
Fungi Recognition: A Practical Use Case

Milan Sulc

CTU in Prague

sulcmila@cmp.felk.cvut.cz

Lukas Picek

University of West Bohemia

picekl@kky.zcu.cz

Jiri Matas

CTU in Prague

matas@cmp.felk.cvut.cz

Thomas S. Jeppesen

Global Biodiversity Information Facility

tsjeppesen@gbif.org

Jacob Heilmann-Clausen

University of Copenhagen

jheilmann-clausen@snm.ku.dk

Abstract

The paper presents a system for visual recognition of

1394 fungi species based on deep convolutional neural

networks and its deployment in a citizen-science project.

The system allows users to automatically identify observed

specimens, while providing valuable data to biologists and

computer vision researchers. The underlying classifica-

tion method scored first in the FGVCx Fungi Classification

Kaggle competition organized in connection with the Fine-

Grained Visual Categorization (FGVC) workshop at CVPR

2018. We describe our winning submission and evaluate all

technicalities that increased the recognition scores, and dis-

cuss the issues related to deployment of the system via the

web- and mobile- interfaces.

1. Introduction

The collection of data on appearance and occurrence of

species and its annotation are crucial pillars for biologi-

cal research focusing on biodiversity, climate change and

species extinction [6, 18]. Involvement of citizen commu-

nities is a cost effective approach to large scale data collec-

tion. Species observation datasets collected by the broader

public have already proven to add significant value for un-

derstanding both basic and more applied aspects of mycol-

ogy (e.g. [2, 34]), and by improving data quality and par-

ticipation in such programs, the research potential will in-

crease. Citizen-science contributions provide about 50% of

all data accessible through the Global Biodiversity Informa-

tion Facility [3]. However, the data has a strong taxonomic

bias towards birds and mammals [31], leaving data gaps in

taxonomic groups such as fungi and insect.

Correct species identification is a challenge in citizen-

science projects focusing on biodiversity. Some projects

handle the issue by simply reducing complexity in the

species identification process, e.g. by merging species into

multitaxa indicator groups (e.g. [9]), by focusing only on

a subset of easily identifiable species or by involving hu-

man expert validators in the identification process. Other

projects involve citizen-science communities in the data

validation process. For instance, iNaturalist [1] regards ob-

servations as having research grade if three independent

users have verified a suggested taxon ID based on an up-

loaded photo. Automatic image-based species identifica-

tion can act both as a supplement or alternative to these ap-

proaches.

We present a computer vision system for recognition

of fungi ”in the wild”, achieving best results in a Kaggle

competition organized with the Fine-Grained Categoriza-

tion Workshop at CVPR 2018, and further application of

this system to assist a citizen-science community and help

mycologists increase the involvement of citizens in data col-

lection.

Applications for image-based mushroom recognition are

reviewed in Section 2.1. To the best of our knowledge,

our system recognizes the largest number of species, and

it is the first image-based fungi recognition system to as-

sist citizen-scientists and mycologists in identification and

collection of observations.

From the computer vision perspective, the application of

the system to citizen-science data collection creates a valu-

able continuous stream of labeled examples for a challeng-

ing fine-grained visual classification task. The increasing

amount of labeled data will allow us to improve the clas-

sification baselines and to study other interesting problems,

such as fungi phenotyping, location-based estimation of cat-

egorical prior, etc.

The system described here has a big potential to increase

human involvement with nature by providing an real-time

electronic identification tool, that can support learning in an

intuitive manner, much like children learn from their par-

ents by asking simple and nave questions that are addressed

in a simple way. By linking the system to an existing my-
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Figure 1: The fungi recognition serving pipeline.

cological platform involving validation by the community,

as is the case in the Danish Fungal Atlas [4, 8, 14], a su-

pervised machine learning system with human in the loop

is created.

2. Related work

2.1. Fungi Recognition

Several mobile applications for fungi identification in-

clude a computer vision classification system. Only few

have positive user reviews on the identification results. Ex-

amples of apps with positive user reviews are:

• Mushroom Identificator1 with 1M+ downloads and

a review score of 3.9/5, recognizing 900 mushroom

species,

• Mushrooms App2 with 0.5M+ downloads and a review

score of 4.4/5, recognizing 200 mushroom species.

De Vooren et al. [32] published an image analysis tool

for mushroom cultivars identification in 1992, analyzing

morphological characters like length, width and other shape

descriptors.

Computer vision may also be used for classification of

microscopy images of fungal spores. Tahir et al. [29] and

Zielinski et al. [38] introduce datasets of microscopy im-

ages of fungal infections and propose methods to speed up

medical diagnosis, allowing to avoid additional expensive

biochemical tests.

2.2. Crowd­based Image Collection and Identifica­
tion

The Global Biodiversity Information Facility (GBIF)

[10] is the largest index of biodiversity data in the world.

GBIF is organized as a network involving 58 participating

countries and 38 organisations (mainly international) pub-

lishing more than 45,000 biodiversity datasets under open

1https://play.google.com/store/apps/details?id=

com.pingou.champignouf Accessed on 2019-10-11
2https://play.google.com/store/apps/details?id=

bazinac.aplikacenahouby Accessed on 2019-10-11

source licenses. The index contains more than 1.3 billion

species occurrence records of which more than 47 million

include images. With the recent advances in the use of ma-

chine vision in biodiversity related technology, GBIF in-

tends to facilitate collaborations in this field, promote re-

sponsible data use and good citation practices. GBIF has the

potential to play an active role in preparing training datasets

and make them accessible under open source licenses [24].

iNaturalist [16] is a pioneering crowd-based platform

allowing citizens and experts to upload and categorize ob-

servations of the world fauna, flora and fungi. All annotated

data are directly uploaded to GBIF once verified by three

independent users. iNaturalist covers more than 238,000

species through almost 28 million observations.

Wild Me is a non-profit organization that aims to combat

extinction with citizen-science and artificial intelligence.

Their projects using computer vision [22] to boost detection

and identification include: Flukebook, a collaboration sys-

tem to collect citizen observations of dolphins and whales

and to identify individuals, and GiraffeSpotter, a photo-

identification database of giraffe encounters.

The Danish Fungal Atlas (SvampeAtlas) [4, 8, 14] in-

volves more than 1000 volunteers who have contributed ap-

proximately 500,000 quality-checked observations of fungi.

More than 270,000 old fungal records were imported into

the project database which now contains more than 800,000

quality-checked fungal records. The project has resulted in

a greatly improved knowledge of Denmark’s fungi. More

than 180 basidiomycetes3 have been added to the list of

known Danish species, and several species that were con-

sidered extinct have been re-discovered. At the same time,

a number of search and assistance functions have been de-

veloped that present common knowledge about the individ-

ual species of fungi, which makes it much easier to include

knowledge of endangered species in the nature management

and decision making.

All validated records are published to the Global Biodi-

versity Information Facility [10] on a weekly basis. Since

3Microscopic spore-producing structure found on the hymenophore of

fruiting bodies.
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Amanita pantherina Glyphium elatum Phlebia uda Amanita muscaria Boletus reticulatus

Figure 2: Examples from the FGVCx Fungi training set.

2017, the Danish Fungal Atlas has had interactive validation

of fungal records. When a user submits a record, a probabil-

ity score is calculated for the accuracy of the identification.

This score ranges from 1 to 100. The calculation includes:

1. The rarity of the species (# approved records).

2. The geographical distribution of the species.

3. Phenology of the species (e.g. many mycorrhizal fungi

have a low probability score in spring).

4. User’s previous approved identifications of the same

species.

5. Nr. of species within the morphological group the user

has correctly identified in the past.

6. Confidence indicated by the user: Certain: 100%,

Probable: 50%, Possible: 10%.

Subsequently, other users may agree on the identification,

increasing the identification score in accordance with the

principles 4–6, or propose alternative identifications. The

identification with the highest score is highlighted, alter-

native identifications and their scores are also visible to

logged-in users. In the search results, the probability score

is displayed in three general categories:

1. Approved (score above 80) with 3 stars.

2. Likely (score between 50 and 80) with 2 stars.

3. Suggestion (score below 50) with 1 star.

A group of taxonomic experts (validators) are monitor-

ing data in the Danish Mushroom Atlas. These have the

power to approve findings regardless of the score in the in-

teractive validation. This can be relevant for discoveries of

new species, for very rare species and for records of species

where special experience or sequencing of genetic material

(DNA) is required for a safe identification. Expert-validated

findings are marked with a small microscope icon.

2.3. Fine­grained Image Classification

The task of image-based fungi recognition is a fine-

grained visual classification (or categorization) problem.

Fine-grained image classification went through signifi-

cant improvements with the emergence of very deep con-

volutional neural networks (CNNs) and the success of

Krizhevsky’s CNN [20] in the ImageNet ILSVRC-12 com-

petition. The ImageNet dataset itself contains a number

of species categories, mainly animals. Convolutional Neu-

ral Networks performed well in other fine-grained species

identification tasks, including plant species classification

[11, 12], dog classification [19], bird classification [35, 36],

or classification of species in general [33].

3. Image Recognition Methodology

3.1. FGVCx Fungi Dataset

The FGVCx Fungi Classification Challenge provided an

image dataset, that covers 1394 fungal species and is split

into a training set with 85578 images, a validation set with

4182 images and a a competition test set with 9758 images

without publicly available labels. Examples from the train-

ing set are shown in Figure 2. There is a substantial change

of categorical priors p(k) between the training set and the

validation set: The distribution of images per class is highly

unbalanced in the training set, while the validation set dis-

tribution is uniform.

3.2. Convolutional Neural Networks

Following the advances in deep learning for fine-grained

image classification, we decided to approach fungi recogni-

tion with Convolutional Neural Networks. For the FGVCx

Fungi Classification challenge, we trained an ensemble of

Inception-v4 and Inception-ResNet-v2 networks [28], in-

spired by the winning submission in the ExpertLifeCLEF

plant identification challenge 2018 [11].

We trained an ensemble of 6 models listed in Table 1. All

networks were trained using the Tensorflow Slim4 frame-

work. We used Polyak averaging [23], keeping shadow

variables with exponential moving averages of the trained

variables. Hyper-parameters used during training were set

4https://github.com/tensorflow/models/tree/

master/research/slim
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Figure 3: Predictions combined from an ensemble of 6 CNNs with test-time image augmentation (crops, mirrors).

CNN Architecture Input Size Finetuned from

#1 Inception-v4 299x299 ImageNet 2012

#2 Inception-v4 299x299 LifeCLEF 2018

#3 Inception-v4 ”x2” 598x598 ImageNet 2012

#4 Inception-v4 ”x2” 598x598 LifeCLEF 2018

#5 Inc.-ResNet-v2 299x299 ImageNet 2012

#6 Inc.-ResNet-v2 299x299 LifeCLEF 2018

Table 1: Models trained for the FGVCx Fungi classification

competition.

as follows - optimizer: RMSprop, batch size: 32, ini-

tial learning rate: 0.01, learning rate decay: exponen-

tial/staircase with decay factor 0.94, weight decay: 0.00004,

moving average decay: 0.999. All six fine-tuned networks

are publicly available5.

3.3. Adjusting Predictions by Class Priors

Let us assume that the classifier trained by cross-entropy

minimization learns to estimate the posterior probabilities,

i.e. fCNN(k|x) ≈ p(k|x). If the class prior probabilities

p(k) change, the posterior probabilities should change as

well. The topic of adjusting CNN predictions to new priors

is discussed in [7, 25, 27]: in the case when the new class

priors pe(k) are known, the new posterior pe(k|x) can be

computed as:

pe(k|xi) = p(k|xi)
pe(k)p(xi)

p(k)pe(xi)
=

=

p(k|xi)
pe(k)

p(k)
K∑

j=1

p(j|xi)
pe(j)

p(j)

∝ p(k|xi)
pe(k)

p(k)
,

(1)

5https://github.com/sulc/fungi-recognition

where we used
K∑

k=1

pe(k|xi) = 1 to get rid of the un-

known probabilities p(xi), pe(xi).

While other works [7, 25, 27] focus on estimating new

unknown priors pe(k), we assume that the uniform distri-

bution pe(k) =
1

K
is given, as it is the case of the FGVCx

Fungi validation set (see Section 3.1). Then:

pe(k|xi) ∝
p(k|xi)

p(k)
. (2)

3.4. Test­time Image Augmentation

We considered the following 14 image augmentations at

test time: The original image; additional 6 crops of the orig-

inal image with 80% (central crop) and 60% (central crop

+ 4 corner crops) of the original image width/height; and

the mirrored versions of the 7 foregoing augmentations. All

augmentations are then resized to square inputs using bilin-

ear interpolation.

Predictions from all augmentations are then combined

by averaging (sum) or mode of the predicted classes. The

pipeline is illustrated in Figure 3.

4. Online Fungi Classification Service

In order to provide a flexible and scalable image-based

fungi identification service for the Danish Fungal Atlas, we

created a recognition server based on the open-source Ten-

sorFlow Serving [21] framework. The server currently uses

one of our pretrained models, the framework allows to de-

ploy several models at the same time. No test-time augmen-

tations are currently used in order to prevent server over-

load.

The pipeline is visualized in Figure 1: The web- and mo-

bile apps query the recognition server via Representational

State Transfer (REST) API. The server feeds the query im-

age into the Convolutional Network and responds with the
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Figure 4: Screenshot from the web-based recogni-

tion app (https://svampe.databasen.org/

imagevision).

list of predicted species probabilities. The apps then dis-

play a shortlist of the most likely species for the query. The

observation is also uploaded into the Danish Fungal At-

las database. The user can manually inspect the proposed

species and select the best result for annotation of the fun-

gus observation. Screenshots of the web and mobile inter-

faces are shown in Figure 4 and Figure 6 respectively.

Observations uploaded into the Danish Fungal Atlas

database and the proposed species identifications are then

verified by the community. Images with verified species la-

bels will be used to further fine-tune the recognition system.

5. Results

First, in Section 5.1, we evaluate the accuracy of our

models on the validation set before and after applying

”tricks” like test-time augmentation, ensembling, or adjust-

ing predictions to new class priors. Second, the official chal-

lenge results are summarized in Section 5.2. And last, Sec-

tion 5.3 presents the first results of the integration of the

classification service into the Danish Fungal Atlas.

5.1. FGVCx Fungi Validation Dataset

Let us first validate the CNNs from Section 3.2 on

the FGVCx Fungi validation set. Table 2 compares the

six trained CNN models before applying additional tricks,

with 1 forward pass (central crop, 80%) per image. We

will continue the validation experiments with CNN 1, i.e.

Inception-v4 pre-trained from an ImageNet checkpoint,

which achieved the best validation accuracy.

The test-time pre-processing of the image input makes a

noticeable difference. Table 4 shows the difference in accu-

racy for different sizes of central crop of the original image.

The advantage of adjusting the predictions with the new

categorical prior is shown in Figure 5: at the end of training

the accuracy increases by 3.8%, from 48.8% to 52.6%.

CNN Acc. (%) R@5 (%)

#1 Inception-v4 (ImageNet) 48.8 77.0

#2 Inception-v4 (LifeCLEF) 48.5 75.8

#3 Inception-v4 ”x2” (ImageNet) 48.6 76.6

#4 Inception-v4 ”x2” (LifeCLEF) 48.8 76.2

#5 Inc.-ResNet-v2 (ImageNet) 47.7 76.0

#6 Inc.-ResNet-v2 (LifeCLEF) 47.4 75.8

Inception-v4 [5] 44.7 73.5

Table 2: Accuracy and Recall@5 of individual networks

(central crop, 80%) on the FGVCx Fungi validation set.

Central crop Accuracy (%) Recall@5 (%)

100% 45.9 75.1

80% 48.8 77.0

60% 48.6 76.3

40% 43.1 69.3

Table 3: Inception-v4 (finetuned from the ImageNet check-

point) with differently sized central crops. Top-1 Accuracy

and Recall@5 on the FGVCx Fungi validation set.

100000 200000 300000 400000 500000 600000 700000 800000
Training step

44

46

48

50

52

Ac
cu

ra
cy

 [%
]

CNN output
CNN output calibrated for uniform distribution

Figure 5: Accuracy of Inception-v4 (finetuned from Im-

ageNet checkpoint) on the FGVCx Fungi validation set,

before (green) and after (red) adjusting the predictions by

pe(k).

5.2. FGVCx Fungi Competition

The competition test dataset on Kaggle was divided into

two parts - public and private. Public results were calculated

with approximately 70% of the test data and results were

visible to all participants. The rest of the data was used
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Accuracy (%)

#CNNs Crops Pool Baseline Known pe(k)

1 1 – 48.8 52.6

1 14 sum 51.8 56.0

6 1 sum 54.1 58.5

6 14 sum 54.2 60.3

6 14 mode 54.2 59.1

Table 4: Top-1 recognition accuracy on the FGVCx Fungi

validation set: single CNN (#1) vs. ensemble (#1,...,#6)

and single central crop (1) vs. multiple crops (14). Predic-

tions from ensembles and crops were combined by averag-

ing (sum) or by choosing the most common top prediction

(mode). Results are shown both before and after adjusting

the predictions by known pe(k).

for final competition evaluation toto avoid any possible bias

towards performance on the test images.

We chose our best performing system, i.e. the ensemble

of the 6 finetuned CNNs with 14 crops per test image and

with predictions adjusted to new class priors, for the final

submission to Kaggle. The accumulation of predictions was

done by the mode from top species per prediction had better

preliminary scores on the public Kaggle test set.

Our submission to the challenge achieved the best scores

in terms of Recall@3 error both in the public and private

leaderboard. The Recall@3 error is defined as follows: for

each image, if the ground truth label is found among the top

3 predicted labels, the error is 0, otherwise it is 1. The final

score is the error averaged across all images. The results of

the top 10 teams are listed in Table 5.

5.3. Results of the Online Classifier

The experts behind the Danish Fungal Atlas have been

highly impressed by the performance of the system6; in the

application, the results of the system are referred to as AI

suggested species. This has been confirmed by a data evalu-

ation where 5760 records have been submitted for automatic

recognition, of which only 904 (16 %) were not approved

by community- or expert validation. This is a far better per-

formance than most non-expert users in the system. Almost

two thirds (64 %) of the approved species identifications

were based on the highest ranking AI suggesting species ID,

while another 7 % were based on the second highest rank-

ing AI suggested species ID and another 6 % were based

and top 3-5 suggestions.

It has not been possible to collect data on identification

attempts where no useful match was returned from the AI,

and the user therefore picked a taxon name not in the top 10

6Personal communication with the Danish Fungal Atlas.

Recal@3 Error (%)

# Team Name Private Score Public Score

1 (ours) 21.197 20.772

2 digitalspecialists 23.188 23.471

3 Val An 25.091 25.213

4 DL Analytics 28.341 26.853

5 Invincibles 28.751 28.493

6 Tian Xi 32.235 31.636

7 Igor Krashenyi 32.616 34.164

8 wakaka 42.219 41.339

9 George Yu 47.621 47.113

10 Xinshao 67.837 67.509

Table 5: Results of the top ten teams in FGVCx Fungi
Classification Challenge. Source:
http://kaggle.com/c/fungi-challenge-fgvc-2018/

leaderboard

AI results. However, users generally stated that this rarely

happened. So far the system has been tested by 652 users,

each submitting between one and 526 records. For users

submitting more than ten records the accuracy in terms of

correct identifications guided by the system varied from

17% to 100%, pointing to quite considerable differences in

how well different users have been able to identify the cor-

rect species using the system. Hence, the tool is not fully

reliable, but helps the non-expert users to gain better identi-

fication skills. The accuracy was variable among the fungal

morphogroups defined in the fungal atlas, varying from 24

% to 100 % for groups with more than 10 records. The accu-

racy was tightly correlated with the obtained morphogroup

user score based on the algorithms deployed in the Danish

Fungal Atlas to support community validation.

The operators of Danish Fungal Atlas also received

positive feedback from several users about the new AI-

identification feature.

Within the first month the server has been running, more

than 20,000 images have been submitted for recognition.

Note that the mobile app with the image recognition fea-

ture has only been published at the time of this paper sub-

mission, and therefore, we expect an increasing number of

recognition queries.

6. Conclusions

The work described the development of a fungi recog-

nition system: from design and validation through winning

a computer vision Kaggle challenge to a final application

helping citizen-scientists to identify species of observed

specimen and motivating their contributions to a citizen-

science project.

2321



(1) (2) (3) (4)

Figure 6: Screenshots from the Android app showing (1) A detailed description of selected species, (2,3) Image based

recognition suggesting species for a query image, (4) Map with nearby observations.

Evaluation on the validation set in Section 5.1 showed

the effect of calibrating outputs to new a-priori probabili-

ties, test-time data augmentation and ensembles: together,

these ”tricks” increased the recognition accuracy by almost

12%, and helped us to score 1st in the FGVCx Fungi Classi-

fication competition hosted on Kaggle, achieving 79% Re-

call@3.

Integration of the image recognition system into Dan-

ish Fungal Atlas makes community-based fungi observa-

tion identification easier: from the first 592 approved an-

notations, 89% were based on the top-2 predictions of our

model.

Cross science efforts such as the collaboration described

here can develop tools for citizen-scientists that improve

their skills and the quality of the data they generate. Along

with data generated by DNA sequencing this may help low-

ering the taxonomic bias in the biodiversity information

data available in the future.

Future work

The server-based inference allows computation of accu-

rate predictions with good response time, and it motivates

users to upload images. On-device mobile inference would

also allow real-time recognition in areas with limited access

to mobile data. Inference on mobile devices would, how-

ever, require decreasing model size and complexity. Pos-

sible directions for future work include applying efficient

architectures [15, 26, 30], weight pruning and quantization

[13, 17, 37].

Deeper integration into mycological information sys-

tems may allow on-line learning of the classifier. Extend-

ing the collaboration with more mycological institutes or

information systems may help to improve the system even

further, as it would learn from all available data.

As species distribution differs based on geographical lo-

cations and local environment, estimating the priors for dif-

ferent locations may be used to calibrate the predictions for

observations with GPS information.
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[12] H. Goëau, P. Bonnet, and A. Joly. Overview of lifeclef plant

identification task 2019: diving into data deficient tropical

countries. In CLEF working notes 2019, 2019.

[13] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[14] J. Heilmann-Clausen, H. H. Bruun, R. Ejrns, T. G. Frslev,

T. Lsse, and J. H. Petersen. How citizen science boosted

primary knowledge on fungal biodiversity in denmark. Bio-

logical Conservation, 237:366 – 372, 2019.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[16] iNaturalist.org. inaturalist research-grade observations,

2019.

[17] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,

H. Adam, and D. Kalenichenko. Quantization and training

of neural networks for efficient integer-arithmetic-only infer-

ence. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2704–2713, 2018.

[18] W. Jetz, M. A. McGeoch, R. Guralnick, S. Ferrier, J. Beck,

M. J. Costello, M. Fernandez, G. N. Geller, P. Keil,

C. Merow, C. Meyer, F. E. Muller-Karger, H. M. Pereira,

E. C. Regan, D. S. Schmeller, and E. Turak. Essential biodi-

versity variables for mapping and monitoring species popu-

lations. Nature Ecology & Evolution, 3(4):539–551, 2019.

[19] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei.

Novel dataset for fine-grained image categorization. In First

Workshop on Fine-Grained Visual Categorization, IEEE

Conference on Computer Vision and Pattern Recognition,

Colorado Springs, CO, June 2011.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[21] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li,

V. Rajashekhar, S. Ramesh, and J. Soyke. Tensorflow-

serving: Flexible, high-performance ML serving. arXiv

preprint arXiv:1712.06139, 2017.

[22] J. Parham, C. Stewart, J. Crall, D. Rubenstein, J. Holmberg,

and T. Berger-Wolf. An animal detection pipeline for iden-

tification. In 2018 IEEE Winter Conference on Applications

of Computer Vision (WACV), pages 1075–1083. IEEE, 2018.

[23] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic

approximation by averaging. SIAM Journal on Control and

Optimization, 30(4):838–855, 1992.

[24] T. Robertson, S. Belongie, H. Adam, C. Kaeser-Chen,

C. Zhang, K. C. Tan, Y. Liu, D. Brul, C. Deltheil, S. Loarie,

G. V. Horn, O. M. Aodha, S. Beery, P. Perona, K. Copas, and

J. ThomasWaller. Training machines to identify species us-

ing gbif-mediated datasets. Biodiversity Information Science

and Standards, 3:e37230, 2019.

[25] M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the

outputs of a classifier to new a priori probabilities: a simple

procedure. Neural computation, 14(1):21–41, 2002.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4510–4520, 2018.

[27] M. Sulc and J. Matas. Improving cnn classifiers by esti-

mating test-time priors. arXiv preprint arXiv:1805.08235v2,

2019.

[28] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

[29] M. W. Tahir, N. A. Zaidi, A. A. Rao, R. Blank, M. J.

Vellekoop, and W. Lang. A fungus spores dataset and a con-

volutional neural network based approach for fungus detec-

tion. IEEE Transactions on NanoBioscience, 17(3):281–290,

July 2018.

[30] M. Tan and Q. V. Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946, 2019.

[31] J. Troudet, P. Grandcolas, A. Blin, R. Vignes-Lebbe, and

F. Legendre. Taxonomic bias in biodiversity data and so-

cietal preferences. Scientific Reports, 7(1):9132, 2017.

[32] J. van de Vooren, G. Polder, and G. van der Heijden. Identi-

fication of mushroom cultivars using image analysis. 1992.

2323



[33] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun,

A. Shepard, H. Adam, P. Perona, and S. Belongie. The inatu-

ralist species classification and detection dataset. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 8769–8778, 2018.

[34] A. J. van Strien, M. Boomsluiter, M. E. Noordeloos, R. J. T.

Verweij, and T. W. Kuyper. Woodland ectomycorrhizal fungi

benefit from large-scale reduction in nitrogen deposition in

the netherlands. Journal of Applied Ecology, 55(1):290–298,

2018.

[35] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011.

[36] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010.

[37] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

convolutional neural networks for mobile devices. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4820–4828, 2016.

[38] B. Zielinski, A. Sroka-Oleksiak, D. Rymarczyk, A. Piekar-

czyk, and M. Brzychczy-Wloch. Deep learning approach to

description and classification of fungi microscopic images.

CoRR, abs/1906.09449, 2019.

2324


