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Abstract

This paper introduces the problem of multiple object

forecasting (MOF), in which the goal is to predict future

bounding boxes of tracked objects. In contrast to existing

works on object trajectory forecasting which primarily

consider the problem from a birds-eye perspective, we

formulate the problem from an object-level perspective

and call for the prediction of full object bounding boxes,

rather than trajectories alone. Towards solving this task,

we introduce the Citywalks dataset, which consists of over

200k high-resolution video frames. Citywalks comprises of

footage recorded in 21 cities from 10 European countries

in a variety of weather conditions and over 3.5k unique

pedestrian trajectories. For evaluation, we adapt existing

trajectory forecasting methods for MOF and confirm

cross-dataset generalizability on the MOT-17 dataset

without fine-tuning. Finally, we present STED, a novel

encoder-decoder architecture for MOF. STED combines

visual and temporal features to model both object-motion

and ego-motion, and outperforms existing approaches for

MOF. Code & dataset link: https://github.com/

olly-styles/Multiple-Object-Forecasting

1. Introduction

Predicting future events in video is a core problem in

computer vision that has been studied in several contexts

such as human action prediction [21], semantic forecast-

ing [27], and road agent trajectory forecasting [22]. In this

work, we focus on the task of pedestrian trajectory forecast-

ing from video data, which has seen considerable research

attention over recent years [19, 32, 1, 12, 44, 42]. Humans

are a particularly challenging class of objects to predict, as

they exhibit highly dynamic motion and may change speed

or direction rapidly.

Much of the existing work on pedestrian trajectory fore-

casting considers the problem from a birds-eye view using

footage from a fixed overhead camera, often considering

each pedestrian as a single point in space [1, 12, 44]. This

Figure 1: We introduce the new task of multiple object

forecasting and the Citywalks dataset to facilitate future re-

search.

setting is effective for modeling crowd motion patterns and

interactions with the environment. However, by simplifying

each pedestrian as a point in space, salient visual features

such as person appearance, body language, and individual

characteristics are not considered. Prior research has shown

that these features are of importance for trajectory predic-

tion in settings such as anticipating if a pedestrian will cross

the road [38, 30]. Furthermore, overhead perspectives are

often not available in practical applications. As a result,

trajectory forecasting from an object-level perspective has

been studied in recent years [42], although suffers from a

lack of large, high-quality datasets and standardized evalu-

ation protocols.

Motivated by the above observations, we introduce a new

formalization of the trajectory forecasting task: multiple ob-

ject forecasting (MOF) (Fig. 1). MOF follows the same

formulation as the popular multiple object tracking (MOT)

task, but rather is concerned with predicting future ob-

ject bounding boxes and tracks in upcoming video frames,

rather than the bounding boxes and tracks in the current

frame. Future bounding box prediction has previously been

studied in constrained settings such as on-board a moving

vehicle with odometry information [3, 43]. In contrast,

MOF follows the unconstrained MOT setting, which uti-

lizes only image information where data from other sensors
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is not available. This setup poses several challenges, such

as variations in object scale, non-linear motions, and ego-

motion. MOF has a number of possible applications such

as object tracking [10] (particularly through occlusions),

robotic navigation [20], and autonomous driving [17].

To facilitate research on the MOF problem, we con-

struct the Citywalks dataset. Citywalks is a large and di-

verse dataset collected from a first-person perspective in

21 European cities with considerable variability in many

facets such as weather, object appearance, illumination,

object scale, and pedestrian density. Citywalks is anno-

tated using automated methods for detection and track-

ing and is considerably more diverse than existing datasets

[29, 34, 28] for trajectory forecasting. We evaluate existing

models adapted for MOF on Citywalks and propose a novel

encoder-decoder model. Our model, STED, combines vi-

sual features extracted from optical flow with temporal fea-

tures and outperforms existing models on the MOF task.

The contributions of this work are as follows:

1. We introduce MOF, a new formulation of the trajectory

forecasting problem (Section 3).

2. We introduce and publicly release Citywalks, a chal-

lenging dataset for MOF with considerably more geo-

graphical variety than existing datasets (Section 4).

3. We propose STED, a Spatio-Temporal Encoder-

Decoder model for MOF which combines visual and

temporal features (Section 5). Experimental evalua-

tion using two datasets confirms the benefits of our

proposed approach (Section 6).

2. Related work

In this section, we summarize the main contributions in

the fields of pedestrian trajectory forecasting and MOT. We

also provide an overview of existing datasets for both tasks

and their limitations.

2.1. Multiple object tracking

Methods for MOT typically follow a tracking-by-

detection paradigm that relies heavily on the accuracy of

single-frame detections and models to associate detections

across time. Reasonable MOT performance can be obtained

with high-quality detections and simple constant velocity

motion assumptions [2], and better still when combined

with a visual appearance association metric [41]. Construct-

ing more sophisticated methods capable of modeling non-

linear motion can improve tracking performance, particu-

larly in scenarios with occlusion [10]. However, trajec-

tory forecasting for improved tracking is challenging due to

small datasets, which results in overfitting. One approach

proposed to overcome this issue is to consider the future

trajectory as a binary classification problem [36] or using

explicit external memory to avoid memorization [9]. We

adopt a more straightforward approach to address overfit-

ting: building a larger dataset.

2.2. Pedestrian trajectory forecasting

Pedestrian trajectory forecasting has been studied exten-

sively in a surveillance setting from fixed cameras from a

birds-eye view [1, 44, 12, 7, 46]. Methods typically focus

on interactions between pedestrians and social conventions

such as the pioneering Social Long-Short-Term-Memory

(Social-LSTM) model [1], in addition to scene semantics.

These methods do not typically consider visual cues, and

many simplify each pedestrian to a point in space. Recently,

Liang et al. [24] proposed one of the first approaches for

trajectory forecasting using visual features. Their method

encodes appearance using a person keypoint detector and

joint modeling of future pedestrian trajectory and activity.

Most related to our paper, a small number of works con-

sider trajectory forecasting from an object-level perspective.

Predicting object trajectories from on-board moving vehi-

cles, in particular, has been studied extensively [17, 3, 40].

Methods typically use additional information sources spe-

cific to a vehicle setting, such as odometry information.

In an inspiring work outside of the vehicle domain, Yagi

et al. [42] propose a model that uses past locations, ego-

motion, and pedestrian keypoints to estimate future trajec-

tory in first-person videos. Their model outperforms ex-

isting state-of-the-art approaches; however, accurate pedes-

trian keypoint estimation is not always practical, especially

in low-resolution or low-lighting scenarios. In contrast, our

approach does not rely on pedestrian keypoint estimation.

2.3. Existing datasets

Many large datasets with annotated pedestrian bound-

ing boxes have been released such as Citypersons [47],

BDD-100K [45] and EuroCity Persons [4]. However, these

datasets do not contain object tacking annotations. Older

datasets such are KITTI [11] and Caltech-USA [8] pro-

vide full object tracks, although these datasets are consid-

erably smaller with more limited geographical variety than

our new dataset.

Several datasets have been created explicitly for pedes-

trian trajectory forecasting, such as UCY [23], ETH [29],

and Stanford Drone [35]. These datasets are recorded from

a birds-eye view, making them suitable for modeling social

and environmental factors. However, such datasets are not

well suited to MOF due to being captured at a perspective

from which extracting visual features is challenging.

Few public datasets exist for object-level view trajectory

forecasting. Most similar to ours, the MOT-17 dataset [28]

contains annotated pedestrian bounding boxes from both

first-person and overhead cameras. However, MOT-17 con-

tains only 14 video sequences. Our dataset, Citywalks, con-

tains 358 video sequences.
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Figure 2: Example frames from the Citywalks dataset. Citywalks is markedly larger and more diverse than existing datasets.

3. Multiple object forecasting

MOF follows a similar problem formulation to the preva-

lent MOT task. In this section, we formalize MOF and the

metrics used for evaluating models.

3.1. Problem formulation

Consider a sequence of n video frames f0, f1, . . . , fn−1.

Given the tth frame ft, the task of object detection is to

associate each identifiable object i ∈ I in the frame with a

set of coordinates bit = (xt, yt, wt, ht) which represent the

centroid (xt, yt), width, and height of the object bounding

box, and I is the set of all identifiable objects. Given all the

framewise detections {bi0}, {b
i
1}, . . . , {b

i
n} for all i ∈ I, the

task of MOT is to associate each detection bit with a unique

object identifier k ∈ 1, 2 . . .K, where K is the total number

of unique objects across all frames, such that each object is

tracked across the set of n frames.

We extend the MOT task to MOF, shown in Fig. 1.

Given ft−p, ft−p+1, . . . , ft with associated object detec-

tions {bit−p}, {b
i
t−p+1} . . . {b

i
t} and tracks, we define MOF

as the joint problem of predicting the future bounding boxes

{bit+1}, {b
i
t+2}, . . . , {b

i
t+q} and associated object tracks of

the upcoming ft+1, ft+2, . . . , ft+q video frames for each

object present in frame ft, where p is the number of past

frames used as input and q is the number of future frames

to be predicted. In this work, we use p = 30 and q = 60,

corresponding to 1 second in the past and 2 seconds into the

future at 30Hz.

3.2. Evaluation metrics

We adopt the average displacement error (ADE) and final

displacement error (FDE) metrics from the trajectory fore-

casting literature [1]. ADE is defined as the mean Euclidean

distance between predicted and ground-truth bounding box

centroids for all predicted bounding boxes, and FDE is de-

fined similarly for the centroid at the final timestep only.

We also use the average and final intersection-over-union

(AIOU and FIOU) metrics. AIOU is defined as the mean

IOU of the predicted and ground truth bounding boxes for

all predicted boxes, and FIOU is the IOU for the box at the

final timestep only.

4. Citywalks Dataset

Our newly-constructed Citywalks dataset comprises of

358 video sequences containing footage from 21 different

cities in 10 European countries.

4.1. Data collection

We extract footage from the online video-sharing site

YouTube1. Each original video consists of first-person

footage recorded using an Osmo Pocket camera with gimbal

stabilizer held by a pedestrian walking in one of the many

environments for between 50 and 100 minutes. Videos are

recorded in a variety of weather conditions, as well as both

indoor and outdoor scenes. Example frames showcasing the

variety of the dataset are shown in Fig. 2.

4.2. Video clip filtering

One of the fundamental challenges of MOF is the bound-

ing box motion caused by both ego-motion and object mo-

tion. Large displacements resulting from significant ego-

motion pose a problem and may overwhelm the training

process. To mitigate the impact of large ego-motions, we

filter the dataset by removing high motion segments. Global

motion is estimated by extracting dense optical flow and se-

lecting short video clips from windows with a mean optical

1Videos are obtained from https://www.youtube.com/c/

poptravelorg
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Figure 3: Citywalks annotation statistics.

Table 1: Citywalks metadata.

Video clips 358

Resolution 1280× 720

Framerate 30hz

Clip length 20 seconds

Unique cities 21

Weather conditions Sun/Rain/Snow/Overcast

Time of day Day/Night

Labelled objects per frame 0 - 17

Unique tracks (YOLOv3) 2201

Unique tracks (Mask-RCNN) 3623

flow magnitude below a threshold. Specifically, we down-

sample video frames to 128× 64 pixels for faster computa-

tion and extract dense optical flow using FlowNet2-S [15].

We then select 20-second clips from longer videos using

segments containing frames that do not exceed a mean op-

tical flow magnitude threshold of 1.5.

4.3. Annotations

Once clips are selected, pedestrians are detected using

an object detection algorithm. We provide annotations for

two object detectors: YOLOv3 [31] and Mask-RCNN [13].

Both detectors are trained using the MS-COCO [25] dataset

and generalize well to Citywalks. For the YOLOv3 annota-

tions, images are downsampled to 416 × 416 pixels before

detection, to simulate detection quality under low process-

ing time requirements. We use a resolution of 1024× 1024
for detection using Mask-RCNN to obtain the best detection

performance. Note that we leave any attempts to combine

the two annotation sets (such as in [37]) for future work.

Following the detection phase, pedestrians are tracked using

DeepSORT [41], which uses a Kalman filter and person re-

identification model to associate detections across frames.

We then discard tracks shorter than 3 seconds as the pre-

vious 1 second of bounding box data is used to predict the

next 2 seconds. Dropping short tracks reduces the number

of false positives in the annotation set, as we observe that

erroneous tracks typically do not last longer than 3 seconds.

Each video clip is also manually annotated with the city of

recording, time of day, and weather condition. Annotation

statistics are shown in Fig. 3, and metadata are shown in

Table 1.

5. Proposed model

In this section, we present STED, an encoder-decoder ar-

chitecture for MOF that combines visual and temporal fea-

tures. The proposed architecture has three components: (i)

A bounding box feature encoder based on a Gated Recur-

rent Unit (GRU) [6] that extracts temporal features from

past object bounding boxes (ii) A CNN-based encoder that

extracts motion features directly from optical flow, and (iii)

a decoder implemented as another GRU for generating fu-

ture bounding box predictions given the learned features.

An overview of our model is shown in Fig. 4.

5.1. Bounding box feature encoder

Our bounding box encoder extracts features from past

bounding box coordinates of each object i represented in

terms of its centroid, width and height bit = (xt, yt, wt, ht).
In addition, we compute the velocity in the x and y di-

rections, (vxt , v
y
t ), change in width, ∆wt, and change

in height, ∆ht. This results in an 8-dimensional vec-

tor associated with each object bounding box Bi
t =

(xt, yt, wt, ht, v
x
t , v

y
t ,∆wt,∆ht).

For each observed timestep, a GRU (GRU-1 in Fig. 4)

takes the vector Bi
t as input and outputs an updated hidden

state vector he
t . This update is repeated for all timesteps, re-

sulting in a single hidden state vector he
t at the final timestep

which summarizes the entire sequence of bounding boxes.

The 256-dimensional feature vector φb from a fully con-

nected layer (FC-1 in Fig. 4) is used as a compact represen-

tation of the history of bounding boxes.

5.2. Optical flow feature encoder

We adapt Dynamic Trajectory Predictor (DTP) [40] to

learn features directly from optical flow. Flow frames, Ft,

are extracted from within object bounding boxes obtained

using YOLOv3 or Mask-RCNN at each timestep. A stack

of 10 frames are sampled uniformly from timesteps t − 29
to t inclusively, representing 1 second of motion history.
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Figure 4: STED consists of a Gated Recurrent Unit (GRU), a Convolutional Neural Network (CNN), and two fully-connected

(FC) layers for feature encoding. Our decoder takes the encoded feature vector φc as input and outputs predicted object

bounding boxes for the next 2 seconds using another GRU and FC layer.

The stack of 10 horizontal and 10 vertical frames are used

as input to a CNN which takes the 20× 224× 224 stack of

frames as input and is trained to predict future object bound-

ing boxes. The 2048-dimensional feature vector φf from

the final fully connected layer (FC-2 in Fig. 4) is used as a

compact representation of optical flow features. As optical

flow captures both object motion and ego-motion, the vector

φf encodes information from these two motion sources. Us-

ing optical flow as the input of our encoder rather than fea-

tures from a person keypoint estimation model [42] avoids

the challenges relating to inaccurate keypoint estimations.

5.3. Decoder

Following the feature encoding stage, we use another

GRU to generate the estimated sequence of future bound-

ing boxes, enabling the model to generate predictions for

an arbitrary number of timesteps into the future. The two

feature vectors, φf and φb, are concatenated resulting in a

single feature vector φc representing both optical flow and

bounding box history. For each future timestep to be pre-

dicted, the decoder GRU (GRU-2 in Fig. 4) receives two

inputs: The concatenated feature vector φc, and the internal

hidden state hd
t−1. The GRU outputs a new value for hd

t at

each timestep. Given each generated hidden state, a final

fully connected layer generates the predicted bounding box

for each timestep. Rather than representing object bounding

boxes by their absolute location [44] or relative displace-

ment from the previous bounding box [42], we adopt the

formulation of [40] and represent the bounding box centroid

as the relative change in velocity. The decoder generates a

vector (∆vx,∆vy,∆w,∆h), representing the change in ve-

locity along the x and y-axes, and the change in bounding

box width and height. The untrained model is initialized to

the case where ∆vx = ∆vy = 0 (constant velocity) and

∆w = ∆h = 0 (constant scale). This formulation results in

a better initialization than absolute or relative locations.

6. Performance evaluation

6.1. Baseline models

We adapt the following models for MOF, which are orig-

inally developed for trajectory forecasting. Each model is

modified for full bounding box prediction assuming ob-

ject scale is constant, or by adding additional output chan-

nels representing bounding box height and width for the

learning-based approaches.

Constant Velocity & Constant Scale (CV-CS): We

adopt the simple constant velocity model, which is used

widely as a baseline for trajectory forecasting models [1,

42, 12] and as a motion model for MOT [48, 39, 33]. We

use the previous 5 frames to compute the velocity, and find

that using a constant scale performs better than linearly ex-

trapolating a change in width and height.

Linear Kalman Filter (LKF) [16]: The LKF is a

widely-used method for tracking objects and predicting tra-

jectories under noisy conditions. We use an LKF with initial

parameters chosen using cross-validation and use the last

updated motion value for forecasting. The LKF is one of

the most popular motion models for MOT [41, 26, 18].

Future Person Localization (FPL) [42]: We adapt

FPL, which uses pedestrian pose extracted using OpenPose

[5] and ego-motion estimation using optical flow extracted

with FlowNet2 [15].

Dynamic Trajectory Predictor (DTP) [40]: We adapt

DTP, which uses a CNN with past optical flow frames as

input to predict future bounding boxes.

6.2. Implementation details

Clips from Citywalks are split into 3 folds, and the test

set is further divided 50% for validation and 50% for test-

ing for each fold. We use inter-city cross-validation, i.e.,

footage from cities in the validation/testing sets do not ap-

pear in the training set. This challenging evaluation setup

ensures that pedestrian identities from the training set do

not appear at test time, and prevents models from overfit-
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Table 2: Results averaged over 3 train-test splits on Citywalks with our two annotation sets using YOLOv3 and Mask-RCNN.

DTP and FPL predict object centroids only, so IOU metrics are not applicable.

YOLOv3 Mask-RCNN

Model ADE (↓) FDE (↓) AIOU (↑) FIOU (↑) ADE (↓) FDE (↓) AIOU (↑) FIOU (↑)

CV-CS 32.9 60.5 51.4 26.7 31.6 57.6 46.0 21.3

LKF [16] 34.3 62.1 49.1 25.5 32.9 59.0 43.9 20.1

DTP [40] 28.7 52.4 − − 26.7 48.5 − −

FPL [42] 30.2 53.4 − − 28.6 49.8 − −

DTP-MOF 29.0 52.2 54.6 30.8 27.3 49.2 49.6 25.1

FPL-MOF 31.6 55.7 53.0 30.9 29.3 51.0 44.9 22.6

STED 27.4 49.8 56.8 32.9 26.0 46.9 51.8 27.5

ting to a particular environment.

Bounding box feature encoder. Bounding box vec-

tors Bi
t (defined in Section 5.1) are computed by taking the

velocity of the object over the previous 5 timesteps, i.e.,

vxt = xt − xt−4 and v
y
t = yt − yt−4. Our feature encoder

consists of a GRU with 512 hidden units which uses Bi
t−1

and the previous hidden state vector he
t−1 as input and out-

puts an updated hidden state vector he
t . We use GRUs rather

than LSTMs as recurrent units in STED as we find the per-

formance is similar while GRUs is less computationally de-

manding.

Optical flow feature encoder. We compute optical

flow for each video frame using FlowNet2 [15]. The flow

from within each pedestrian bounding box is then cropped,

clipped to a range of −50 to 50, scaled to a fixed size of

256× 256, and normalized to a range of 0 to 1. We perform

standard data augmentation, taking a random crop of size

224 × 224 and randomly horizontally flipping frames with

probability 0.5 during training. We train the optical flow

feature encoder using ResNet50 [14] as the backbone CNN

architecture for 10k iterations with a batch size of 64 and

learning rate of 1× 10−5 to predict future object locations

as described in [40] and then freeze the weights to use our

flow encoder as a fixed feature extractor.

Decoder. As described in Section 5.3, our decoder takes

the concatenated feature vector φc as input. The decoder

consists of another GRU with 512 hidden units. For each

of the 60 timesteps to be predicted, the decoder takes φc

and previous hidden state hd
t−1 and outputs a new hidden

state hd
t . A linear layer takes the hidden state and gener-

ates a predicted bounding box for the respective timestep.

The optical flow feature encoder is used as a fixed feature

extractor, while the bounding box encoder and decoder are

trained jointly end-to-end using an initial learning rate of

1× 10−3, which is halved every 5 epochs. We use a batch

size of 1024 and train the model for 20 epochs. The model

is optimized using the smooth L1 loss, which we find to be

more robust to outliers in the training data than the L2 loss.

Table 3: Ablation study evaluating the bounding box (BB),

optical flow (OF) encoders separately. Results are the mean

of both annotation sets.

Model ADE / FDE (↓) AIOU / FIOU (↑)

BB-encoder 29.6 / 53.2 51.5 / 27.9

OF-encoder 27.5 / 50.0 53.2 / 28.8

Both encoders 26.7 / 48.4 54.3 / 30.2

6.3. Results

We evaluate each model on the Citywalks dataset using

both annotation sets and evaluate each component of STED

separately. Finally, we evaluate the cross-dataset generaliz-

ability of each model on the MOT-17 dataset [28].

Results on Citywalks. Table 2 shows the ADE / FDE2

and AIOU / FIOU of all methods on Citywalks with both

annotation sets. We evaluate the original DTP and FPL

models for trajectory forecasting, as well as the versions

modified for MOF. STED consistently performs better than

existing approaches across all metrics, resulting in more

precise bounding box forecasts. Fig. 6 shows example

bounding box predictions. STED implicitly anticipates both

object and ego-motion in a diverse range of environments

and situations. Fig. 7 shows failure cases. The model per-

forms poorly in challenging conditions such as large ego-

motions and when the pedestrian scale is small.

We further break down performance on Citywalks in

Fig. 5. We find that most models perform better for se-

quences recorded in cities with clear weather conditions

(e.g., Barcelona, Prague) than, in particular, snow (e.g.,

Tallinn, Helsinki). To confirm this intuition, we further plot

the performance in different weather conditions and at dif-

ferent times of the day. Finally, we plot the mean IOU at all

predicted timesteps 1 to 60. The IOU of the predicted and

ground-truth bounding boxes predictably declines quickly,

particularly for earlier timesteps. STED maintains the best

2A displacement of 50 pixels corresponds to 2.5% of the total frame

size at a resolution of 1280× 720.
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(a)

(b) (c) (d)

Figure 5: Performance analysis on Citywalks. Here, we report performance on both validation and test sets for all 3 folds to

cover the entire dataset. Performance is broken down by (a) top 3 and bottom 3 cities by AIOU, (b) weather condition, (c)

time of day and (d) future timestep.

IOU throughout the full prediction horizon.

Ablation study. We evaluate the benefits of each compo-

nent of our proposed model by evaluating them separately.

Specifically, we use the bounding box encoder feature vec-

tor φb as input to the decoder, rather than the concatenated

feature vector φc. We repeat this for the optical flow en-

coder feature vector φf . Table 3 show the results of our

ablation study on Citywalks. Both the bounding box and

optical flow encoders contribute to the overall performance.

Computational complexity. The most computationally

expensive component of STED is computing optical flow.

Our implementation uses FlowNet2, which requires 123ms

to compute on an Nvidia GTX 1080 GPU [15]. This model

may be replaced by more efficient methods, although we

found the quality of optical flow to impact overall perfor-

mance. Additional components, such as the CNN architec-

ture or number of hidden units in the GRUs may be mod-

ified if real-time performance is required, at some cost in

forecasting accuracy.

Cross-dataset evaluation. In order to evaluate the gen-

eralizability of models trained on Citywalks, we use the

popular MOT-17 dataset [28]. We use sequences 2, 9, 10,

and 11 from the MOT-17 train set and discard sequences

4 and 13 as these sequences are filmed from an overhead

perspective. We also discard sequence 5 due to the low

image resolution and frame rate. We follow a similar pre-

processing setup to Citywalks, discarding tracks shorter

than 3 seconds. We also ensure pedestrians are occluded

no more than 50% of their total bounding box size using

Table 4: Results on MOT-17 after training on fold 3 of City-

walks. Models are not fine-tuned on MOT-17.

Model ADE / FDE (↓) AIOU / FIOU (↑)

CV-CS 58.9 / 104.7 43.8 / 21.5

LKF [16] 62.0 / 110.2 41.6 / 20.1

FPL [42] 56.9 / 96.3 −

DTP [40] 55.2 / 99.0 −

FPL-MOF 58.0 / 98.4 41.4 / 20.4

DTP-MOF 52.2 / 92.4 47.7 / 26.1

STED 51.8 / 91.6 46.7 / 24.4

the annotations provided, resulting in 83 unique pedestrian

tracks. We take each model trained on Citywalks and eval-

uate using each of the four sequences. Note that we do

not modify the models and crucially we do not fine-tune

on MOT-17. Table 4 shows encouraging results suggesting

that models trained on Citywalks generalize cross-dataset

and to human-annotated bounding boxes. However, due to

the small size of the MOT-17 dataset, these results should

be treated with caution.

7. Conclusion

We have introduced the task of multiple object forecast-

ing and created the Citywalks dataset to facilitate future re-

search. Crucially, we have shown that models trained on

the Citywalks dataset can predict future object bounding
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Figure 6: Example successful object forecasts using our proposed model. Colours represent ground truth (Green), constant

velocity and scale (Blue), and STED (Yellow). Forecasts are made for each of 60 timesteps in the future for all pedestrians in

the scene, but here we visualize the predicted bounding box at t = 60 only and at most two pedestrians per frame for clarity.

Line type (dashed/solid) denotes unique pedestrians. More example available at: https://youtu.be/GPdNKE6fq6U

Figure 7: Example unsuccessful object forecasts using our proposed model. Colours represent ground truth (Green), constant

velocity and scale (Blue), and STED (Yellow). The examples highlight the difficulty of the Citywalks dataset, which contains

several distant pedestrians and non-linear motions.

boxes on the MOT-17 tracking benchmark more precisely

than existing methods used by multiple object tracking. Our

encoder-decoder model, STED, forecasts object bounding

boxes up to 2 seconds in the future and anticipates non-

linear motions. This development shows promise for build-

ing more sophisticated object forecasting models to aid ob-

ject tracking in order to address common problems such as

occlusions and missed detections.
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multi-person tracking using integral channel features. In

IEEE International Conference on Advanced Video and Sig-

nal Based Surveillance (AVSS), pages 122–130. IEEE, 2016.

[19] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert.

Activity forecasting. In Eurpoean Conference on Computer

Vision, 2012.

[20] H. S. Koppula and A. Saxena. Anticipating human activi-

ties using object affordances for reactive robotic response.

Transactions on Pattern Analysis and Machine Intelligence,

2016.

[21] T. Lan, T.-C. Chen, and S. Savarese. A hierarchical represen-

tation for future action prediction. In European Conference

on Computer Vision. Springer, 2014.

[22] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and

M. Chandraker. Desire: Distant future prediction in dynamic

scenes with interacting agents. In IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017.

[23] A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by

example. In Computer Graphics Forum, 2007.

[24] J. Liang, L. Jiang, J. C. Niebles, A. G. Hauptmann, and

L. Fei-Fei. Peeking into the future: Predicting future person

activities and locations in videos. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019.

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In Eurpoean Conference on Com-

puter Vision, 2014.

[26] C. Long, A. Haizhou, Z. Zijie, and S. Chong. Real-time mul-

tiple people tracking with deeply learned candidate selection

and person re-identification. In ICME, volume 5, page 8,

2018.

[27] P. Luc, N. Neverova, C. Couprie, J. Verbeek, and Y. Le-

Cun. Predicting deeper into the future of semantic segmenta-

tion. In IEEE International Conference on Computer Vision,

pages 648–657, 2017.
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