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Abstract

Despite the significant advances in recent years, Gen-

erative Adversarial Networks (GANs) are still notoriously

hard to train. In this paper, we propose three novel cur-

riculum learning strategies for training GANs. All strate-

gies are first based on ranking the training images by their

difficulty scores, which are estimated by a state-of-the-art

image difficulty predictor. Our first strategy is to divide

images into gradually more difficult batches. Our second

strategy introduces a novel curriculum loss function for the

discriminator that takes into account the difficulty scores

of the real images. Our third strategy is based on sam-

pling from an evolving distribution, which favors the eas-

ier images during the initial training stages and gradually

converges to a uniform distribution, in which samples are

equally likely, regardless of difficulty. We compare our cur-

riculum learning strategies with the classic training proce-

dure on two tasks: image generation and image translation.

Our experiments indicate that all strategies provide faster

convergence and superior results. For example, our best

curriculum learning strategy applied on spectrally normal-

ized GANs (SNGANs) fooled human annotators in thinking

that generated CIFAR-like images are real in 25.0% of the

presented cases, while the SNGANs trained using the clas-

sic procedure fooled the annotators in only 18.4% cases.

Similarly, in image translation, the human annotators pre-

ferred the images produced by the Cycle-consistent GAN

(CycleGAN) trained using curriculum learning in 40.5%
cases and those produced by CycleGAN based on classic

training in only 19.8% cases, 39.7% cases being labeled as

ties.

1. Introduction

Generative Adversarial Networks (GANs) [11] represent

a hot topic in computer vision, drawing the attention of

many researchers who developed several improvements of

the standard architecture [1, 6, 14, 18, 24, 25, 28, 31, 32,

33, 40, 43]. Yet, this kind of neural models are still very

hard to train [27]. In this paper, we study the hypothe-

sis of improving the training process of GANs in terms of

both accuracy and time, by employing curriculum learn-

ing [3]. Curriculum learning is the process of training

machine learning models by presenting the training exam-

ples in a meaningful order which gradually illustrates more

complex concepts. Although many curriculum learning ap-

proaches [10, 12, 13, 17, 19, 23, 30, 42, 41, 44] have been

proposed for training deep neural networks, to our knowl-

edge, there are only a few studies that apply curriculum

learning to GANs [7, 9].

In this paper, we propose three novel curriculum learn-

ing strategies that provide faster convergence during GANs

training, as well as improved results. Our curriculum learn-

ing strategies are general enough to be applied to any GAN

architecture, as shown in Figure 1. They rely on a state-

of-the-art image difficulty predictor [17], which scores the

(real) training images with respect to the difficulty of solv-

ing a visual search task. After receiving the image difficulty

scores as input, we employ one of our curriculum learning

strategies listed below:

• Divide the training images into m easy-to-hard batches

and start training the GAN with the easy batch. The

other batches are added into the training process, in

increasing order of difficulty, after a certain number of

iterations.

• Add another component to the discriminator loss func-

tion which makes the loss value proportional to the

easiness (inverse difficulty) score of the images. The

impact of this new component is gradually attenuated,

until the easiness score has no more influence in the

last training iterations.

• Change the discriminator loss function by including

probabilities of sampling real images from a biased

distribution that strongly favors easier images during

the first training iterations. The probability distribu-

tion is continuously updated with each iteration, until

it becomes uniform in the last training iterations.

Our three curriculum learning strategies follow two im-

portant principles. First, we keep the easier images until

the end of the training process, to prevent catastrophic for-

getting [21, 26]. Second, we want all training examples to

receive equal importance in the end (when training is fin-

ished), as we have no reason to favor the easy or the difficult

images. However, during the initial stages of training, we

emphasize easier images in order to achieve faster conver-

gence and possibly a better local minimum.
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Figure 1. Our GAN training pipeline based on curriculum learning.

The real training images are passed to an image difficulty predic-

tor which provides a difficulty score for each image. A curriculum

learning strategy that takes into account the difficulty scores is em-

ployed to train the discriminator. Best viewed in color.

We perform image generation experiments using the

spectrally normalized GAN (SNGAN) model [29], and

image translation experiments using the Cycle-consistent

GAN (CycleGAN) model [45]. The goal of our experi-

ments is to compare the standard training process, in which

examples are presented in a random order, with the train-

ing process based on curriculum. The image generation

results on CIFAR-10 [22] indicate that all the proposed

curriculum learning strategies improve the Inception Score

(IS) [35] and the Fréchet Inception Distance (FID) [15]

over the state-of-the-art SNGAN model. Furthermore, we

conducted several human annotations studies, to determine

whether our generated or translated images are better than

those produced by the baselines SNGAN and CycleGAN,

respectively. Our best curriculum learning strategy fooled

human annotators in thinking that generated CIFAR-like

images are real in 25.0% of the presented cases (on av-

erage), while the SNGAN fooled the annotators in only

18.4% cases. This represents an absolute gain of 6.6%
over SNGAN. We obtain significant improvements in image

translation as well. For example, in the horse2zebra [45]

experiment, the human annotators opted for our method

in 52.5% of the presented cases and for the baseline Cy-

cleGAN in only 11.9% cases, 35.6% cases being labeled

as draws. This represents an absolute gain of 40.6% over

CycleGAN. We thus conclude that employing curriculum

learning for training GANs is useful.

We organize the rest of this paper as follows. In Sec-

tion 2, we present related works and how our approach is

different. In Section 3, we describe our curriculum learning

strategies for training GANs. We present the image gener-

ation and image translation experiments in Section 4. We

draw our conclusion and discuss future work in Section 5.

2. Related work

Generative Adversarial Networks. Generative Adversar-

ial Networks [11] are composed of two neural networks, a

generator and a discriminator, which are trained for gener-

ating new images, similar to those provided in a training

set. Since 2014, many variations of GANs have been pro-

posed in order to improve the quality of the generated sam-

ples [1, 6, 14, 18, 24, 25, 28, 31, 32, 33, 40, 43]. Mirza and

Osindero [28] introduced a conditional version of GANs,

termed CGAN, which is based on feeding label information

to both the generator and the discriminator. As CGAN, the

Auxiliary Classifier GAN (AC-GAN) [31] is a class con-

ditional model, which in addition, leverages side informa-

tion through an auxiliary decoder that is responsible for re-

constructing class labels. Deep convolutional GANs (DC-

GANs) [32] include a set of constraints to the architectural

topology of the classic GAN, to improve training stabil-

ity. Wasserstein GANs (WGANs) [1] use the Earth Mover

distance instead of other popular metrics to provide eas-

ier training, while lowering the chances of entering mode

collapse. Still, WGAN employs a weight clipping tech-

nique which can result in failure to converge and bad out-

puts. This problem is addressed in WGAN-GP (Wasserstein

GAN with Gradient Penalty) [14], where weight clipping is

replaced by gradient penalty, providing better performance

on different architectures. SNGAN [29] introduces spectral

normalization, another normalization technique used to sta-

bilize the training of the discriminator. Compared to the

other regularization methods, spectral normalization pro-

vides better results and lower computational costs.

CycleGAN [45] performs image translation without re-

quiring paired images to learn the mapping. Instead, it

learns the relevant features of two domains and how to

translate between these domains. It uses cycle consistency,

which encodes the idea that translating from one domain to

another and back again should take you back to the same

place. Choi et al. [6] introduced StarGAN, a conditional so-

lution that has the advantage of providing good results when

translating between more than two domains, using a single

discriminator and generator network.

Some studies [18, 33, 43] showed that providing addi-

tional information to a GAN model can result in perfor-

mance improvements in a wide range of common generative
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tasks. Similar to these approaches, we use an external diffi-

culty score, trying to constrain the order and the importance

of the training samples, in order to imitate the easy-to-hard

(curriculum) learning paradigm from humans.

Curriculum learning. Bengio et al. [3] studied easy-to-

hard strategies to train machine learning models, show-

ing that machines can also benefit from learning by grad-

ually adding more difficult examples. They introduced a

general formulation of the easy-to-hard training strategies

known as curriculum learning. In the past few years cur-

riculum learning has been applied to semi-supervised im-

age classification [10], language modelling [12], question

answering [12], object detection [38, 39, 42, 44], person re-

identification [41], weakly supervised object detection [17,

23]. Other works proposed refined techniques for improv-

ing neural network training components, e.g. dropout [30],

or training frameworks, e.g. teacher-student [19], using cur-

riculum learning. Ionescu et al. [17] considered an image

difficulty predictor trained on image difficulty scores pro-

duced by human annotators. Similar to Ionescu et al. [17],

we use an image difficulty predictor, but with a completely

different purpose, that of training GANs. In addition, we

explore several curriculum learning strategies that enable

end-to-end training by defining new curriculum loss func-

tions.

Curriculum GANs. To our knowledge, there are a just

few works that propose curriculum learning approaches for

training GANs [7, 9]. Doan et al. [7] introduced an adap-

tive curriculum learning strategy for training GANs, called

acGAN, which uses multiple discriminators with different

architectures of various depths. The authors proposed a re-

ward function that uses an online multi-armed bandit algo-

rithm. The reward function measures the progress made by

the generator and uses it to update the weights of each dis-

criminator, ensuring that the generator and the discrimina-

tors learn at the same pace. Different from the approach

of Doan et al. [7], we consider the difficulty of the train-

ing samples and propose strategies to train GANs gradually,

from the easy images to the hard ones. While the approach

of Doan et al. [7] uses multiple discriminators, increasing

the training time, our approach does not require any addi-

tional training time.

Ghasedi et al. [9] proposed ClusterGAN, an easy-to-

difficult approach for image clustering. ClusterGAN is an

unsupervised model composed of three elements: a gener-

ator, a discriminator and a clustering network. The sam-

ples are introduced gradually in the training, from the easy

ones to the hard ones. The values of the loss function are

used as difficulty scores for the corresponding image sam-

ples. Their curriculum learning strategy leads to good re-

sults when training clustering networks with large depth.

While Ghasedi et al. [9] study the problem of clustering im-

ages, we apply curriculum learning in order to generate or

translate images. Furthermore, we propose and study three

curriculum learning strategies instead of a single one.

3. Method

3.1. Preliminaries and notations

Generative Adversarial Networks [11] are composed of

two neural networks, the generator (G) and the discrimina-

tor (D), which are trained to compete against each other in

an adversarial game. The generator learns to generate im-

age samples from a Gaussian noise density pz , such that the

generated (fake) images (from the learned density pg) are

difficult to distinguish from real images for the discrimina-

tor. Meanwhile, the discriminator is trained to differenti-

ate between real images from a density pr and fake images

from the density pg learned by G. The two networks, G and

D, compete in a minimax game with the objective function

V (G,D) defined as follows:

V (G,D) = Ex∼pr
[l(D(x))]+Ez∼pz

[l(−D(G(z)))], (1)

where x is a real image sampled from the true data density

pr, z is the random noise vector sampled from the density

pz , and l is a loss function, e.g. cross-entropy [11] or Hinge

loss [29]. The goal of the generator G is to minimize this

error, while the goal of the discriminator D is to maximize

it. Hence, during training, we aim to optimize the objective

function as follows:

min
G

max
D

V (G,D). (2)

The two networks are alternatively trained until the gener-

ator learns the probability density function of the training

data pr, i.e. until pg ≈ pr.

3.2. Curriculum GANs based on image difficulty

While machines are commonly trained by presenting ex-

amples in a random order, humans learn new concepts by

organizing them in a meaningful order which gradually il-

lustrates higher complexity. To this end, Bengio et al. [3]

proposed curriculum learning for training machine learning

models, specifically neural networks, which are influenced

by the order in which the examples are presented during

training. Since deep neural networks are models that essen-

tially try to mimic the brain, it seems natural to also adopt

curriculum learning from humans [37]. We hypothesize that

a curriculum learning strategy for training GANs can bring

several benefits, e.g. faster convergence, improved stabil-

ity and superior results. To demonstrate our hypothesis we

explore three curriculum learning strategies that are generic

enough to be applied to any GAN architecture. In order

to learn in the increasing order of difficulty (from easy to

hard), we first need to apply an image difficulty predictor on

the training set of real images. This allows us to change the

distribution of the real images pr in order to introduce cur-

riculum when training the discriminator D. Since the gen-

erator G tries to learn a distribution pg that closely follows
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Figure 2. From left to right, images in increasing order of dif-

ficulty selected from CIFAR-10 [22], apple2orange [45] and

horse2zebra [45] data sets, respectively. Best viewed in color.

pr, G is implicitly influenced by the curriculum learning

strategy. Therefore, it is not necessary to apply the image

difficulty predictor on the generated images, saving the ad-

ditional training time. Moreover, the difficulty predictor

needs to be applied only once on the real images, before

starting to train the GANs. We next present the image diffi-

culty predictor and our three curriculum learning strategies.

Image difficulty prediction. Ionescu et al. [17] defined im-

age difficulty as the human response time for solving a vi-

sual search task, collecting corresponding difficulty scores

for the PASCAL VOC 2012 data set [8]. We follow the

approach proposed in [17] to build a state-of-the-art im-

age difficulty predictor. The model is based on concatenat-

ing deep features extracted from two Convolutional Neural

Networks (CNN), VGG-f [5] and VGG-verydeep-16 [36],

which are pre-trained on ImageNet [34]. We remove the

softmax layer of each CNN model and use the output of

the penultimate fully-connected layer, resulting in a fea-

ture vector of 4096 components. We divide each image into

1×1, 2×2 and 3×3 bins in order to obtain a pyramid repre-

sentation, which leads to performance improvements [17].

We concatenate the feature vectors corresponding to each

bin into a single vector corresponding to the entire image.

We L2-normalize the concatenated feature vectors before

training a ν-Support Vector Regression (ν-SVR) [4] model

to regress to the ground-truth difficulty scores provided for

PASCAL VOC 2012 [8]. We use the learned predictor P as

an image difficulty scoring function that provides difficulty

scores on a continuous scale:

si =
P (xi)−minxj∈X{P (xj)}

maxxj∈X{P (xj)}
· 2− 1, (3)

where si is the difficulty score for the image xi in a set of

images X = {x1, x2, ..., xn}, where n = |X|. Eq. (3) maps

the predicted difficulty scores for the set X to the interval

[−1, 1]. Our predictor attains a Kendall’s τ correlation co-

efficient of 0.471 on the same test set of [17]. In Figure 2,

we present images in increasing order of difficulty from the

data sets considered in our experiments from Section 4.

Learning using image difficulty batches. Our first cur-

riculum learning strategy is based on dividing the real im-

ages into m equally-sized batches indexed from 1 to m, of

increasing difficulty, such that images in each batch i + 1
have higher difficulty scores than the images in the batch i,

∀i ∈ {1, 2, ...,m−1}. Thus, the first batch contains the eas-

iest images and the last batch contains the hardest ones. Af-

ter dividing the images into batches of increasing difficulty,

we start training the GANs using only images from the first

batch. After a fixed number of iterations, we include images

from the second batch into the training. This process con-

tinues until all m batches are included into the training. In

this way, the generator learns a progressively complex den-

sity pg . Since images in the former batches can be learned

faster (due to their easiness), we consider a smaller number

of iterations during the early training stages. The number of

iterations increases as more difficult batches are added.

Learning by weighting according to difficulty. Our sec-

ond curriculum learning strategy is based on integrating

the difficulty scores into the discriminator loss function,

by weighting the real images according to their difficulty

scores. In the first training iterations, we aim to provide

higher weights to the easy images and lower weights to the

difficult images. With each training iteration, the weights of

both easy and difficult images gradually converge to a sin-

gle value. The weights are computed using the following

scoring function wP :

wP (xi, t) = 1− k · si · e
−γ·t, (4)

where xi is an image from the set of real images X , si is

the image difficulty score as in Eq. (3), t is the current train-

ing iteration index, γ is a parameter that controls how fast

the scores converge to the value 1 and k is a parameter that

controls the impact of the difficulty weights to the overall

loss value. Figure 3 illustrates the behavior of wP for vari-

ous easiness scores in the interval [0, 2]. In the first iteration

(when t = 0), the easiness scores are equal to 1 − s, for

k = 1. Note that in the last iterations all images have ba-

sically the same weight, regardless of their difficulty. By

including the scoring function wP from Eq. (4) into the ob-

jective function V defined in Eq. (1), we obtain a novel ob-

jective (loss) function V (1) based on curriculum learning,

defined as follows:

V (1)(G,D,P ) = Ex∼pr
[l(D(x)) + wP (x, t)]

+ Ez∼pz
[l(−D(G(z)))].

(5)

We note that when t approaches infinity, the objective func-
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Figure 3. Easiness scores between 0 and 2 converge to 1 as the

number of training iterations increases, by applying the scoring

function defined in Eq. (4) with k = 1 and γ = 5 · 10−5. Each

curve represents the evolution of the weight for a given image,

which starts with the weight equal to its easiness score (1 − s) at

the first iteration and ends with a weight equal to 1, regardless of

its initial easiness score. Best viewed in color.

tion V (1) converges asymptotically to V + 1, i.e.:

lim
t→∞

V (1)(G,D,P ) = V (G,D) + 1. (6)

This can be immediately demonstrated by considering that:

lim
t→∞

wP (x, t) = lim
t→∞

1− k · s · e−γ·t = 1. (7)

Learning by sampling according to difficulty. Our third

curriculum learning strategy is based on changing the prob-

ability density function of the real images pr, by multiply-

ing it with another probability density function that is pro-

portional to wP defined in Eq. (4):

pr,wP
= pr · pwP

∝ wP (x, t). (8)

By including the novel density pr,wP
into the objective

function V defined in Eq. (1), we effectively obtain a novel

loss function V (2) based on curriculum learning, defined as

follows:

V (2)(G,D,P ) = Ex∼pr,wP
[l(D(x))]

+ Ez∼pz
[l(−D(G(z)))].

(9)

We use the weights wP (xi, t) to define a distribution

over the training images. We then sample training images

from this distribution during training. We define a discrete

random variable R with possible values associated to in-

dexes of images in the training set X , such that the proba-

bility Prob(R = i) of sampling an index for real image xi

from X is equal to the weight wP (xi, t) divided by the sum

of all weights, making all probabilities sum up to 1:

Prob(R = i) =
wP (xi, t)∑

xj∈X wP (xj , t)
, ∀i ∈ {1, ..., n}, (10)

where n = |X|. Consequently, easier images have a higher

chance of being sampled in the first learning iterations.

When k > 1 in Eq. (4), we need to add the constant k − 1
to each term in Eq. (10), i.e. we replace wP (x, t) with

wP (x, t) + k − 1, to obtain positive values. Towards the

end of the training process, as wP converges asymptotically

to 1 (see Eq. (7)), it becomes equally likely to sample an

easy or a difficult image, i.e.:

lim
wP→1

Prob(R = i) =
1

n
, ∀i ∈ {1, . . . , n}, (11)

where n = |X|. At the limit, pwP
converges to a uniform

density and pr,wP
becomes equal to pr.

Observation. V (2) can be seen as a continuous version of

our first curriculum learning approach, in which the prob-

ability of sampling a real image x from the set of training

images X is given by a step function, where the number of

steps is equal to the number of batches m.

4. Experiments

4.1. Data sets

We perform image generation experiments on the

CIFAR-10 data set [22]. It consists of 50000 color train im-

ages of 32 × 32 pixels, equally distributed into 10 classes:

airplane, automobile, bird, cat, deer, dog, frog, horse,

ship and truck. Our translation experiments include two

of the data sets used in [45]. Horse2zebra contains 939

horse images and 1177 zebra images downloaded from Im-

ageNet [34] using the keywords wild horse and zebra. Ap-

ple2orange has 996 apple images and 1020 orange images

from the same source, labeled with apple and navel orange.

All images are 256× 256 pixels in size.

4.2. Baselines, evaluation and parameter choices

Baselines. For the image generation experiments

on CIFAR-10, we employ a state-of-the-art baseline,

SNGAN [29], which is based on the Hinge loss. We con-

sider SNGAN as the most relevant baseline, since we use

it as starting point for our curriculum learning approaches.

However, we include additional models from the recent

literature, namely DCGAN [32], WGAN-GP [14], Paral-

lel Optimal Transport GAN (POT-GAN) [2] and Genera-

tive Latent Nearest Neighbors (GLANN) [16]. We also

include the results of the acGAN proposed by Doan et

al. [7], which uses adaptive curriculum. Since our cur-

riculum SNGAN-based models are unsupervised, we do

not compare with class conditional (supervised) baselines.

For the image translation experiments, we employ Cycle-

GAN [45] as baseline.

Evaluation metrics. Evaluating the quality and realism of

generated content as perceived by humans is not an easy

task. At this moment, there is no universally agreed metric

able to measure the outputs of GANs, each having its own

shortcomings. To automatically quantify the performance,

we use the Inception Score (IS) [35] and the Fréchet Incep-

tion Distance (FID) [15], which are computed over 10000
generated images (not used in the training process). The

reported scores are averaged over 5 runs. A higher IS or

a lower FID indicates higher performance. Along with the
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automatic metrics, we evaluate the results by asking humans

to annotate images, in order to determine if they prefer the

baseline GANs or our Curriculum-GANs (CuGANs).

Implementation details. In the image generation exper-

iments, we used the SNGAN implementation available

at https://github.com/watsonyanghx/GAN_

Lib_Tensorflow, which can reproduce the results

reported in [29]. The model is based on ResNet. We

trained the model for 80000 iterations using mini-batches

of 64 samples. We observed that the Inception Score

stabilizes much sooner (before 50000 iterations) using

the Adam optimizer [20]. The learning rate is 2 · 10−4.

For the first curriculum learning approach, we split the

training set in m = 3 batches, as Ionescu et al. [17]: an

easy batch, a medium batch, and a difficult batch. Each

batch contains the same number of samples. For the

second and the third curriculum learning approaches, we

set γ = 5 · 10−5, which is chosen with respect to the total

number of iterations (80000). We conducted preliminary

experiments to tune the other parameters. For the first

curriculum learning approach, we experimented with three

different numbers of iterations to train on the easy batch

(5000, 10000 and 15000), and another three numbers of

iterations to train on the easy and medium batches together

(15000, 20000 and 25000). We obtained slightly better

results for training on the easy batch for 15000 iterations,

and on both easy and medium batches for 25000 iterations.

The rest of the iterations (40000) include all three batches

in the training. For the second and the third curriculum

learning approaches, we conducted experiments with

k ∈ {1, 2, 4}. When we weight the training images with the

corresponding difficulty scores (as in Eq. (5)), we obtain

optimal results with k = 2. When we sample the training

images according to the difficulty scores (as in Eq. (9)), we

obtain optimal results with k = 4.

In the image translation experiments, we used the Cy-

cleGAN implementation available at https://github.

com/leehomyc/cyclegan-1. The model is trained

for 25000 iterations, using a mini-batch size of 8 samples.

As for SNGAN, we employ the Adam optimizer [20] with a

learning rate of 2·10−4. The weight of the cycle consistency

loss term in the full objective function is set to λ = 10, as in

the original paper [45]. We apply linear weight decay after

the first 12500 iterations. We compare the baseline Cycle-

GAN with the Curriculum-CycleGAN based on weighting

the training images with the corresponding difficulty scores,

since the weighting strategy provides the best FID score in

the image generation experiments on CIFAR-10. We did

not evaluate the other two curriculum learning approaches

to avoiding tripling the human annotation time and costs.

4.3. Image generation results

Faster convergence. In Figure 4, we present the evolution

of the Inception Scores for the standard SNGAN and three

Figure 4. Inception Scores (IS) of SNGAN (baseline) versus three

Curriculum-SNGAN models based on various curriculum learn-

ing strategies (batches, sampling, weighting), on CIFAR-10. The

scores are computed on generated images, not used in the training

process. Best viewed in color.

Method IS FID

DCGAN [32] 6.16± 0.07 71.07± 1.06
DCGAN (with ResNet)∗ [32] 6.64± 0.14 -

WGAN-GP∗ [29] 6.68± 0.06 40.20
WGAN-GP (with ResNet) [14] 7.86± 0.07 -

GLANN [16] - 46.50± 0.20
POT-GAN [2] 6.87± 0.04 32.50
acGAN [7] 6.22± 0.04 49.81± 0.23

SNGAN∗ [29] 8.22± 0.05 21.70± 0.21

Curriculum-SNGAN (batches) 8.46± 0.13 14.64± 0.31
Curriculum-SNGAN (weighting) 8.44± 0.11 14.41± 0.24
Curriculum-SNGAN (sampling) 8.51± 0.09 14.48± 0.26

Table 1. Inception Scores (IS) and Fréchet Inception Distances

(FID) on CIFAR-10. Several unsupervised GAN models [2, 7,

14, 16, 29, 32] are compared with our SNGAN-based approaches,

each employing a different curriculum learning strategy proposed

in this paper. The results marked with an asterisk are taken from

the SNGAN paper [29]. The results of acGAN are based on the

source code provided by Doan et al. [7]. The best IS (higher is bet-

ter) and the best FID (lower is better) scores are marked in bold.

other SNGAN versions, that are enhanced through one of

our curriculum learning strategies, on CIFAR-10. We note

that the performance of each model stabilizes after 50000

iterations. However, the curriculum-based models reach

higher IS values, right from the first iterations. This indi-

cates that the Curriculum-SNGANs converge faster than the

standard SNGAN. For instance, the Curriculum-SNGAN

based on sampling (corresponding to Eq. (9)) achieves

about the same IS value as the baseline SNGAN, in only

20000 iterations instead of 65000 iterations.

Superior results. In Table 1, we compare our Curriculum-

SNGANs with the standard SNGAN, as well as DC-

GAN [32], WGAN-GP [14], GLANN [16], POT-GAN [2]

and acGAN [7], on CIFAR-10. First, we note that SNGAN
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Figure 5. Most voted and least voted images from the set of 600 images labeled by human annotators. Images on each row are selected

from different subsets: real images, generated by SNGAN and generated by Curriculum-SNGAN with weighting. Best viewed in color.

A B C D E F G H I J Avg.

CIFAR-10 156 195 124 168 151 142 167 160 95 127 74.3%

SNGAN [29] 36 111 26 18 30 34 40 38 24 11 18.4%

Curriculum 48 123 27 27 39 60 67 58 28 23 25.0%

Table 2. Number of images voted as real by 10 human annotators

(identified by letters from A to J). The annotators were asked to la-

bel 600 images (200 real CIFAR-10 images, 200 images generated

by SNGAN and another 200 images generated by Curriculum-

SNGAN with weighting) as real or fake.

achieves the best results among all baselines, confirming

that SNGAN is indeed representative for the state-of-the-

art. We observe that all our curriculum learning strategies

can further boost the performance of SNGAN. When we

divide the images into easy-to-hard batches, we achieve an

IS of 8.46. The best IS score (8.51) is obtained when we

sample the train images according to difficulty. For an un-

supervised model, we believe that an IS of 8.51 is notewor-

thy. Furthermore, our improvements in terms of FID are

much higher than all baselines, even compared to the adap-

tive curriculum approach of Doan et al. [7]. While easy-

to-hard batches and sampling provide better IS values, we

observe that the Curriculum-SNGAN based on weighting

according to difficulty (corresponding to Eq. (5)) achieves

the best FID value (14.41). For this reason we choose this

curriculum learning strategy for the human evaluation ex-

periments.

We asked 10 human annotators to label images either

as real or fake. We provided the same set of 600 images

(presented in a random order) to each annotator. We ran-

domly selected 200 real CIFAR images, 200 images gener-

ated by SNGAN and 200 images generated by Curriculum-

SNGAN (weighting). The goal of the annotation study is

to determine the percentage of generated images that fool

Option H→Z Z→H A→O O→A Avg.

CycleGAN [45] 11.9% 13.9% 20.6% 32.7% 19.8%

Curriculum-CycleGAN 52.5% 37.4% 37.1% 35.1% 40.5%

Ties 35.6% 48.7% 42.3% 32.2% 39.7%

Table 3. Average percentage of cases in which 6 human annota-

tors consider images generated by CycleGAN as better, images

generated by Curriculum-CycleGAN (weighting) as better, or both

equally good. Evaluations are provided for 4 test sets of images:

horse2zebra (H→Z), zebra2horse (Z→H), apple2orange (A→O),

orange2apple (O→A). The overall average is also included.

the annotators, using the real images as a control set (pre-

venting evaluators from labeling every image as fake). In

Table 2, we report the number of images labeled as real by

each annotator. We note that in 25.7% cases, the annota-

tors labeled real CIFAR images as being fake. Neverthe-

less, the humans largely figured out what images are gen-

erated. The standard SNGAN fooled annotators in 18.4%
cases, while the Curriculum-SNGAN fooled annotators in

25.0% cases. Interestingly, each and every human labeled

more images generated by Curriculum-SNGAN as real than

images generated by the baseline SNGAN. As illustrated in

Figure 5, there are several images generated by Curriculum-

SNGAN, which are labeled as real by 9 out of 10 annotators.

The number of votes drops faster for the standard SNGAN

approach. All results indicate that the images generated

by Curriculum-SNGAN are superior to those generated by

SNGAN.

4.4. Image translation results

The image translation results are evaluated only by hu-

man annotators. There are four test sets of images [45],

corresponding to the following translations: horse2zebra

(120 images), zebra2horse (140 images), apple2orange (266

images) and orange2apple (248 images). We asked 6 hu-
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Figure 6. Side by side image pairs generated by CycleGAN (left image in each pair) and Curriculum-CycleGAN (right image in each pair)

with the corresponding number of votes provided by 6 human annotators. When the sum of the number of votes in a pair is lower than 6, it

means that the missing votes correspond to ties. Image pairs that received most votes in favor of CycleGAN are presented in the left-hand

side of the figure, while image pairs that received most votes in favor of Curriculum-CycleGAN are presented in the right-hand side. Best

viewed in color.

man annotators to choose between the images translated by

CycleGAN and those translated by Curriculum-CycleGAN

(weighting), without disclosing any information about the

models. In each case, we also provided the original (source)

image. Since the test images are fixed for both models, the

random chance factor is eliminated. In Figure 6, we show

several images translated by both models side by side. We

notice that there are several image pairs in which all 6 anno-

tators opted for Curriculum-CycleGAN. For horse2zebra,

the baseline CycleGAN wins when our model produces

brownish zebras. For apple2orange, annotators prefer the

baseline when our model produces artifacts, but they prefer

our model when it produces the right tone of orange.

In Table 3, we present the average percentage of cases

(computed on the 6 annotators) in which the annotators pre-

fer either the CycleGAN output images or the Curriculum-

CycleGAN output images, as well as the percentage of tied

cases (images are labeled as equally good). We note that

on three sets of images (horse2zebra, zebra2horse and ap-

ple2orange), the annotators show significant preference for

our Curriculum-CycleGAN based on weighting. Further-

more, in these three test sets, all humans prefer our model

over the baseline CycleGAN (the individual percentages

are not shown in Table 3 due to lack of space). For or-

ange2apple, only 2 out of 6 annotators prefer our model, al-

though our model has a higher average preference (35.1%)

compared to the baseline (32.7%), as seen in Table 3. All

in all, the human annotators seem to prefer the curriculum-

based approach in 20.7% more cases than the baseline Cy-

cleGAN, confirming once more that the curriculum strategy

is indeed useful.

5. Conclusion

In this paper, we presented three curriculum learning

strategies for training GANs. The empirical results indi-

cate that our curriculum learning strategies achieve faster

convergence during training, i.e. the number of training

iterations can be reduced by a factor of three without af-

fecting the quality of the generative results. Furthermore,

using a similar number of training iterations, our curricu-

lum learning strategies can boost the quality of the genera-

tive and translation results, surpassing all considered base-

lines [2, 7, 14, 16, 29, 32, 45] on CIFAR-10. Both auto-

matic measures and human evaluators confirm our findings.

While we conducted experiments on images of 32× 32 and

256 × 256 of pixels in size, in future work, we aim to ap-

ply our curriculum learning strategies in order to generate

larger images, containing a natural variety of object classes.
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