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Abstract

Video generation is an inherently challenging task, as it

requires modeling realistic temporal dynamics as well as

spatial content. Existing methods entangle the two intrin-

sically different tasks of motion and content creation in a

single generator network, but this approach struggles to si-

multaneously generate plausible motion and content. To im-

prove motion modeling in video generation task, we pro-

pose a two-stream model that disentangles motion genera-

tion from content generation, called a Two-Stream Varia-

tional Adversarial Network (TwoStreamVAN). Given an ac-

tion label and a noise vector, our model is able to create

clear and consistent motion, and thus yields photorealis-

tic videos. The key idea is to progressively generate and

fuse multi-scale motion with its corresponding spatial con-

tent. Our model significantly outperforms existing methods

on the standard Weizmann Human Action, MUG Facial Ex-

pression and VoxCeleb datasets, as well as our new dataset

of diverse human actions with challenging and complex mo-

tion. Our code is available at https://github.com/

sunxm2357/TwoStreamVAN/.

1. Introduction

Despite great progress being made in generation of well-

structured static images [47, 45] using methods such as

GANs/VAEs ([6, 16, 30, 31, 33, 26, 21, 17, 18]), genera-

tion of pixel-level video has yet to achieve similarly impres-

sive results [41, 34, 39, 15]. The challenge of video genera-

tion lies in the need to construct unstructured spatial content

with both foreground objects and background, and simulta-

neously model natural motion at different scales and loca-

tions. Existing methods fail to generate convincing videos

(see examples in Fig. 1b or the video in the supplemen-

tary material) mostly because of ineffective motion model-

ing, which in turn deteriorates content generation. A major

problem with pixel-level video prediction [27, 36, 40] and

generation methods is that they attempt to model both static

content and dynamic motion in a single entangled genera-

tor, regardless of whether they disentangle the motion and

content in the latent space or not.

Content Stream

Motion Stream
...Action

...
...

(a) Overview of Our TwoStreamVAN

(b) TwoStreamVAN (left) v.s. MoCoGAN (right)

Figure 1: We propose Two-Stream Variational Adversarial Net-

work (TwoStreamVAN) to improve motion modeling. Given an

action class, it separately generates content and motion from the

disentangled content and motion latent codes �c and em and fuse

them via a novel multi-scale fusion mechanism. Our model gener-

ates significantly better videos than MoCoGAN without separation

motion generation.

We argue that separating motion and content modeling

in the decoding phase is crucially important. On one hand,

it removes the disturbance of motion during content genera-

tion and results in better content structures. On the other

hand, separate motion modeling helps to produce action-

relevant movement consistently across the entire sequence.

We propose a novel Two-Stream Variational Adversar-

ial Network (TwoStreamVAN) that generates a video from

an action label and a disentangled noise vector (Fig. 1a) .

Rather than over-estimating a single generator’s ability, we

introduce two parallel generators that process content and

motion separately and fuse them together to predict the next

frame. Intuitively, motion is usually conditioned on the spa-
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tial information within its local context window, e.g., dif-

ferent motions near the arms and legs when doing jumping

jacks. Thus, we define the fusion of motion and content as a

learned refinement of pixel values unique to each location.

To precisely generate multi-scale motion, we conduct such

refinement on intermediate content layers with several dif-

ferent resolutions. Moreover, we introduce motion mask to

make the learning of motion only focus on the regions where

it exists.

Considering the great success achieved in image genera-

tion, we expect that introducing image-level supervision will

reduce the deterioration of content generation common in

most video generation models. Previously, MoCoGAN [39]

tried image-level supervision but made little progress, since

the content generation was still affected by the motion mod-

eling in a single shared generator. Notably, a key advan-

tage of our disentangled two-stream generators is the ability

to learn each stream separately and thus more accurately.

We learn the image structure in its own generator fully via

image-level supervision, which significantly enhances con-

tent generation performance. Well-trained content genera-

tion further benefits motion learning in video-level supervi-

sion.

We evaluate our approach on two standard video genera-

tion benchmarks, Weizmann Human Action [12] and MUG

Facial Expression [1] as well as a large-scale speech video

dataset – VoxCeleb [28]. To verify the advantage of our

two-stream generator in modeling motion, we propose a

large synthetic human action dataset, called SynAction, with

challenging motion complexity (120 unique action models

across 20 different non-rigid human actions, like running

or squatting), using a library of video game actions, Mix-

amo [7]. To summarize, our contributions are:

• We propose a video generation model TwoStreamVAN as

well as a more effective learning scheme, which disentan-

gle motion and content in the generation phase.

• We design a multi-scale motion fusion mechanism and

further improve motion modeling by conditioning on the

spatial context;

• We create a large-scale synthetic video generation dataset

available to the research community;

• We evaluate our model on four video datasets both quanti-

tatively and qualitatively (with user studies), and demon-

strate superior results to several strong baselines.

2. Related Work

Generative Models. The two main deep learning meth-

ods for image generation are VAEs [20, 14, 13, 44] and

GANs [11, 30, 31, 6]. VAEs provide probabilistic descrip-

tions of observations in latent spaces, but might generate

blurry and unrealistic images in their vanilla form. GANs

propose an adversarial discriminator to encourage the gen-

eration of crisper images, but suffer from mode collapse [46]

and unexpected bizarre artifacts. [23, 25] combine a VAE

and a GAN and propose a Variational Adversarial Network

(VAN) to learn an interpretable latent space as well as gen-

erate realistic images. In the light of the VAN’s success in

image generation, we adopt it here for video generation.

Video Generation is a challenging video task, which

maps random noise to the content and motion which form

a plausible video sequence. VideoVAE [15] shows the

VAE’s ability to produce video, proposing a structured la-

tent space and an encoder-generator architecture to gener-

ate the video recurrently. Except for this work, the pre-

vailing trend is to generate videos from noise utilizing the

GAN training paradigm. VideoGAN [41] generates a se-

quence of foreground objects with a single shared static

background. Instead of generating foreground and back-

ground separately, TGAN [34] decodes each frame from a

unified spatio-temporal latent representation. MoCoGAN

attempts to disentangle content and motion by sampling

from separate latent spaces but uses a single generator to

decode these two latent codes together. To overcome the in-

effective motion modeling and the consequent content dete-

rioration in the unified generation process, we further intro-

duce disentangled content and motion generators to model

spatial structures and temporal dynamics separately.

Video Prediction [9, 10, 8, 40, 2, 24, 36], a related yet

different task, outputs additional frames for a partial input

video by borrowing the content and extrapolating the mo-

tion from the given input video. The main difference of

two tasks lies in the origins of the content and motion in

the new output sequence: the generation samples them from

noise, but the prediction borrows the content and extrapo-

lates the motion from the input frames. Thus, they adopt

different metrics, emphasis on the future reconstruction and

the generation reality/diversity respectively. Despite of dif-

ferences, they share some technical details in common. For

instance, [40, 9] decompose the content and motion in the

encode phase; [10] discusses different motion transforma-

tions as effective motion representations. In this paper, we

mainly focus on Video Generation and show our superiority

over these shared techniques in the pure generative context.

Multi-scale Motion Estimation and Prediction. To

tackle multi-scale motion in actual videos, [3, 4, 37, 32]

build a pyramid of real images, while [38, 43] constructs a

pyramid of embedded feature maps. In our model, we take

the second method. Traditionally motion between two adja-

cent frames is introduced by warping the dense optical flow

features with the current frame [22, 19]. To avoid the high

computational cost of optical flow, Xue et al. [43] generates

multi-scale motion kernels from the difference map of adja-

cent frames. They learn generic motion kernels shared for

the entire image which is hard to interpret, because motion
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is usually conditioned on the local spatial context. In this

paper, we produce motion kernels specifically for each spa-

tial location and use these kernels to refine intermediate lay-

ers in content feature pyramid to model multi-scale motion.

Furthermore, as [43] only predicts the next frame from the

current, we design our model to address a more challenging

task which generates the video sequence without receiving

any visual clue as inputs.

3. Approach

We introduce a Two-Stream Variational Adversarial Net-

work (Fig. 2), which generates a video given an input ac-

tion label and a random noise vector. We define action-

conditioned video generation as follows. Suppose we have

K different action classes. In each class k ∈ 1:K , let Ck be

the number of training videos. Let Vk =
{
vi,k,∀i ∈ 1:Ck

}

be the set of all videos for class k and vi,k =
{
x1, x2,⋯ , xT

}

be a short video clip with T frames. The task is to de-

fine a function G which generates a plausible video v̂ ={
x̂1,⋯ , x̂T

}
conditioned on the given class label k from a

latent vector � ∈ ℝ
 , i.e. v̂ = G (k, �).

We disentangle the latent space � into two independent

codes: a content code �c ∈ ℝ
 , and a motion code �m ∈

ℝ
, with  =  + . We also disentangle the video

generation function G into two separate content and mo-

tion functions (Gc and Gm), in contrast to previous work that

used a single generator [41, 34, 39], and we design a novel

multi-scale fusion mechanism.

3.1. Two-Stream Generation

To learn generative functions Gc and Gm for content

and motion modeling, we introduce two separate action-

conditioned VAN streams with interactions at several stages.

Each VAN stream contains an encoder, a generator and a

discriminator, where the encoder and generator serve as the

auto-encoder in the VAE, and the generator and discrimina-

tor comprise the GAN.

The Content VAN Stream consists of a Content Encoder

Ec , a Content GeneratorGc and an Image DiscriminatorDI .

After observing a single frame x, Ec generates the posterior

content latent distribution q
(
zc|x, k

)
, which is close to its

true prior distribution p
(
zc|k

)
. Gc decodes a content vec-

tor �c sampled from the content distribution into a frame x̂.

DI discriminates real/generated frames to encourage Gc to

generate realistic image patterns.

Similarly, the Motion VAN Stream consists of a Motion

Encoder Em, a Motion Generator Gm and a Video Discrim-

inator DV . Instead of encoding spatial content, in our ap-

proach Em models the temporal dynamics in the difference

map Δx between neighbor frames. It generates the poste-

rior motion latent distribution q
(
zm|Δx, k

)
which is close

to its true prior distribution p
(
zm|k

)
. A convLSTM [42] ac-

cumulates the motion history and generates the current mo-

tion embedding em by receiving a sequence of �m sampled

from the motion distributions at all previous time steps. Gm

takes in �c and em to generate motion at different scales. We

generate each video v̂ by fusing the generated motion with

the corresponding content at T time steps (see Sec. 3.2).

DV discriminates the real/generated videos and additionally

classifies their actions to encourage Gm to generate realistic

motion for action k.

3.2. Multi-scale Motion Generation and Fusion

At pixel (a, b), the motion usually happens within a local

window between adjacent frames. Inspired by the spatial

convolution for frame interpolation [29], we represent mo-

tion as a refinement of the current pixel value based on its lo-

cal context and fuse such motion with content via spatially-

adaptive convolution. Moreover, we propose a novel multi-

scale fusion mechanism to overcome the drawbacks of their

approach, namely: 1) ineffective modeling of multi-scale

motion due to the single fusion step performed on the full-

resolution image and 2) the high demand for memory due

to the large convolution kernels used to represent the maxi-

mum possible motion.

To generate precise motion, Gm takes the disentangled

content and motion embeddings (�c and em) as input. In

Gm, motion at different scales is separated at the correspond-

ing hidden layers: large motion comes from low resolution

layers and small motion from high resolution layers. At

each layer, Gm uses the current feature map to: 1) calcu-

late the motion (pixel refinement) in the form of pixel-wise

2D kernels with size n; 2) identify the regions containing

actual movements in a motion mask; 3) generate the mo-

tion map for the following layer. To fuse motion with con-

tent, we convolve the generated 2D kernels with patches cen-

tered at their corresponding pixels respectively (i.e. perform

spatially-adaptive convolution) only if the pixel is in the re-

gions where motion is activated (see Fig. 3).
Specifically, suppose we separate the motion into S

scales. For each scale s, let ls be the resolution of its cor-

responding hidden layer, ws ∈ ℝ
ls×ls×n

2
be the convolution

kernels produced by Gm and ℎsc ∈ ℝ
ls×ls×ds be the corre-

sponding content layer, where ds is the content feature di-
mension. We perform the spatially-adaptive convolution in
the following steps. First, for each location (a, b), we recover
a 2D convolution kernel s (a, b) ∈ ℝ

n×n from its flattened
form ws (a, b). Then, we convolve s (a, b) with the con-
tent local patch s (a, b) ∈ ℝ

n×n×ds on ℎsc to produce an

intermediate content representation ℎ̃sc (a, b) for the location
(a, b):

ℎ̃s
c
(a, b) = s (a, b) ∗ s (a, b) . (1)

In Sec 4.6, we show the effectiveness of our approach

for capturing motion at different scales. Moreover, we

handle larger motion by adding adaptive convolutions to
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Latent Space

Motion
Latent Space

Content Encoder Image Discriminator

Real/Fake

Video Discriminator

Action

Real/Fake

Motion Generator

See Fig. 3

Motion Fusion Sampling convLSTM Content Stream Motion Stream

Content Generator

Motion Encoder

Figure 2: Our Two-Stream Variational Adversarial Network learns to generate the next frame x̂t+1 from the current frame xt. At training

time, Content and Motion Encoders (Ec and Em) generate latent distributions q
(
z
c
|xt, k

)
and q

(
z
m
|Δx, k

)
by viewing xt and the difference

map Δx between xt+1 and xt respectively. From latent distributions, we sample the content latent vector �c and �m and employ a convLSTM

to get em encoding the history of temporal dynamics. Content and Motion Generators (Gc and Gm) take in �c and em and then decode a

content hidden layer ℎc and motion kernels w along with a motion mask M at each scale. ℎc , w and M are served as inputs to our defined

multi-scale motion fusion (Fig. 3). Image and Video Discriminators (DI and DV ) encourage the model to generate both realistic content

and motion.

.

.

.

Convolution

Figure 3: Motion fusion for location (a, b) on its local window

 (a, b), at scale s. Take kernel size n = 3 for example. ℎc is the

content hidden layer from Gc . w and M are convolutional ker-

nels and the motion mask from Gm. We first recover the 2D ker-

nel  (a, b) from its flattened form w (a, b). Then we compute an

intermediate content feature ℎ̃c (a, b) by convolving  (a, b) with

 (a, b). Finally, we update ℎc with ℎ̃c guided by M to get the new

hidden layer ℎ̂c .

smaller layers while [29] handles it by increasing the ker-

nel size. Since the number of parameters to store and model

is quadratic in the kernel size, we significantly reduce the

memory usage and the model complexity by leveraging

small kernels (n = 3 or 5) for all layers in our multi-scale

fusion framework.
To focus Gm’s attention on learning the motion of scale s

in the regions where it actually happens, we predict a motion
mask Ms ∈ ℝ

ls×ls along with ws, to identify such regions.
Each entry Ms (a, b) is in [0, 1]. We generate the new con-

tent map ℎ̂sc with fused motion from ℎsc (a, b) and ℎ̃sc (a, b)
guided by Ms(a, b):

ℎ̂s
c
(a, b) = M s (a, b) ℎ̃s

c
(a, b) + (1 −M s (a, b))ℎs

c
(a, b) . (2)

In addition to focusing the model’s attention, motion

mask helps preserve the pixel value in the refinement by sim-

ply deactivating Ms(a, b). In contrast, [29] requires Gm to

learn a 2D kernel  with a special pattern for pixel preserva-

tion. In Sec. 4.6, we show that our masks activate the correct

areas at different scales and achieve better motion generation

and background preservation.

3.3. Learning

Taking advantage of our disentangled content and mo-

tion streams, we propose an alternating dual-task learning

scheme to learn each stream separately and thus more ac-

curately and effectively. Specifically, the content stream is

learned via image reconstruction, while the motion stream

is learned via video reconstruction. We alternate training,

such that each stream is trained while the other is fixed, and

use both VAE and GAN losses to optimize each stream.

Content Learning. We learn our content stream solely
by reconstructing the current frame x, without the distur-
bance of motion modeling, and reach compatible perfor-
mance with image generation methods. We optimize the
content VAE loss and image-level GAN loss. The VAE loss
includes a reconstruction loss for the current frame and a
KL-divergence between the prior content latent distribution
p
(
zc|k

)
and the posterior distribution q

(
zc|x, k

)
:

min
Ec ,Gc

V AE−c =�12

(
x̂, x

)
+ �2KL

(
q
(
z
c
|x, k

)
||p

(
z
c
|k
))

. (3)

Image-level GAN training uses real frames x as positive ex-
amples, and treats the generated images xp and x̂ sampled

from p
(
zc|k

)
and q

(
zc|x, k

)
as negative examples follow-

ing Larsen et al. [23]:

max
Gc

min
DI

GAN−c = log
[
1 −DI (x)

]
+ log

[
DI

(
x̂
)]

+ log
[
DI

(
xp

)]
. (4)

Motion Learning. We train the Motion Stream to generate

the continuous motion for the next 10 frames after observing
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the first frame. During training, the Motion Stream recon-

structs the whole sequence recurrently. For every time step

t, it reconstructs the current frame x̂t from
{
x1, x2,⋯ , xt

}
.

Similarly to content learning, we optimize the motion
stream with a motion VAE loss and a video-level GAN
loss. In addition to the video reconstruction loss and
KL-divergence between the prior motion latent distribution
p
(
zm|k

)
and the posterior distribution q

(
zm|Δxt, k

)
where

Δxt = xt − xt−1, the VAE loss also contains a 2 loss be-
tween the refined content hidden layer of the previous frame(
ℎ̂sc

)

t−1
and the content layer of the current frame

(
ℎsc
)
t
.

Thus, the total motion VAE loss is:

min
Em ,Gm

V AE−m = �3
∑

s,t

2

((
ℎ̂s
c

)

t−1
,
(
ℎs
c

)

t

)
+ �42

(
v̂, v

)

+ �5
∑

t

KL
(
q
(
z
m
|Δxt, k

)
||p

(
z
m
|k
))

. (5)

The video-level GAN loss contains the vanilla GAN loss
GAN−m and an auxiliary classification loss cls [30]. The
vanilla GAN takes real videos v as positive examples, and
treats the generated videos vp and v̂ sampled from p

(
vc|k

)

and q
(
vc|x, k

)
as negative examples. Apart from GAN

training, both the generator and the discriminator minimize
a classification loss on action labels to generate action-
related motion:

max
Gm

min
DV

GAN−m = log
[
1 −DV (v)

]
+ log

[
DV

(
v̂
)]

+ log
[
DV

(
vp
)]

, (6)

min
Gm ,DV

cls (v) + cls

(
v̂
)
+ cls

(
vp
)
. (7)

We provide implementation details (hyper-parameters,

model architecture, etc.) in the supplementary material.

3.4. Generating a Video at Test Time

While learning relies on observing the ground truth, at

test time, generating a video begins from sampling in the

latent space. Given an action class k, we generate the

first frame from a randomly sampled content vector �c ∼

p
(
zc|k

)
, and then the following frames from the content

embedding of the last frame as well as the current motion

embedding em computed by the convLSTM recurrently. To

generate em at each time step, the convLSTM updates the

accumulated motion history with an extra motion vector

�m ∼ p
(
zm|k

)
containing the current potential motion.

4. Experiments

4.1. SynAction Dataset

Existing synthetic datasets used in [36, 43, 39] only con-

tain rigid motions (e.g. linear motion in any direction) which

are not challenging for deep neural networks. To uncover the

model’s ability to generate complex and action-related mo-

tion, we build a large-scale synthetic human action dataset,

SynAction Dataset, with a powerful game engine Unity.

Dataset SynAction Moving MNIST Shape Motion Weizmann MUG

Type Synthetic Synthetic Synthetic Real Real

Videos 6000 10000 4000 90 882

Action Models 120 - 2 - -

Action Classes 20 1 1 10 6

Scenes 150 10 1 9 52

Table 1: Compared to other datasets frequently used in video gen-

eration, our SynAction Dataset has a larger variation of content and

motion and is thus more challenging.

The dataset contains 120 unique non-rigid human action

models from the Mixamo motion library across 20 action

classes. Every action is akin to real human actions but easy

to distinguish from other actions. The dataset is further var-

ied between 10 different actors and 5 different backgrounds.

Table 1 shows that SynAction has more variation in content

and motion than existing synthetic and standard real-world

datasets for video generation.

We provide each video with four different annotations:

actor identity, action class, background and viewpoint. In

this paper, we only use the action class to generate videos.

4.2. Other Datasets

In addition to our proposed SynAction Dataset, we evalu-

ate our model on three existing datasets: Weizmann Human

Action [12], MUG Facial Expression [1] and VoxCeleb [28].

The Weizmann Human Action Dataset contains 90 videos

of 9 actors performing 10 different actions. MUG Facial

Expression Dataset contains 882 videos with 52 actors per-

forming 6 different facial expressions. From the VoxCeleb

Dataset, we form a training set containing 15184 videos of

186 people speaking.

With these three datasets, we cover a large range of mo-

tion, from large human actions (e.g. running, jumping) to

subtle facial movements (e.g. happiness, disgust, speaking)

as well as head movements (e.g. nodding, turning) and in-

clude both periodic and non-periodic motion.

4.3. Evaluation Metrics

Quantitative evaluation of generative models remains a

challenging problem, and there is no consensus on the mea-

surement which best evaluates the realism and diversity of

the generated results. Thus, instead of just relying on a sin-

gle measurement, we utilize four different metrics to exam-

ine both the realism and diversity of generated motion: In-

ception Score (IS) [35], Inter-Entropy H (y) [15] and Intra-

Entropy [15] H (y|v), where v is the video for evaluation and

y is the action predicted by a classifier. Because all these

metrics utilize a pre-trained classifier for evaluation, we train

a classifier separately on each dataset and show its perfor-

mance by computing the same metrics on the test set, which

only consists of real videos. We call these values the Ex-

perimental Bound. To make a fair comparison, we compute

metrics on 10-frame video clips generated by each model.
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Dataset Weizmann (# action = 10) MUG (# action = 6) Syn-Action (# action = 20)

Metric H (y) H (y|v) IS H (y) H (y|v) IS H (y) H (y|v) IS

MoCoGAN [39] 4.38 0.31 58.52 1.78 0.17 5.03 2.90 0.36 12.75

VideoVAE [15] 4.37 0.11 70.10 - - - - - -

SGVAN 4.34 0.04 73.73 1.79 0.13 5.29 2.98 0.18 16.43

TwoStreamVAN (−M) 4.31 0.29 55.99 1.79 0.11 5.32 2.97 0.15 16.79

TwoStreamVAN 4.40 0.05 77.11 1.79 0.09 5.48 2.99 0.09 18.27

Exp Bound 4.50 0.01 88.94 1.79 0.01 5.91 3.00 0.01 19.85

Math Bound 4.50 0.00 90.00 1.79 0.00 6.00 3.00 0.00 20.00

Table 2: Quantitative Results on Weizmann, MUG and Syn-Action Datasets. For IS, the higher value is better; while for H (y|v), the lower

value is better. Compared with all baselines, our TwoStreamVAN model achieves the best results on most metrics.

4.4. Baselines

We compare against two existing methods to show our

model’s superiority in generating videos of a given action:

MoCoGAN1 [39] and VideoVAE2 [15], which are the cur-

rent state-of-the-art.

We also design several ablated variants of TwoStream-

VAN to examine key components of our model:

SGVAN adopts a single generator to generate a single

frame from the disentangled content and motion vectors,

keeping all parts of the model the same. This comparison

evaluates the contribution of the parallel Gc and Gm.

TwoStreamVAN(−M) applies motion fusion to content

hidden layers at multiple scales without the guidance of mo-

tion masks. This comparison helps us to examine the effec-

tiveness of motion masks.

4.5. Results

Quantitative Results. We compute quantitative metrics

on the results of all baselines and our TwoStreamVAN (see

Table. 2) on Weizmann, MUG and SynAction Datasets.

We train a normal action classifier on MUG and SynAc-

tion Datasets, and train a classifier to distinguish each actor-

action pair on Weizmann to compare with VideoVAE.

TwoStreamVAN improves the Inception Scores of

MoCoGAN by 32%, 9% and 43% on Weizmann, MUG and

SynAction Datasets respectively. Despite that VideoVAE

receives the first frame and the actor identity as additional

inputs, our model still results in a better IS value on Weiz-

mann. Meanwhile, TwoStreamVAN achieves both higher

H(y) and lower H(y|v), indicating that it generates more di-

verse and more realistic videos than either MoCoGAN or

VideoVAE.

Compared to our ablated models SGVAN and

TwoStreamVAN(−M), our model pushes all metrics

closer to their bounds. These results reveal that our full

model benefits from key components in our design, namely

the disentangled generators and the guidance of the motion

mask in fusion.

1We use categorical MoCoGAN implemented by its authors.
2Due to VideoVAE’s non-public implementation, we only compare

with quantitative results on Weizmann Dataset reported in the paper.

Qualitative Results. We visualize videos generated by

TwoStreamVAN and MoCoGAN. For Weizmann, MUG

and SynAction datasets, we provide 4 generated videos

from TwoStreamVAN and MoCoGAN of the given action

(Fig. 4). Our TwoStreamVAN model succeeds in generating

more accurate and fine-grained motion for different actions.

To evaluate the quality of content generation, we ran-

domly sample 10 generated frames from TwoStreamVAN

and MoCoGAN’s results respectively (Fig. 4). In compari-

son, TwoStreamVAN yields better content generation, with

few severe distortions or bizarre artifacts across all three

datasets, which demonstrates that TwoStreamVAN reduces

the content deterioration significantly.

User Study on SynAction. To further test the ability of

TwoStreamVAN and MoCoGAN to handle more diverse hu-

man action videos, we conduct user studies on SynAction

via AMTurk [5]. In the pairwise comparison, 88% ± 0.45% /

81% ± 0.71% users think TwoStream generates better videos

before/after knowing the ground truth action, showing that

the superiority of our TwoStreamVAN to generate the clear

and consistent motion and yield visually satisfying videos.

Experiment on large-scale VoxCeleb. To extensively

test the ability of our model to generate real-world videos,

we experiment on a new large-scale speech dataset Vox-

Celeb [28]. Compared to the standard Weizmann and MUG

Datasets, VoxCeleb is more challenging due to the wide va-

riety of content and motion in its huge amount of videos.

Because VoxCeleb has no action label, we generate videos

only from a noise vector. We compare to MoCoGAN via a

user study on AMTurk and the qualitative visualization.

In the pairwise comparison, 82.55% ± 0.53% users prefer

TwoStreamVAN to MoCoGAN, evidence that our generated

videos are more visually-pleasing. In the qualitative com-

parison (see Fig 5), TwoStreamVAN captures both lip and

head movements, whereas MoCoGAN suffers from mode

collapse and only generates videos without head move-

ments. Our model precisely reproduces the subtle motion

related to speaking, while MoCoGAN outputs exaggerated

and unrealistic movements (e.g. teeth suddenly appear dur-

ing speech). Moreover, TwoStreamVAN generates better-

looking faces than MoCoGAN.
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Run

Side

Happy

Disgust

Surprise

Run

TwoStreamVAN (ours)

Wave1

Knee

Bow

Random

Random

Random

MoCoGAN

Figure 4: We provide 3 generated videos of TwoStreamVAN and MoCoGAN on Weizmann, MUG and our new SynAction datasets. Our

model generates clear and consistent motion. We further randomly sample 10 generated frames for each model. TwoStreamVAN results in

better content quality with fewer distortions in every single frame. More qualitative results are presented in the supplementary material.

(a) TwoStreamVAN (ours)

(b) MoCoGAN
Figure 5: Qualitative comparison between TwoStreamVAN and

MoCoGAN. TwoStreamVAN captures both lip and head move-

ments, while MoCoGAN only generates non-moving heads. More

examples are provided in the supplementary material.

4.6. Ablation Studies

Disentanglement Study To show that the disentangle-

ment of content and motion really happens, we experiment

on MUG dataset. With the fixed content code �c , we gen-

erate videos using different motion codes (see Fig 6). We

classify actors and actions in the generated videos using pre-

trained classifiers. 95.9% of our generated videos preserve

the actor in the fixed content code and 95.6% of videos gen-

erate the correct action defined in the different motion code.

happy

sad

surprise

disgust

anger

fear

Figure 6: We provide examples of varying the motion code while

the content code is fixed.

It demonstrates that content and motion generations are sep-

arated in TwoStreamVAN.

Multi-scale v.s. Single-scale Motion Fusion To examine

the effectiveness of multi-scale motion fusion, we train four

TwoStreamVAN models on the Weizmann Human Action

Dataset, in which we apply fusions at 1, 2, 3 and 4 layers

(scales) respectively. We add new fusion layers from the

highest resolution to the lowest resolution. In each fusion,

we implement motion kernels with a fixed size n = 5. More-

over, we train a model where we apply large motion kernels

with n = 17 on the output image from the Content Stream

to imitate the single-scale fusion in [29].

In Table. 3, it is not surprising that the performance drops

when we reduce n from 17 to 5 with a single fusion on the

image. As we increase fusion layers, IS value, H (y) and
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# layers n IS ↑ H (y) ↑ H (y|v) ↓ H (y|v) (run) ↓

1 17 75.89 4.38 0.05 0.104

1 5 74.95 4.39 0.07 0.166

2 5 74.57 4.38 0.07 0.096

3 5 77.83 4.40 0.05 0.062

4 5 77.11 4.40 0.05 0.059

Table 3: Quantitative results of models varying in the kernel size

n and the number of scales to apply fusion. For single fusion, the

performance drops by reducing the kernel size. After applying fu-

sion at multiple scales, the performance recovers and finally out-

performs the single fusion with large kernels.

1 layer

1 layer

2 layers

3 layers

4 layers

Figure 7: Qualitative comparison among similar sequences gen-

erated by single fusion with large kernels and multi-scale motion

fusion with small kernels. When we apply fusion at 3 or 4 scales,

our model generates the sharpest and clearest outlines of the run-

ner’s leg among all models.

Bend

Jack

Wave2

layerlow resolution high resolution

Figure 8: We overlay the motion mask at each scale with the cur-

rent frame x̂t. Motion masks at lower resolutions are only activated

on large-motion areas, while a large area in the motion mask at

the highest resolution is activated to tackle small changes between

neighboring frames.

H (y|v) recover and finally outperform those of the model

with a single large fusion step on the full resolution image.

To further analyze multi-scale fusion, we measure

H (y|v) of large motion, e.g. running (in Table. 3). The

more layers such fusion is applied to, the lower H (y|v) is,

indicating that more realistic large motion is generated. We

pick similar videos (Fig. 7) generated by different models

and zoom in on the actor’s legs, where the largest motion

happens. When we only apply fusion with kernel size n = 5

at the highest 2 resolutions, the model fails to tackle the large

motion around the legs and generates blobs. After increas-

ing the number of fusion layers, it finally generates an even

sharper outline than the model using the single large fusion,

showing the benefits of our multi-scale mechanism.

Visualization of Motion Masks We visualize the motion

mask at each layer by overlaying it with the current frame x̂t

TwoStreamVAN (-M) TwoStreamVAN

Figure 9: Qualitative Comparison of TwoStreamVAN(−M) and

TwoStreamVAN. Motion masks improve generation in a few areas

(background for Weizmann and SynAction and eyes for MUG).

(Fig. 8) to show it activates the correct area. For low resolu-

tions, the mask is only activated at large-motion areas, e.g.

torso for bending, arms and legs for jumping-jacks and arms

for waving. For the highest resolution, the activation covers

the background area to overcome some small changes, e.g.

lighting changes or small camera movements. This correct

activation focuses the model’s attention on learning the mo-

tion in these areas and boosts quantitative performance (see

TwoStreamVAN (−M) v.s. TwoStreamVAN in Sec. 4.5).

We further visualize frames generated from these two

models (Fig. 9). We observe that TwoStreamVAN(−M)

does a worse job in small-motion areas. On Weizmann and

SynAction, it messes up background patterns. On MUG, it

generates unexpected brick patterns around eyes. Our full

TwoStreamVAN does not suffer from these problems with

the help of motion masks. This observation is consistent

with our claim (in Sec. 3.2) that motion masks help to pre-

serve static pixel values during the generation.

5. Conclusion

In this paper, we propose a novel Two-Stream Variational

Adversarial Network to improve motion modeling in video

generation. To generate motion efficiently, we decompose

content and motion in the generation phase and fuse them via

a novel multi-scale mechanism. Combined with the dual-

task learning scheme, our disentangled generative network

overcomes the common content deterioration and further

benefits motion modeling. We propose a large-scale syn-

thetic human action dataset SynAction to evaluate the mo-

tion modeling in video generation. Our model significantly

outperforms the current state-of-the-art works across Weiz-

mann, MUG, VoxCeleb and our SynAction datasets in quan-

titative and qualitative (user study) evaluations. In the future

work, we hope to explore video generation controlled via

textual description or interactive user manipulation.
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