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Abstract

We propose an active learning approach for transferring

representations across domains. Our approach, active ad-

versarial domain adaptation (AADA), explores a duality be-

tween two related problems: adversarial domain alignment

and importance sampling for adapting models across do-

mains. The former uses a domain discriminative model to

align domains, while the latter utilizes the model to weigh

samples to account for distribution shifts. Specifically, our

importance weight promotes unlabeled samples with large

uncertainty in classification and diversity compared to la-

beled examples, thus serving as a sample selection scheme

for active learning. We show that these two views can be

unified in one framework for domain adaptation and trans-

fer learning when the source domain has many labeled ex-

amples while the target domain does not. AADA provides

significant improvements over fine-tuning based approaches

and other sampling methods when the two domains are

closely related. Results on challenging domain adaptation

tasks such as object detection demonstrate that the advan-

tage over baseline approaches is retained even after hun-

dreds of examples being actively annotated.

1. Introduction

The assumption that the training and test data are drawn

from the same distribution may not be true in practical ap-

plications of machine learning and computer vision. Con-

sequently, a predictor trained on the source domain S may

perform poorly when evaluated on the target domain T dif-

ferent from the source. This covariate shift problem is com-

mon in many problems, e.g., the seasonal distribution of

natural species may change in a camera trap dataset, or the

image resolution can change from one dataset to another.

Many domain adaptation (DA) methods have been pro-

posed to address this issue [10, 13, 36, 37, 63, 64, 65]. The
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Figure 1: Source and target domain data are shown in blue

and red. Circle and cross represent class labels, while ques-

tion marks are unlabeled data. We employ adversarial train-

ing to align features across the source and target domain,

and use discriminator predictions to compute the impor-

tance weight for sample selection of active learning.

covariate shift assumes that the marginal distribution p(x)
of the data changes from S to T , while the conditional la-

bel distribution p(y|x) remains the same. Domain adapta-

tion methods operate by minimizing the differences of the

marginal distributions of x in the source domain pS(x) and

target domain pT (x) by projecting the data through an em-

bedding Φ(x), e.g., a deep network, while at the same time

being predictive of the distribution pS(y|x) in the source

domain. By matching the marginals, the covariate shift is

reduced, thus improving the generalization of the model on

the target domain compared to an “unadapted” model.

While domain adaptation provides a good starting point,

the performances of unsupervised DA methods often fall far

behind their supervised counterparts [7, 61]. In such cases,

some labeled data from the target domain may bring in per-

formance benefits. However, obtaining ground-truth anno-

tations can be laborious and naı̈vely collecting annotated

data could be inefficient. In this work, we aim to answer the

following questions: 1) how to select data to label from the

target domain effectively, and 2) how to perform adaptation

given these labeled data from the target domain.
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To this end, we propose Active Adversarial Domain

Adaptation (AADA) that exploits the relation between do-

main adaptation and active learning to answer those ques-

tions. Addressing our second question, we propose to adopt

domain adversarial learning [13] between the union of la-

beled data from source/target and unlabeled target data,

when the amount of labeled target data is small. However,

after several rounds of active selection to accumulate many

labeled data from the target domain, performing adversarial

adaptation becomes counter-productive and simple transfer

learning approaches (e.g., fine-tuning) serve the purpose.

Inspired by the importance weighted empirical risk min-

imization [58, 59], we address our first question by propos-

ing a sample selection criterion composed of the two cues:

the diversity cue and the uncertainty cue. The diversity

cue is from the importance w(x)= pT (x)/pS(x) where it

can be estimated efficiently from the domain discriminator

based on domain adversarial learning [15]. This allows one

to sample unlabeled targets that are different from the la-

beled ones. The uncertainty cue is a lower bound to the

empirical risk, which in our case is in the form of entropy

of classification distribution. This promotes unlabeled data

with low confidence for the next round of annotation. The

overall framework of our AADA is illustrated in Figure 1.

In experiments, we first validate the effectiveness of our

approach on digit classification from SVHN to MNIST in

Section 4, showing significant improvements over other

baselines on domain adaptation, transfer learning, and ac-

tive learning. Second, we conduct experiments for object

recognition on the Office [50] and VisDA [43] datasets

with larger domain shifts in Section 5. Last, we extend

our method to object detection, adapting from the KITTI

dataset [14] to the Cityscapes dataset [9]. The proposed

AADA outperforms the fine-tuning baseline by 6% when

only 50 labeled images from the target domain are avail-

able.

Finally, we summarize our contributions as follows:

• An active learning framework by integrating domain

adversarial learning and active learning for continuous

semi-supervised domain adaptation.

• Improved classification performance with domain ad-

versarial learning, while the discriminator prediction

yields better importance weight for sampling.

• A connection between our sampling method and im-

portance weight with domain adversarial training.

• Reduced labeling cost on target domain on object clas-

sification and detection tasks.

2. Related Work

2.1. Domain Adaptation

Domain adaptation (DA) aims to make the model invari-

ant to the data from the source and target domain. For exam-

ple, [10] uses unlabeled data to measure the inconsistency

between source and target domain classifiers. Deep domain

adaptation has been successful in recent years. The key idea

is to measure the domain discrepancy at a certain layer of

deep networks using domain discriminator [4, 13] or maxi-

mum mean discrepancy (MMD) kernel [36, 37, 63, 65] and

train CNNs to reduce the discrepancy. Approaches that

combine techniques from semi-supervised learning, such

as entropy minimization [16, 31], are proposed to enhance

classification performance [37, 71]. It has also been ap-

plied to more complicated vision tasks such as object detec-

tion [7, 23, 21] and semantic segmentation [18, 19, 61, 62],

where the annotation cost is more expensive and how to se-

lect images to label become more crucial.

Different from the above-mentioned unsupervised DA,

we explore the case where the budget is available to anno-

tate a few labeled examples in the target domain. Compar-

ing to the method of [40] which discusses how to train the

model given few labeled targets with uniform distribution,

we focus on how to select target samples to label without

knowing any prior distribution of the target labels.

2.2. Active Learning

Active learning aims to maximize the performance with

a limited annotation budget [8, 55]. Thus, the challenge is to

quantify the informativeness of unlabeled data [27] so that

they are maximally useful when annotated. Many sampling

strategies based on uncertainty [32, 53], diversity [11, 20],

representativeness [68], reducing expected error [48, 67]

and maximizing expected label changes [12, 25, 66] are

studied and applied to vision tasks such as classification [45,

24], object detection [26], image segmentation [38, 60, 66],

and human pose estimation [35]. Among these, uncertainty

sampling is simple and computationally efficient, making it

a popular strategy in real-world applications.

Learning-based active learning methods [22, 29] are pro-

posed recently by formulating a regression problem for the

query procedure and learning strategies based on previous

outcomes. Deep active learning methods [54, 57] are stud-

ied for image classification and named-entity recognition.

[39, 72] propose to use generative models to synthesize data

for training, but the performance is largely dependent on the

quality of synthetic data, limiting their generality.

2.3. Active Learning for Domain Adaptation

Different from the aforementioned methods, we aim to

unify active learning and domain adaptation. Chattopad-

hyay et al. [6] train the domain adaptation model with im-

portance weights [2] and select samples by solving linear

programming for minimizing the MMD distances between

features. However, it is not clear how to incorporate this

strategy with advanced techniques such as deep models and

domain adversarial training.
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Figure 2: Our proposed algorithm AADA. We start from an unsupervised domain adaptation setting with labeled source

Ls and unlabeled target Ut data and train the model with domain adversarial loss. In each following round, we first select

samples using importance weight from the unlabeled target domain to obtain annotations. We then re-train the model with

labeled data Ls ∪ Lt and unlabeled data Ut.

The most relevant work is ALDA [46, 51], which demon-

strates its effectiveness in sentiment and landmine classifi-

cation tasks. ALDA trains three models, a source classifier

wsrc, a domain adaptive classifier uφ, and a domain sepa-

rator wds. It first selects unlabeled target samples using uφ,

and decide whether to acquire the label from wsrc (without

cost) or the oracle (with cost) using wds. uφ is then updated

with the obtained labeled data.

In addition to using the deep model, the proposed AADA

is different from ALDA in several ways. First, our discrim-

inator not only helps sample selection but also trains the

recognition model adversarially to reduce the domain gap.

Moreover, we combine diversity in the form of discrimina-

tor prediction and uncertainty in the form of entropy. To the

best of our knowledge, we are the first to jointly tackle DA

and active learning using neural networks on vision tasks.

3. Proposed Algorithm

In this section, we introduce our active adversarial do-

main adaptation (AADA). We begin with the background of

domain adversarial neural networks in Section 3.1, and then

we motivate our sampling strategy by importance in Sec-

tion 3.2. The algorithm and its theoretical background un-

der the semi-supervised domain adaptation setting are pro-

vided in Section 3.3.

3.1. Domain Adaptation

In this section, we introduce the learning objective of

our domain adaptation model. For simplicity, we describe

the model in the image classification task. We denote X as

the input space and Y = {1, ..., L} as the label space. The

source data and (unlabeled) target data are drawn from the

distribution pS(x) and distribution pT (x) respectively. We

adopt the domain adversarial neural network (DANN) [13],

which is composed of three components: feature extractor

Gf for the input x, class predictor Gy that predicts the class

label Gy(Gf (x))→{1, ..., L}, and discriminator Gd that

classifies the domain label Gd(Gf (x))→{0, 1}. We use

1 for the source domain and 0 for the target domain. The

objective function of the discriminator Gd is defined as:

Ld = Ex∼pS(x)

[

logGd(Gf (x))
]

+ Ex∼pT (x)

[

log(1−Gd(Gf (x)))
]

,
(1)

where Gf , Gy, Gd are parameterized by θf , θy, θd, respec-

tively. To perform domain alignment, features generated

from Gf should be able to fool the discriminator Gd, and

hence we adopt an adversarial loss to form a min-max game:

min
θf ,θy

max
θd
Lc(Gy(Gf (x)), y) + λLd, (2)

where Lc is the cross-entropy loss for classification, y is the

class label, and λ is the weight between two losses.

3.2. Sample Selection

Given an unsupervised domain adaptation setting where

labeled data is only available from the source domain, the

goal of our sample selection is to find the most informa-

tive data from the unlabeled target domain. We moti-

vate the sample selection criteria from the idea of impor-

tance weighted empirical risk minimization (IWERM) [58],

whose learning objective is defined as follows:

min
θf ,θy

E(x,y)∼pS(x,y)

[ pT (x)

pS(x)
Lc

(

Gy(Gf (x)), y
)

]

, (3)

where w(x)= pT (x)
pS(x) is an importance of each labeled data

in the source domain. The formulation indicates which data

is more important during optimization. First, the data with

higher empirical risk Lc

(

Gy(Gf (x)), y
)

, and second, the

one with higher importance, i.e., larger density in the target

distribution pT (x) but lower in the source pS(x).
Unfortunately, applying this intuition to come up with a

sample selection strategy is non-trivial. This is because the

target data is mostly unlabeled and the empirical risk can-

not be computed before annotation. Another problem is that

the importance estimation of high-dimensional data is dif-

ficult [59]. We take advantage of domain discriminator to
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Algorithm 1 AADA

Input: labeled source Ls; unlabeled target Ut;

labeled target Lt = ∅; budget per round b
Model:M={Gf , Gy , Gd}; feature extractor Gf ;

class predictor Gy; discriminator Gd

TrainM with (Ls, Ut)
for round← 1 to MaxRound do

Compute s(x) ∀x ∈ Ut via (5)

Select a set of b images z from Ut according to s(z)
Get labels yz from oracle

Lt ← Lt ∪ (z, yz)
Ut ← Ut \ (z, yz)
TrainM with (Ls ∪ Lt, Ut)

resolve the second issue. Note that, with adversarial train-

ing, the optimal discriminator [15] is obtained at

G∗
d(x̂)=

pS(x)

pS(x)+ pT (x)
⇒ w(x)=

1−G∗
d(x̂)

G∗
d(x̂)

, (4)

where x̂=Gf (x). Next, assuming cross-entropy as an em-

pirical risk, we resolve the first issue by measuring the en-

tropy of unlabeled data, which is a lower bound to the cross-

entropy.1 Finally, our sample selection criterion s(x) for

unlabeled target data is written as follows:

s(x) =
1−G∗

d(Gf (x))

G∗
d(Gf (x))

H(Gy(Gf (x))). (5)

Two components in the measure are interpreted as follows:

1) diversity cue (1−G∗
d(Gf (x)))/G

∗
d(Gf (x)), and 2) un-

certainty cue H(Gy(Gf (x))). The diversity cue allows us

to select unlabeled target data which is less similar to the la-

beled ones in the source domain, while the uncertainty cue

suggests data that the model cannot predict confidently.

3.3. Active Adversarial Domain Adaptation

Based on the two objectives of domain adaptation and

sample selection, we explain the role of these two compo-

nents in their collaboration for active learning for domain

adaptation purposes.

Collaborative Roles. For domain adaptation, the goal is to

learn domain-invariant features via (2) that better serves as

a starting point for the next sample selection step. During

the adversarial learning process, a discriminator is learned

to separate source and target data, and thus we can utilize its

output prediction as an indication for selection via the im-

portance weight in (5). By iteratively performing adversar-

ial learning and active learning, the proposed method grad-

ually selects informative samples for annotations guided by

the domain discriminator, and then these selected samples

1H(p, q)=DKL(p||q)+H(p)≥H(p).

are used for supervised training to minimize the domain

gap, in a collaborative manner.

One may still obtain a discriminator without adversar-

ial learning and it can be easily learned to separate samples

across two different domains. However, learning a discrim-

inator in this way can be problematic for active learning.

First, this discriminator may give identically high scores to

most target samples. Thus it lacks the capability of selecting

informative ones. Moreover, the learned classifier and this

discriminator may focus on different properties if they are

not learned jointly. If this is the case, the informative sam-

ples that current discriminator selects are not necessarily

beneficial for classifier update. We provide more evidence

for the necessity of adversarial training in Section 4.3.

Active Learning Process. Our overall active learning

framework is illustrated in Figure 2. We start our AADA al-

gorithm by learning a DANN model in an unsupervised do-

main adaptation setting as described in Section 3.1, and then

use the learned discriminator to perform the initial round of

sample selection from all unlabeled target samples based

on (5). Once obtaining the selected samples, we acquire

their ground-truth labels.

For the following rounds, we have a small set of la-

beled target data Lt∼ pT (x, y), a set of labeled source

data Ls∼ pS(x, y), and the remaining unlabeled target data

Ut∼ pT (x). Thus, the learning setting is different from the

initial stage as we now have labeled domains Ls and Lt. To

accommodate labeled data from both domains, we revisit

an analysis of domain adaptation [1, 3] whose generaliza-

tion bound is given as:

ǫT (ĥ) ≤ ǫT (h
∗
T ) + γα + dH∆H(Ls ∪Lt, Ut) (6)

+ 4

√

(

α2
s

βs

+
α2
t

βt

)(

d log(2m)− log(δ)

2m

)

,

with γα = ǫT (h)+αsǫS(h)+αtǫT (h), m is the number of

labeled examples, d is VC-dimension of hypothesis class

and h is the hypothesis (i.e., classifier). α=(αs, αt) is a

weight vector between the errors of labeled source and la-

beled target, while β=(βs, βt) is a proportion of labeled

examples for source and target domains. Assuming zero er-

ror on the labeled examples (i.e., ǫS(h)= ǫT (h)= 0), the

bound is the tightest when αs =βs and αt =βt.

This leads us training a new model that adapts from

all labeled data Ls ∪Lt to unlabeled data Ut with uniform

sampling of individual examples from labeled set to ensure

the tightest bound. Thus, we use uniform sampling of la-

beled source and target examples for sampling batches dur-

ing training unless otherwise stated. Then, we select candi-

dates from the remaining unlabeled target set Ut based on

the new discriminator Gd and new classifier Gy following

the same importance sampling strategy for the next round

of training. The overall algorithm is shown in Algorithm 1.
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4. Experiments on Digit Classification

As discussed above, our proposed method aims to ad-

dress two questions: 1) how to select images to label from

Ut to yield the most performance gain? and 2) how to train

a classifier given {Ls, Lt, Ut}? Our experiments then con-

sists of our explorations for both components. In this sec-

tion, we first perform detailed experiments in a mix-and-

match way on the digit classification task from SVHN [41]

to MNIST [30]. Specifically, we explore the following

training schemes:

1) Adversarial Training: we train the classifier via (2) us-

ing (Ls ∪ Lt, Ut).

2) Joint Training: we train the classifier in a supervised

way using Ls ∪ Lt. Note that we still train a discriminator

for sample selection but without adversarial training.

3) Fine-tuning: we train a classifier using Ls and then fine-

tune it on Lt, both in a supervised way. Discriminator is

trained in a similar manner to Joint Training.

4) Target Only: we train our classifier with Lt only.

The sampling strategies we explored are:

1) Importance Weight: we select samples based on the

proposed importance weight s(x) (5).

2) K-means Clustering: we perform k-means clustering

on image features Gf (x), ∀x ∈ Ut, where the number of

clusters is set to b in each round. For each cluster, we select

one sample which is the closest to its center.

3) K-center (Core-set) [54]: we use greedy k-center clus-

tering to select b images z from Ut such that the largest dis-

tance between unlabeled data Ut \ z and labeled data Lt ∪ z
is minimized. We use L2 distance between image features

Gf (x) for the measurement.

4) Diversity [11]: for each unlabeled sample in Ut, we com-

pute its distance to all samples in Lt and obtain the average

distance. Then we rank unlabeled samples w.r.t. its average

distance in descending order and select the top b samples.

L2 distance is applied on features Gf (x).

5) Best-versus-Second Best (BvSB) [24]: we use the dif-

ference between the highest and the second highest class

prediction as the uncertainty measure., i.e., maxi Gyi
(x̂)−

Gyj
(x̂), where class j has the second highest prediction.

6) Random Selection: we select samples uniformly at ran-

dom from all the unlabeled target data Ut.

Our AADA uses importance weight for sample selec-

tion, and adversarial training as the training scheme. We

note that other unsupervised DA methods can be orthogo-

nal to our approach, e.g., one can use improved DANN such

as CyCADA [18] for initialization but still use our criteria

for selecting samples to label. Here we focus on sample

selection and only use the vanilla adversarial training. We

also note that different sampling methods do not compete

with AADA as they can be combined with our method. For

example, BvSB can be used as an alternative uncertainty

measurement as opposed to entropy in (5).

Experimental Setting. Commonly in the active learning

literature [38, 60], we simulate oracle annotations by us-

ing the ground-truth in all our experiments. We consider an

adaptation task from SVHN to MNIST, where the former

and latter are initially considered as labeled source Ls and

unlabeled target Ut respectively. SVHN contains 73,257

RGB images and MNIST consists of 60,000 grayscale im-

ages, both from the digit classes of 0 to 9. Not only dif-

fer in color statistics, the images from two datasets also

experience different local deformations, making the adap-

tation task challenging. For this task, we use the variant

of LeNet architecture [18] and add an entropy minimiza-

tion loss Lent = H(Gy(Gf (x)) for regularization [37]

during training. For each round, we train the model for

60 epochs using Adam [28] optimizer with learning rate

{2 × 10−4, 1 × 10−4, 5 × 10−5} for 20 epochs each. The

batch size is 128 and λ = 0.1. We set budget to 10 in each

round and perform 30 rounds, eventually selecting 300 im-

ages in total from the target domain. We carry our experi-

ments with five different random seeds and report the aver-

aged accuracy after each round. We use PyTorch [42] for

our implementation.

4.1. Comparison of Sampling Methods

We start from comparing different sampling method

combined with adversarial training. As shown in Figure 3a,

importance weight often outperforms its active sampling

counterparts. It can achieve 95% accuracy with 160 samples

after 16 rounds while the random selection baseline requires

two times more annotations to have similar performance.

Moreover, our proposed method consistently improves per-

formance when more samples are selected and annotated,

whereas other baselines generate unstable performances.

One reason for such observation is that the class distribu-

tion of the selected samples in each round is not uniform. If

the selected targets are heavily biased towards few classes,

the “mode collapse” issue due to adversarial training gives

high test accuracy on those classes but low accuracy on oth-

ers, causing the overall lower accuracy. However, sampling

with importance weight makes the result more stable after

each round. As a reference, AADA performs similarly as

random selection (97.5% accuracy) with 1000 labeled tar-

gets. The performance saturates at around 99.0% accuracy

with 5000 labeled targets and achieves 99.5% accuracy with

all 73,257 labeled targets.

743



50 100 150 200 250 300
Number of Labeled Target

65

70

75

80

85

90

95

P
er

 In
st

an
ce

 A
cc

ur
ac

y 
(%

)

Adv. training, Importance weight (AADA)
Adv. training, K-means
Adv. training, K-center
Adv. training, Diversity
Adv. training, BvSB
Adv. training, Random

(a) Different sampling strategies with adversarial training.
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(b) Different sampling cues with adversarial training.
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(c) Different training schemes with random sampling.
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(d) Different training schemes with importance weight.

Figure 3: Ablation studies on digit classification (SVHN→MNIST). Each data point is the mean accuracy over five runs, and

the error bar shows the standard deviation. We show that: (a) sampling using importance weight performs the best when using

adversarial training, (b) combining diversity and uncertainty cues performs better for selecting samples, (c) fine-tuning is the

best training scheme when random sampling is used, (d) when using importance weight for sampling, adversarial training

is the best when there are less than 250 labeled target. Overall, our AADA which uses adversarial training and importance

weigh provides the best performance when few labeled targets are available.

4.2. Comparison of Different Cues

We perform an ablation study of the two components in

the proposed importance weight (5). The diversity cue, i.e.,
1−G∗

d(Gf (x))
G∗

d
(Gf (x))

, uses the predictions from the discriminator

Gd, while the uncertainty cueH(Gy(Gf (x))) uses the pre-

dictions from the classifier Gy . As shown in Figure 3b, us-

ing diversity cue outperforms that of uncertainty cue, while

combining these two yields the best performance. However,

the benefits of using different cues may depend on the char-

acteristics of each dataset and will be discussed later.

4.3. Comparison of Training Schemes

We compare different training schemes and show the ef-

fectiveness of combining adversarial training with impor-

tance weight. First, we provide a study of four training

schemes in Figure 3c, all using random sampling. In this

case, we find that adversarial training suffers from mode

collapse problem and fine-tuning is the best option. Fine-

tuning is also the most effective and widely-used method of

transfer learning as discovered in the deep learning litera-

ture [56, 69].

However, once the imbalance sampling problem can be

effectively addressed, e.g. using the proposed importance

weight, we can benefit from adversarial training. Figure 3d

demonstrates the effectiveness of combining adversarial

training with importance weight. We can see that it outper-

forms all the settings in Figure 3c. Moreover, our AADA

method demonstrates its effectiveness especially when very

few labeled targets Lt are available; on the other hand, when

more and more labeled targets are available, fine-tuning

seems to be a better option as the benefit of leveraging infor-

mation from source domain has decreased (as explained in

Section 1). In our experiment, using fine-tuning performs

better than using adversarial training when there are more

than 250 labeled target selected using importance weight.
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Comparison with ALDA [51]. For the baseline of using

joint training and importance weight, we train the classifier

Gy and the feature extractor Gf with Ls ∪Lt, and train the

discriminator Gd for separating labeled and unlabeled data.

The two objectives are trained jointly but not adversarially.

This can be seen as an extension of ALDA [51] using deep

learning framework, despite some differences such as 1) the

use of joint training instead of updating a perceptron, and

2) selecting samples using our proposed importance weight

instead of using the margins to the linear classifier.

Interestingly, this baseline (as shown in Figure 3d) is

worse than the one using joint training and random sam-

pling (as shown in Figure 3c). This is mainly due to the

lack of diversity. Specifically, without the help of adversar-

ial loss, the importance weight can be very confident thus

lacks the ability to provide sufficient diverse samples. This

problem also remains for the original ALDA [51] method.

Again, as shown in Figure 3d, our AADA outperforms this

baseline by 7.6% on average of the first 25 rounds, showing

that adversarial training not only helps adapt the model but

also collaborates with importance weight for sampling.

5. More Experimental Results

In this section, we conduct experiments on object recog-

nition and object detection datasets. Here we focus on com-

paring different sampling methods and refer the readers to

supplementary material for complete comparisons.

5.1. Object Recognition

We validate our idea on the Office domain adapta-

tion dataset [50]. It consists of 31 classes and three do-

mains: amazon (A), webcam (W), and dslr (D), each with

{2817, 795, 498} images. Specifically, we select dslr (D) as

the source domain and amazon (A) as the target one. We

further split the target domain using the first 2/3 images as

Ut and the rest as the test set to evaluate all methods. We

utilize ResNet-18 [17] model (before the first fc layer) pre-

trained on ImageNet as the feature extractor Gf . On top

of it, Gy has one layer while Gd has fc-ReLU-fc with

256-256-2 channels. We train our model with SGD for 30

epochs with a learning rate of 0.005. The batch size is 32

and λ = 0.0001. Budget per-round b is set to 50 and we

perform 20 rounds in total. We start the first round with

random selection for all the methods as a warm-up.

Figure 4 demonstrates different sampling baselines with

adversarial training. Our AADA method performs com-

petitively with BvSB and outperforms all other methods,

suggesting that the uncertainty cue is more useful in this

dataset. More specifically, AADA outperforms random se-

lection by around 3% from round 10 to round 20, and our

AADA can achieve 85% accuracy with 800 labeled targets

while random selection requires 200 more to achieve similar

performance. Note that BvSB is one of the variants of our
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Figure 4: Object classification result (Office D → A). We

compare different sampling methods with adversarial train-

ing. BvSB and AADA perform the best with 81.3% and

80.7% mean accuracy of 20 rounds separately.

method, which also deploys our adversarial training scheme

and uncertainty measurement.

5.2. Object Detection

Now we focus on object detection task adapting from

KITTI [14] to Cityscapes [9]. We use the same setting

as [7], which only considers the car object and resizes im-

ages to 500 for the shorter edge while keeping the aspect ra-

tio. After discarding images without cars, we obtain 6,221

and 2,824 training images from KITTI and Cityscapes re-

spectively, and we split 500 images from Cityscapes for

testing. Mean average precision at 0.5 IoU (mAP@0.5)

is our evaluation metric in this task [7, 23]. We adopt

Faster-RCNN [47] with the ResNet-50 architecture com-

bining with FPN [33] as the feature extractor, and per-

form image-level adaptation as proposed in [7]. We select

{10, 10, 10, 20, 50, 100} images in each round and assume

that the cost of labeling one image is the same.

We report our quantitative results in Table 1. Our base-

lines include adversarial training with other sampling meth-

ods and different training schemes with random sampling.

Note that BvSB is not included here due to the fact that

in the single object category detection scenario, it pro-

vides similar measurement as entropy. Overall, using ad-

versarial training and importance weight (AADA) gives the

best performance. Specifically, 60.4% accuracy can be

achieved with 100 labeled target selected by AADA, while

other baselines require about twice as much annotations to

achieve similar performance. We further illustrate images

selected with AADA within two rounds in Figure 5. As can

be seen in this figure, we are able to select diverse images

with different semantic layouts.

745



Training Sampling
Number of Labeled Target

10 20 30 50 100 200

Adversarial Imp. weight 49.4 53.3 54.6 57.4 60.4 62.3

Adversarial K-means 49.1 51.7 53.8 56.8 59.2 60.9

Adversarial Entropy 48.9 50.9 52.3 54.3 58.1 61.0

Adversarial Random 47.4 49.8 51.6 55.2 58.6 61.7

Joint Imp. weight 48.5 52.1 53.5 56.2 58.6 60.5

Joint Random 45.5 48.8 51.8 54.9 59.0 61.6

Fine-tuning Random 41.0 46.0 48.7 51.4 56.0 59.8

Target only Random 29.0 38.5 42.1 48.3 53.3 58.8

Table 1: Object detection results (KITTI → Cityscapes).

Our AADA method (first row) outperforms all other base-

lines, including using adversarial training and other sam-

ple selection methods, as well as using different training

schemes and random sampling.

Figure 5: Top 10 images selected in the third and the fourth

rounds from the target domain (Cityscapes) using AADA.

The ground-truth bounding boxes of cars are shown in yel-

low. Images selected in the third round have more cars and

the semantic layouts are different w.r.t. that of the fourth

round, showing that diverse samples are selected by AADA.

5.3. VisDA­18 Challenge

We investigate the VisDA-18 domain adaptation chal-

lenge [43, 44] as a special case. The source domain is

composed of 78,222 synthetic images across 12 object cat-

egories rendered from 3D CAD models, while the target

domain contains 5,534 real images. We consider the 12-

way classification problem following the setting in [44] and

the ImageNet pre-trained ResNet-18 [17] model is used

as a feature extractor. As mentioned in [44], without us-

ing ImageNet pre-training, the accuracy would be very low

and unsupervised domain adaption methods do not work.

However, ImageNet images are closer to the target domain,

this raises our interest to investigate whether images from

source domain still help in this scenario.

Our initial trial using adversarial training shows im-

provement when there is no labeled target Lt = ∅. How-

ever, after having a few labeled targets, using adversarial
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Figure 6: VisDA-18 result (synthetic→ real). Here we use

fine-tuning as the training scheme and compare different

sampling strategies. Using importance weight for sampling

performs equally well as BvSB and k-center baselines, and

outperforms k-means and random baselines. The mean ac-

curacies after each round are 79.8% and 80.1% for impor-

tance weight and BvSB methods separately.

training does not introduce further improvement (see sup-

plementary material). We argue that, 1) the domain gap

(from synthetic to real images) in this dataset is large, thus

the benefit of aligning image features from target to source

domain is less than adding annotated target images Lt, and

2) due to the use of ImageNet pre-trained model, the target

domain (images from MS-COCO [34]) is actually closer to

the domain for pre-training (images from ImageNet [49])

than the source domain (synthetic images).

Based on the above observations, we use fine-tuning as

our training scheme on VisDA-18, and compare different

sampling strategies in Figure 6. We set b = 100 and per-

form 20 rounds in total. Using importance weight for sam-

pling performs on a par with BvSB and K-center, and out-

performs K-means and random selection baselines.

6. Conclusion

We propose AADA, a unified framework for domain

adaptation and active learning via adversarial training.

When few labeled targets are available, the domain adver-

sarial model helps improve the classification; meanwhile,

the discriminator can be utilized to obtain the importance

weight for active sample selection in the target domain. We

conduct extensive ablation studies and analyses, and show

improvements over other baselines with different training

and sampling schemes on object recognition and detection

tasks. In the future, we will consider extending our work to

other settings such as open set [52], partial [5], and univer-

sal [70] domain adaptation.
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