

GAN (T-GAN) generates the drone-view samples preserv-

ing the local discriminative features, and the second con-

text attention GAN (A-GAN) generates the attention map

to capture the global critical contextual relations. By trans-

ferring the cross-view contextual relations, we can adapt the

ground-view pre-trained model to adapt for the drone-view

videos. We describe the cross-view transfer schemes: con-

textual relation generation and contextual relation attention

in details.

Contextual Relation Generation. As shown in Fig. 2,

first of all, we introduce the T-GAN to transfer drone-view

images, which preserves the discriminative appearance fea-

tures. We aim to transfer the new samples with the fol-

lowing characteristics: vehicles samples look like realistic

in different views; vehicles still have the discriminative fea-

ture with the background; vehicles have occlusions in drone

view, e.g., the trees and buildings in drone view.

However, we lack the paired samples satisfying the

above conditions. Considering huge ground-view datasets

and unlabeled drone-view datasets, we generate the sam-

ples cross different views by extending the CycleGAN at

the unpaired dataset level. Besides, to generate the samples

satisfying the multiple objectives, we abstract the multiple

objectives as a single objective that newly generated sam-

ple should improve the tracking performance. The loss of

T-GAN is further defined as:

L(T ) = Lcyc(Gdu, Gud) + LT (T (Gdu, Gud), bb). (4)

Here function Gdu(I; ) is applied to generate the input sam-

ples from ground-view set d to drone-view set u, bb de-

notes the ground truth bounding box of the tracking target

in the ground-view datasets (e.g., VOT), T denotes track-

ing network, Lt enforces the predicted box to be close with

the ground truth. During the training (testing) phase, the

loss LT simplifies the three requirements as a unified one.

Extended from CycleGAN [38], Lcyc tries to generate im-

ages that look similar to those in drone-view (ground-view)

dataset. The two objective losses are alternatively trained,

which generates realistic cross-view samples and preserves

the critical appearance features related to the object track-

ing.

Contextual Relation Attention. We observe that the

contextual relations provide global clues in distant portions

of the target. In fact, the relations can be further encod-

ed as the a more refined attention map compared with the

contextual regions. To this end, we propose attention GAN

(A-GAN) to estimate the attention map p of the contextual

relations between the target and its context conditioned on

ground-view relations. To enforce the attention map to cap-

ture the tracking-relevant features, we add A-GAN layers
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color map.

between high level semantic feature maps (resulted from

the convolution layers) and the classifier, which is in fact

one branch of fully-convolution layers after the last con-

volutional, as shown in Fig. 6. The objective loss of the

A-GAN network is defined as:

Latt =E[logD(p · F )] + E[log(1−D(Ga(F ) · F ))]

+ λE||Ga(F )− p||.
(5)

Here the (·) means the Hadamard product operation on the

feature maps F ∈ R
M×N×C extracted from the tracking

network T . The attention map p contains only one chan-

nel and has the same resolution with F . Discriminator D

(i.e, classifier in T ) enforces generated attention map to be

frame-specific for tracking networks. The adversarial train-

ing makes Ga (A-GAN) generate the attention maps which

are less frame-specific for training D. Therefore, D will

not be overfitting to the local related regions, instead, rely

on more robust global features (Fig. 7). Accordingly, Latt

provides the critical regions of the context and the target for

further classification.

6. Experiments and Evaluations

We conduct extensive experiments to demonstrate the

effectiveness of our CRAC framework, and compare it

with state-of-the-art trackers on the vehicle subsets of

Drone2018 [39], UAV123 [20], Drone Tracking Benchmark

(DTB) [19] and the large scale UAV-Vehicle [4]. We fur-

ther analyze the results on various challenge attributes in

Drone2018 dataset (e.g., occlusions, fast motion which ver-

ifies, etc.) to verify the robustness under complex condition-

s. All the experiments on the four datasets are conducted in

unsupervised manner.

Implementation Details. Actor-Critic Agent: we

initialize the context-search network with a pre-trained

Resnet50 model [9] and fine-tune the fully-connected layers

to output context operations. The discount factor γ for the

subsequent reward is set to 0.2.

Table 1. Ablation Studies Setting
Abbreviations T-GAN A-GAN Agent siamRPN MDNET

CRAC-mdnet-A ! ! !

CRAC-mdnet-G1 ! ! !

CRAC-mdnet-G2 ! ! !

CRAC-mdnet ! ! ! !

CRAC-siam-A ! ! !

CRAC-siam-G1 ! ! !

CRAC-siam-G2 ! ! !

CRAC-siam ! ! ! !

Dual GAN: during the offline training phase, we use the

ground-view KITTI dataset [6] and the Drone2018 datasets

without tracking annotations to train the T-GAN. A-GAN is

trained online with the pre-trained tracking network T . The

learning rate for training Ga and D in A-GAN are 10−3 and

10−4, respectively.

T network: tracking network T (st; θT ) is extended

from the network structure of MDNET [21]. We refer it as

‘CRAC-mdnet’. The tracking network T is offline trained

based on the VOT13-15 datasets [14] excluding the vehicles

in drone view. With the pre-trained T-GAN, we employ the

offline trained network T for the online tracking. During

the online tracking phase, we fine-tune the the A-GAN em-

bedded tracking network T with the annotations of the first

frame, and conduct tracking in the subsequential frames.

To validate our CRAC framework’s generalization abil-

ity on different T networks, we utilize the SiamRPN [31]

as the T network. The pre-trained network is trained on

VOT13-15 datasets [14], we refer it as ‘CRAC-siam’.

Evaluation Metrics. To fairly compare with the pre-

vious works, our backbone feature extractor is based on the

first three convolutional layers from the VGGM model [27],

as that in [29]. Besides, our CRAC is implemented using

the Pytorch library and MatConvNet toolbox [32]. We fol-

low the standard evaluation approaches. In the Drone2018,

UAV123, DTB, and UAV-Vehicle datasets, we use the one-

pass evaluation (OPE) with ‘precision’ and ‘success plots’

metrics. The precision metric measures the frame locations

rate, that is within a certain threshold distance w.r.t ground

truth locations. The error threshold of 20 pixels is used

for ranking. The success plot metric is set to measure the

overlap ratio between the predicted bounding boxes and the

ground truth.

Ablation Studies. To verify the contribution of each

component in our method, we evaluate several configura-

tions of our approach. The effectiveness of four key ele-

ments of our CRAC framework is evaluated on Drone2018

dataset: including T network (MDNET or SiamRPN), T-

GAN, A-GAN, Actor-Critic Agent (agent), which are de-

scribed in Tab. 1. The performance is shown in Fig. 11.

The performances of all the incomplete configurations

are not as good as the full configuration of our CRAC-

mdnet (CRAC-siam), and each component in our tracking

algorithm is helpful to improve performance. The learned

attention map contributes most, which improves CRAC-
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Figure 8. Comparison over the challenging cases for the drone-view tracking, including background clutter, aspect ration change, camera

motion, etc.
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Figure 9. Performance comparison with state-of-the-art methods

on Drone2018 (1st row), merged UAV123, DTB (2nd row) and

UAV-Vehicle (3rd row) dataset.

mdnet from 66.7 to 72.8 in precision plots. This is because

that attention map tends to flexibly leverage more reliable

clues provided by contextual relations. It can be concluded

that, the relations refined by attention map from our CRAC

framework can benefit the tracking task in drone view.

Further, CRAC-mdnet and CRAC-siam networks im-

prove the MDNET and siamRPN networks by 4.4 and 2.6

in precision plots, which verifies the generalization ability

of different T networks.

Night Night Tiny Scale Motion

Motion Motion Motion Occlusion

Occlusion Aspect Ratio Change Tiny Scale Occlusion

Figure 10. Analysis of the performance under occlusions, motion,

tiny scale targets, etc. The results demonstrate our CRAC is robust

to these hard cases. (Same legend with the Fig. 9, yellow box

denotes ground truth.)

We also evaluate the convergence performance of our

CRAC in different iteration times: 20, 50, 80, 100 (de-

noted as CRAC2, CRAC5, CRAC8 and CRAC10), the per-

formance is stable and the 80-iteration case performs best,

which is denoted as CRAC-mdnet.

Besides, to evaluate the contribution of training on KIT-

TI dataset, we also conduct tracking in the vehicle sub-

set of KITTI with the MDNET (SiamRPN) offline train-

ing, denoted as CRAC-siam-offline (CRAC-mdnet-offline),

which demonstrates that the trackers trained on ground-

view dataset will not perform well when directly used to

drone-view, and it is significant that CRAC can transfer the

contextual relations across views.

Comparison with State-of-the-Art Methods. We com-

pare our CRAC-mdnet (CRAC-siam) with 10 state-of-the-

art trackers, including MDNET [21], VITAL [29], ACT [2],

ADNET [37], STRCF [18], meta-crest and meta-sdnet [22],

SiamFC [31], SiamRPN [31], and MCCT [35]. We eval-

uate all the trackers on 122 testing video sequences from

the drone-view datasets with distance precision and overlap
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Figure 11. Ablations studies on Drone2018 dataset, setting is in

Tab. 1.

success metrics. Fig. 9 shows that our CRAC model out-

performs other methods in precision and success plots on

Drone2018 (50 sequences), DTB (7 sequences), UAV123

(17 sequences), UAV-Vehicle (48 sequences, S1302 and

S1310 are excluded) datasets. We merge the vehicle se-

quences in DTB and UAV123 to simplify the performance

comparison.

Compared to the representative tracking-by-detection

trackers (MDNET and VITAL), we attribute our perfor-

mance improvement to the generated drone-view contextu-

al relations, which facilitates training robust classifiers. On

most of the never-before-seen sequences, other trackers fail

to locate the target objects or estimate the scale incorrect-

ly. Our CRAC-mdnet (CRAC-siam) improves the perfor-

mance, which bridges the gap between sample generation

and online (offline) tracking.

Compared with the state-of-art correlation filter based

trackers (e.g., meta-crest, MCCT), our CRAC-mdnet

(CRAC-siam) tracker emphasizes the most robust features

provided by the contextual relations and performs better.

The reinforcement learning scheme makes bounding box

search be adaptive with the features. Compared with the

previous reinforcement learning methods, such as ACT [2],

ADNET [37], our CRAC-mdnet (CRAC-siam) can trans-

fer the target-related contextual relations. Therefore, our

CRAC-mdnet (CRAC-siam) outperforms the second and

third high-performance works by a large margin on all of the

four datasets, e.g., on the Drone2018 dataset, CRAC-mdnet

(CRAC-siam) respectively gains 72.8-70.2 (66.4-65.6) and

72.8-69.7 (66.4-48.9) precision improvement w.r.t the two

high-performance trackers.

Besides, our CRAC-siam network has a high speed com-

pared with the corresponding baseline trackers. The perfor-

mance and speed are shown in Fig. 12

Evaluations Under Challenging Conditions. Drone-

view vehicle tracking may confront with challenging con-

ditions, such as the sudden high-speed camera motion, par-

tial/full occlusion, background clutter, etc. We quantita-

tively evaluate the robustness of our CRAC-mdnet (CRAC-

siam) on 8 kinds of challenging cases with other state-of-

the-art methods. The results are shown in Fig. 8. Our

CRAC-mdnet (CRAC-siam) can well handle the large ap-

pearance variations caused by aspect ratio change (defor-

mation), partial occlusion, view point change, etc. The d-
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Figure 12. Performance and speed of our trackers and some state-

of-the-art trackers on Drone2018 dataset. More closed to ‘top’

means higher precision, and more closed to ‘right’ means faster.

CRAC-siam-G2 ranks top 3 in EAO while keeps a high speed at

56 FPS.

ifficulties in these conditions can be relieved by transfer-

ring information from the ground-view datasets. It can be

concluded that, our CRAC-mdnet method benefits the fea-

ture extraction under the illumination variation condition,

gaining performance improvement from 71.7 (MDNET) to

79.1 in precision plots, and it also gives rise to a large im-

provement in the occlusion and camera motion conditions.

Fig. 10 shows some challenging cases improved by CRAC.

When the cameras have drift problem, sudden appearance

change makes other trackers lose the target completely in

a jump sequence, but our CRAC-mdnet (CRAC-siam) can

still track the target steadily. However, under the full oc-

clusion condition, both CRAC-mdnet and MDNET can not

perform as well as other cases. It is probable that their

online updating strategy will easily lose the original target

when the target is fully occluded. More examples are pro-

vided in our supplementary material.

7. Conclusions and Future Works

In this paper, we propose a novel CRAC framework by

transferring the contextual relations from ground-view to

drone-view scenes, which can reduce the dependence on

large-scale well-labeled dataset. The contextual relations

are dynamically modeled as the relevant contextual region-

s via an actor-critic agent, which can adaptively leverage

the contextual relations in tracking tasks, and enables the

tracking network to focus on the critical regions surround-

ing the tracking target. Meanwhile, we propose the dual

GAN learning mechanism to transmit the relations. Exten-

sive experiments on various benchmarks demonstrate that

our CRAC outperforms state-of-the-art trackers.

When the vehicles are fully sheltered from occlusions in

a long-term sequence, and there is a similar target in the

contextual regions, our CRAC will enforce the tracker to

locate on the wrong target. In future, we will add temporal

constraints to improve the performance. Besides, we will

apply our CRAC to more cross-view transferring tasks, such

as vehicle Re-ID and segmentation, etc.
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