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Abstract

E-commerce companies like Amazon, Alibaba and Flip-

kart have an extensive catalogue comprising of billions of

products. Matching customer search queries to plausible

products is challenging due to the size and diversity of the

catalogue. These challenges are compounded in apparel

due to the semantic complexity and a large variation of

fashion styles, product attributes and colours. Providing

aids that can help the customer visualise the styles and

colours matching their “search queries” will provide cus-

tomers with necessary intuition about what can be done

next. This helps the customer buy a product with the styles,

embellishments and colours of their liking. In this work,

we propose a Generative Adversarial Network (GAN) for

generating images from text streams like customer search

queries. Our GAN learns to incrementally generate possi-

ble images complementing the fine-grained style, colour of

the apparel in the query. We incorporate a novel colour

modelling approach enabling the GAN to render a wide

spectrum of colours accurately. We compile a dataset

from an e-commerce website to train our model. The pro-

posed approach outperforms the baselines on qualitative

and quantitative evaluations.

1. Introduction

In large e-commerce companies like Amazon, Alibaba

and Flipkart with extensive catalogues, matching customer

search queries to plausible products is challenging due to

the size and diversity of the catalogue. Customers purchas-

ing products with a personal bias like apparel typically rely

on query results to zone in on products matching personal

preferences. In apparel, there are a large number of prod-

ucts in a myriad of fashion styles and colour. This means

behavioural data is likely to be heavy-tailed. This affects

∗Work done at Amazon

Figure 1. Example prediction by our model, ReStGAN vis-à-vis

StackGAN on a text stream of stylistic attributes pertaining to an

apparel.

traditional predictive algorithms which rank products in the

catalogue based on likelihood of click, purchase or other ag-

gregated customer behavioural data. Helping the customer

visualise products with styles and product attributes match-

ing their “search words” will provide customers with nec-

essary intuition about what can be done next. This helps

the customer discover and buy products that match personal

styles.

We leverage a Generative Adversarial Network

(GAN) [2] to transform stylistic attributes of apparels to

images. A GAN is a generative model based on a deep neu-

ral network consisting of two components. The former of

the two, called the generator (G), transforms random noise

to samples mimicking real data. The latter, known as the

discriminator (D), inspects the image samples generated

by the generator to assert whether they are real or fake. The

generator learns to generate samples via feedback from

the discriminator. Given a sequence of customer search

queries: “Black women’s pants” ⇒ “Petite” ⇒ “Capri”,

the task is to generate a sequence of possible images
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matching the queries as they are refined. The natural

choice would be to use popular text-to-image GANs to

generate an image for each query in the sequence. However

text-to-image GANs like StackGAN [24] do not explicitly

model sequential data. Fig.1 shows images generated by

our model against those generated by StackGAN for the

said text sequence. StackGAN fails to maintain consistency

of images across the sequence. We overcome this drawback

by training a recurrent text-to-image GAN, thus explicitly

modelling the sequence. In Fig.1 , our model (ReStGAN)

generates images at each step that match the query words

at that step while retaining visual attributes from previous

generations. This helps the customer to envision possible

apparels, which match their evolving queries, and thus

guides them to products matching their preference. Our

main contributions are:

• The first text-to-image GAN that leverages a recurrent

architecture to incrementally synthesise images from a

stream of fine-grained textual attributes.

• Novel and effective colour modelling enabling the

GAN to render a wide spectrum of colours accurately.

• Quantitative evaluation on a dataset compiled by us

from an e-commerce site. ReStGAN achieves a 113%

improvement in Inception score-colour, 28% improve-

ment in Inception score-type, 27% improvement in In-

ception score-gender and 86% reduction in FID score

(lower is better) over the traditional StackGAN.

2. Related Work

The problem of generating images from textual descrip-

tions has garnered significant traction in the research com-

munity. Reliable text-to-image synthesis requires two sub-

problems to be solved in tandem: compelling image syn-

thesis and a robust natural language representation. Recent

strides in image synthesis, building on the family of GAN

models [2], have shown evidence of photo-realistic image

generation. Several works [14, 16, 1, 7, 12] have incorpo-

rated novel optimisation techniques to stabilise the training

process and generate striking synthetic images at higher res-

olutions.

Several extensions to the original GAN formulation have

achieved controllable image synthesis by including condi-

tional attributes or class labels in GANs [9, 12, 23, 21].

Text-to-image GANs belong to the family of conditional

GANs where the conditioning variable encodes a textual

description of the image envisioned. Reed et al. [15] use a

novel deep architecture coupled with the GAN formulation

to generate images from text descriptions. StackGAN [24]

improves on Reed et al. by using multiple stages to progres-

sively generate high resolution images.

Text-to-image GANs like StackGAN [24], and it’s suc-

cessors [26, 25] are predicated on the assumption that the

entire description is present while synthesising the image

conditioned on the text. Motivated by the results of text-to-

image GANs, we build a model to process text streams and

synthesise images incrementally. To the best of our knowl-

edge, our proposed text-to-image GAN bears the distinction

that it is the first to leverage Recurrent Neural Networks’

(RNN) ability to model sequences and incrementally add

fine-grained style details. We enable the training of this

novel architecture by integrating it with multiple learning

strategies [22, 16, 12]. We demonstrate this model’s effec-

tiveness on the case of fine-grained text-to-image synthesis

by focussing on an apparel dataset compiled by us.

Prior work in GANs on generation of sequential data [11,

6] has focussed on time-series data generation. Mogren

et al. use a recurrent generator and discriminator to pro-

duce polyphonic music. Hyland et al. [6] use a recurrent

generator and discriminator to generate medical time series

data. They do perform preliminary experiments on gener-

ating digits by treating rows in the image of a digit as a

sequence while conditioning on the class label of the digit.

However, they perform these experiments in a constrained

setting with just three digit classes. In contrast, we intro-

duce recurrence in a sophisticated GAN architecture capa-

ble of generating photorealistic images from descriptions of

apparels. This poses challenges in scale and necessitates the

use of multiple training strategies and novel modelling of

the conditioning attributes to produce photorealistic images.

Our proposed model also produces a distinct high resolution

image at each step in the sequence. In contrast, Hyland et

al. compose a single low resolution image in multiple steps.

3. Our Model–Recurrent StackGAN (ReSt-

GAN)

We propose a text-to-image GAN, Recurrent Stack-

GAN(ReStGAN), that leverages Recurrent Neural Net-

works (RNN) to model sequences of data and generate

clothing outfits that envision text descriptions as they ap-

pear on the fly. The architecture of ReStGAN is shown

in Fig.2. ReStGAN follows a staged approach similar

to StackGAN [24] and generates high resolution images

through an intermediate low resolution image. The staging

makes the generation of high resolution images tractable.

ReStGAN has two stages:

Stage-I ReStGAN: The Stage-I in ReStGAN comprises

of an LSTM that feeds into a convolutional encoder. The

LSTM encodes fine-grained text attributes describing the

outfit in a hidden representation. The hidden representation

corresponding to each fine-grained text input is fed into the

upsampling block in Stage-I of ReStGAN, along with noise

z and conditioning corresponding to the colour of the item,

c. The Stage-I generator G1 generates a low-resolution im-

age Ilr with the basic contour and colour of the object.

Stage-II ReStGAN: Stage-II generator G2 in ReStGAN

upsamples the generated image, Ilr and adds finer details
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including texture, stylistic details and colour gradients pro-

ducing a more realistic high-resolution image Ihr.

We discuss the architecture of ReStGAN, training tech-

niques, objective modifications and modelling assumptions

we incorporate to train ReStGAN in Sections 3.1–3.5.

3.1. Stage­I ReStGAN

Stage-I is the first of the stages comprising of an LSTM

feeding into a convolutional encoder trained end-to-end.

Let Ir be a real image and y = {y1, y2, y3, . . . , yT } be

a sequence of fine-grained text attributes describing Ir
drawn from the true data distribution pdata. Let z =
{z1, z2, .., zt, .., zT } be a sequence of noise vectors inde-

pendently sampled from a given distribution pz and ϕt be

the sentence embedding of the given fine-grained attribute

yt. ϕt is generated by applying a compositional function

over word embeddings in the phrase. We use SWEM-

concat [18] to generate ϕt. The generated sentence embed-

ding ϕt is fed as an input to the LSTM. For each time step

in the forward pass of the LSTM, we get the output hidden

state of LSTM, say ht . We use the hidden state as em-

bedding for text conditioning as it captures the fine-grained

attribute at time-step t and historical context. The hidden

state ht is stacked with the colour embedding ct (see Sec-

tion 3.4 for details on colour conditioning) at each time-step

t to obtain the conditioning q = {q1, q2, .., qt, .., qT }. Con-

ditioned on q and random noise variable z, Stage-I GAN

trains the discriminator D1 and the generator G1 by alter-

natively maximizing LD1
in Eq. (1) and minimizing LG1

in

Eq. (2).

LD1
= E(Ir,q)∼pdata

[
∑

t∈T

logD1(Ir, qt)]+

Ez∼pz,q∼pdata
[
∑

t∈T

log(1−D1(G1(zt, qt), qt))]

(1)

LG1
= Ez∼pz,q∼pdata

[
∑

t∈T

log(1−D1(G1(z, qt), qt))]

(2)

Model Architecture For the generator G1, the hidden

state ht of the LSTM is stacked with random noise vector zt
and colour embedding ct at each time-step t. The resultant

Ng dimensional conditioning vector qt is convolved with a

series of of up-sampling blocks to get a W1 × H1 image,

Ilr.

For the discriminator D1, the conditioning embedding

consisting of the lstm hidden state ht and the colour em-

bedding ct are stacked to get an embedding of size Nd di-

mensions and replicated spatially to form a Md ×Md ×Nd

tensor. The generated image is encoded by the discrimina-

tor encoder and stacked along with the spatially replicated

conditioning embedding. The resultant tensor is convolved

with a 1×1 convolutional layer which projects it onto a

lower dimensional space and then a classification layer with

a single neuron outputs a decision score classifying it as real

or fake.

3.2. Stage­II ReStGAN

Low-resolution images generated by Stage-I GAN lack

finer details, texture and rich colour gradients that render an

image photorealistic. We suitably modify the Stage-II GAN

from StackGAN to generate high-resolution images. The

Stage-II GAN uses a learnt projection of the hidden state ht

from a fully-connected layer, ĥt, as conditioning along with

the colour embedding. Let q̂ = {q̂1, q̂2, q̂3, . . . , q̂T } be the

conditioning corresponding to stacked projected embedding

ĥt and colour embedding ct for all time steps t.
Conditioning on the low-resolution result Ilr = G1(z, q)

and q̂, the discriminator D and generator G in Stage-II GAN

are trained by alternatively maximizing LD2
in Eq. (3) and

minimizing LG2
in Eq. (4). With both LD2

and LG2
, we use

an additional auxiliary classification loss LC (Eq. (5)) [12].

LC aids in the generation of high resolution images that

generate class conditional features which wouldn’t be gen-

erated if Ilr was merely upsampled. We model the auxiliary

classification step as a multi-task classification with three

independent label spaces (C) corresponding to the product

type, colour and target gender of the apparel in the image

(see Section 3.3 for details).

LD2
= E(Ir,q̂)∼pdata

[
∑

t∈T

logD2(Ir, q̂t)]

+EIlr∼pG1
,q̂∼pdata

[
∑

t∈T

log(1−D2(G2(Ilr, q̂t), q̂t))]

+λ1LC

(3)

LG2
= EIlr∼pG1

,q̂∼pdata
[
∑

t∈T

log(1−D2(G2(Ilr, q̂t), q̂t))]

−λ2LC

(4)

LC = EIr∼pdata
[
∑

t∈T

logP (C = c | Ir)]

+ EIlr∼pG1
,q̂∼pdata

[
∑

t∈T

logP (C = c | G2(Ilr, q̂t))] ∀C

(5)

Model Architecture We retain the encoder-decoder net-

work architecture with residual blocks [4] for Stage-II gen-

erator from StackGAN [24]. Similar to the previous stage,

the projected hidden state ĥt is stacked along with colour

embedding ct to generate the Ng dimensional conditioning

vector q̂t, which is spatially replicated to form a Mg×Mg×
Ng tensor. Meanwhile, the Stage-I result Ilr is encoded us-

ing a convolutional encoder block to generate image fea-

tures. The spatially replicated conditioning is stacked with
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these image features. The resultant tensor is then feed-

forwarded through residual blocks and a decoder to gen-

erate a W2 ×H2 high-resolution image, Ihr.

The discriminator structure is identical to the Stage-II

discriminator in StackGAN with the exception of an auxil-

iary multi-task classifier. In addition to a real vs fake im-

age classifier, the discriminator has 3 classification layers

for tasks pertaining to gender, colour and product type clas-

sification . In the form of a regularizer, spectral normali-

sation [10] is imposed on all layers in the discriminator in

Stage-II. In our experiments, we observed this to prevent

the generator G2 from collapsing during the initial training

epochs.

3.3. Tricks for stability and faster convergence

We leverage an auxiliary classifier [12] to stabilise the

training of ReStGAN. The auxiliary classification label set

C spans gender (male, female, unisex), colour (see Section

3.4 for details on colour labels) and product type (jeans,

shorts, pants) of the outfit being generated. Without the

auxiliary classification loss LC , ReStGAN experienced sig-

nificant mode collapse.

One-sided label smoothing [16] has been used to encour-

age the discriminator to estimate soft probabilities and re-

duce the chances of the discriminator producing extremely

confident classifications. While traditionally, only the la-

bels for the real samples undergo smoothing, we smoothen

the labels for the fake samples as well. We empirically ob-

served that smoothing the fake labels aided in stabilising

losses for the negative pairs in the matching-aware discrim-

inators used to train our GANs (see Section 3.5 for more

details on matching-aware discriminator).

3.3.1 Prediction methods for stabilising adversarial

training

During training of GANs, training alternates between min-

imisation and maximisation steps. GAN alternates between

updating discriminator D with a stochastic gradient descent

step, and then updating the Generator, G with a stochastic

gradient ascent step. When simple/classical SGD updates

are used, the steps of this method can be written as in Eq. 6:

Dk+1 = Dk − αkL
′
D(Dk, Gk) | gradient descent in D

Gk+1 = Gk + βkL
′
G(D

k+1, Gk) | gradient ascent in G

(6)

Dk+1 = Dk − αkL
′
D(Dk, Gk) | gradient descent in D

D̄k+1 = Dk+1 + (Dk+1 −Dk) | predict future value of D

Gk+1 = Gk + βkL
′
G(D̄

k+1, Gk) | gradient ascent in G

(7)

Here, {αk} and {βk} are learning rate schedules for the

minimisation and maximisation steps, respectively. The

stochastic gradients of L with respect to D and G are de-

noted by L′
D(D,G) and L′

G(D,G) respectively. If either of

the steps in Eq. 6 is more powerful than the other, a collapse

of the network is observed as the algorithm becomes unsta-

ble. Prediction steps [22] mitigate this issue and stabilise

the training of adversarial networks by adding a lookahead

step. An estimate of the position of D in the immediate fu-

ture assuming current trajectory, D̄k+1, is computed. This

predicted value of the discriminator is used to obtain Gk+1.

The details are provided in Eq. 7.

We apply prediction steps on both the generator and dis-

criminator networks across both stages. In our experiments

with Recurrent GANs, we find that the prediction steps are

beneficial in stabilising the training. ReStGAN experienced

significant mode collapse without application of prediction

steps.

3.4. Colour modelling

While prior works in text-to-image GANs including

StackGAN [24] feed colour as a part of text conditioning,

we find that the embeddings derived from recurrent lan-

guage models or word embedding spaces like GloVe [13]

and Word2Vec [8] do not respect perceptual similarity in

the colour space. Sequences S.1–2 in Fig.3 show images

generated by a StackGAN model (StackGAN) using text

conditioning derived by applying a compositional function

on word embeddings of the phrase describing the image.

The colour of the fashion item is present in the text phrase.

We see that while the stylistic attributes are generated, the

colour of the generated samples do not seem to respect the

constraint provided by input text conditioning.

To obtain a discriminative representation for colour, we

derive coarse clusters of perceptually similar colours that

can be mapped to descriptions referencing a particular

colour attribute. To generate these clusters for our train-

ing data, we use tagged colour attributes (or inferred colour

from the text description) from the catalogue (if available).

These colour tags/references for products are converted to

LAB space using a colour library and clustered using K-

Means clustering to generate coarse clusters with similar

colours. If a colour tag is absent for a sample, we assign

it to a dummy K + 1 cluster. With labels generated from

this clustering we train a ResNet-50 [3] CNN classifier in

a supervised setting. In addition to utilizing the softmax

output of this colour classifier as the conditioning for all

training examples, we also use it to train the auxiliary clas-

sifier in ReStGAN. We find that this mitigates overall noise

by correctly classifying examples into clusters which were

originally tagged incorrectly in the catalogue.

We find that incorporating colour explicitly as a con-

ditioning improves consistency of colours produced for a

given text conditioning. Sequences S.1–2 in Fig.3 compare

generated examples for a StackGAN model against a variant

of the StackGAN model that explicitly encodes the colour

conditioning (StackGAN-C in Fig.3). We see that the con-

sistency of colour across samples and matching of colour to
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Figure 2. The architecture of the proposed recurrent GAN framework, ReStGAN. In the forward pass, the LSTM encodes the text phrase

representation ϕt, and outputs a hidden representation ht, that encodes each fine-grained text attribute envisioning the outfit. The hidden

state corresponding to each fine-grained text input is fed into the Stage-I generator along with noise z and colour conditioning c. The

Stage-I generator G1 generates a low-resolution image Ilr with the basic contour and colour of the object . Conditioned on Ilr , the Stage-II

generator G2 upsamples the generated image and adds finer details including texture, stylistic details and colour gradients producing a

more realistic high-resolution image Ihr .

the textual specification of colour is higher when the pro-

posed colour conditioning is explicitly incorporated.

3.5. Training

ADAM solver is used to train G and D across the two

stages. For training, we iteratively train recurrent genera-

tor G1 and discriminator D1 in Stage-I GAN for 60 epochs

with label smoothing. For training D2 and G2, we freeze

the LSTM and G1 of Stage-I GAN. The discriminator of

Stage-II GAN is trained with the auxiliary multi-task clas-

sifier and label smoothing. Prediction steps are applied

on both generator and discriminator while training stages I

and II. The loss for auxiliary classification tasks for gender,

colour and product type classification are scaled inversely

by the frequency of classes within each task. All networks

were trained with batch size 64 and an initial learning rate of

0.0002. The learning rate is decayed by 1
2 every 20 epochs.

During training of Stage-I/II , input sequences to the LSTM

are randomly shuffled and the sequence length is clipped at

6 to ease memory constraints.

The matching-aware discriminator from Reed et al. [15]

is retained for both stages to explicitly enforce the GAN to

learn better alignment between the image and the condition-

ing. In training a matching-aware discriminator, positive

sample pairs (real images, corresponding conditioning em-

beddings) are complemented by negative sample pairs (real

images, misaligned conditioning embeddings). The posi-

tive and negative pairs are fed as inputs to the discriminator,

along with the pairs output by the generator (generated im-

ages, corresponding conditioning embeddings). Since we

replicate real images (across time-steps) over the input text

sequence to the discriminator in ReStGAN, there is a high

likelihood that negative sample pairs consisting of real im-

ages with misaligned conditioning embeddings may not be

truly misaligned. To choose the set of negative sample pairs

with the least number of correct alignments, we combina-
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Figure 3. The first block in the image shows the output for ReStGAN and contrasts it against the baseline models StackGAN and StackGAN-

C for different text sequences. The second block shows the images generated by ReStGAN for additional text sequences where multiple

image sequences are obtained for the same text sequence by jittering the noise z.

torially generate multiple sets of negative sample pairs and

choose the set with the lowest number of aligned pairs.

The ResNet-50 CNN classifier (see 3.4 for details on

classifier) is trained along with auxiliary tasks for gender

and product type classification. The auxiliary tasks help in

incorporating sample data with no colour labels. For data

with absent labels corresponding to one of the tasks, we ig-

nore the loss on the corresponding classification objective.

To generate a train and validation split for the multi-label

data, we use a multi-label stratification technique [17] im-

plemented in scikit-multilearn package to generate a 80-20

train and validation split.

4. Experiments

We compare ReStGAN with baselines including Stack-

GAN and it’s variants that ablate the effect of colour mod-

elling, prediction step and auxiliary classifier. More details

about baselines and dataset are available in Sections 4.1–

4.2.

4.1. Baselines

We describe StackGAN and it’s variants that ablate the

effect of colour modelling, prediction step and auxiliary

classifier to enable quantitative evaluation of ReStGAN be-

low. For fairness of evaluation, all StackGAN variants are

fed text descriptions incrementally to generate sequences as
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they do not incorporate explicit sequence modelling.

- StackGAN: We use the StackGAN model from which

ReStGAN is derived as the primary baseline. The

model is trained with all fine-grained text attributes

combined into a single textual description. We do not

use explicit colour modelling in StackGAN. All loss

objectives for training are retained from the original

StackGAN model.

- StackGAN+CM: This is a variant of StackGAN in-

corporating the colour modelling. The training hyper-

parameters and text conditioning is carried over from

StackGAN.

- StackGAN+PM+CM This is a variant of StackGAN

incorporating the colour modelling and prediction

methods applied to both discriminator and generator.

The text conditioning is carried over from StackGAN.

This model is trained with a higher base learning rate

of 0.001 for half the epochs as application of predic-

tion methods enables faster convergence.

- StackGAN+PM+AC+CM: This is a variant of Stack-

GAN incorporating the colour modelling, auxiliary

classifier and prediction methods applied to both dis-

criminator and generator. All hyper-parameters are

carried over from StackGAN+PM+CM.

4.2. Dataset

We mainly use an apparel dataset compiled by us from

an e-commerce website for training our model. For our ex-

periments, we focus on three product types: pants, jeans and

shorts.

Pre-processing We apply the following filters on our

dataset:

• Hard vote on an ensemble of face detectors with a

multi-scale Histogram-of-gradients (HOG) face detec-

tor and a CNN based face detector run at multiple

scales: faces are hard to model in GANs and we ig-

nore samples which contain faces in our training data.

• Ratio of foreground to background: We use threshold

on the foreground to background ratio to remove sam-

ples which have close cropped and multi-pack apparel.

• Word filter is applied on textual descriptions for key-

words synonymous with baby apparel and printed t-

shirts.

Fig.4 shows examples of images that we filter out based on

the above preprocessing. From the filtered set, we subsam-

ple a training set of 32967 images. The training set is sub-

sampled in such a manner that we get a uniform distribution

on the inferred colour. In our final dataset, we have 15372

pants, 12350 shorts and 5245 jeans. All text tokens are gen-

erated on this dataset

Figure 4. Sample images pruned by pre-processing applied to the

initial dataset.

Text sequence generation: Since the dataset we com-

pile is not in the form of sequences of customer search

queries, we simulate such samples by generating a sequence

of fine-grained attributes from an image’s description. We

synthesize sequences of stylistic attributes from top-k n-

grams (1-3 grams) for every apparel type. We filter vi-

sually indistinguishable non-stylistic attributes like texture

and material. The product type is concatenated with the list

of pruned n-grams and this is used as the final sequence

of stylistic attributes describing the image of interest. The

product type is appended to allow better discriminability

among n-grams across product categories which have sim-

ilar stylistics attributes. For eg: ”Cargo” is a stylistic at-

tribute that occurs in both pants and shorts. Some example

text sequences of stylistic attributes can be seen in Fig.3

S.1–6.

4.3. Evaluation metrics

We choose two widely accepted metrics for GAN evalu-

ation, namely, inception score [16] and Fréchet Inception

Distance (FID) [5] to quantify the performance of ReSt-

GAN against its baselines. The two metrics are formally

defined in Eq. 8.
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ISt = exp(Ex[DKL(p(yt|x) || p(yt))])

FID = ||µr − µg||
2 + Tr(Σr +Σg − 2(ΣrΣg)

1/2)
(8)

where x is a sample generated by the model. yt is the la-

bel predicted by the inception model for a task t. Task t can

be color, gender or product type classification. µr/µg and

Σr/Σg are the mean and covariance of activations from the

Inception classifier [20] corresponding to the real image xr

and the generated image xg . Since our experiments are pri-

marily focussed on a domain specific fine-grained dataset,

we fine-tune a trained inception model in a multi-task set-

ting to classify the colour, gender and product type for a

given apparel item in our dataset. Computing a score on

each of these tasks would capture different facets of im-

age synthesis in an apparel. We compute the inception and

FID scores on 32000 samples randomly generated for each

model treating each generated image in the sequence to be

independent. Lower FID scores and higher inception scores

are better. The mean FID and inception scores of 10 runs

are reported for every model evaluated.

Model IS-Colour IS-Type IS-Gender FID

StackGAN 4.52 1.89 1.76 129.49

StackGAN+CM 4.25 1.91 1.75 107.84

StackGAN+PM+CM 4.16 1.93 1.72 99.39

StackGAN+PM+AC+CM 4.82 1.99 1.76 104.37

ReStGAN(Ours) 9.65 2.43 2.23 18.71

Table 1. Inception scores of ReStGAN and variants of StackGAN

with colour modelling(CM), prediction method(PM) and auxiliary

classifier(AC). Higher inception scores and lower FID scores are

indicative of better image quality.

Sequence Step(t) t = 1 t = 2 t ≥ 3 t ≥ 4 All

ReStGAN(Ours) 17.70 18.77 20.23 25.57 17.62

Real data – – 1.79 9.15 –

Table 2. FID scores across time steps for ReStGAN and subsets of

real data sampled based on sequence length

4.4. Results

Qualitative results for ReStGAN and baselines have been

compiled in Fig.3. In S.1, ReStGAN is able to capture in-

tricate stylistic details and embellishments in apparel like

“tears in jeans” or the “waist profile” while retaining a

consistent colour across the sequence. On the other hand,

StackGAN fails to incorporate colour in S.2. Incorporat-

ing the colour modelling in StackGAN mitigates this is-

sue. However, both StackGAN and variants incorporating

colour modelling fail to add stylistic details incrementally.

In S.3–6, we see that ReStGAN generates diverse sequences

matching the attributes when we resample noise.

We quantify the performance of ReStGAN against

StackGAN (and it’s variants that incorporate colour mod-

elling, auxiliary classification and prediction methods) us-

ing the inception & FID scores (Table 1). StackGAN with

auxiliary classification has lower FID scores than the corre-

sponding model with prediction methods. We believe this is

due to the AC-GAN’s tendency to regress to the modes [19],

which would reduce the classification loss at the cost of a re-

duction in the variety of the generated images. We also see

that our model improves upon the inception scores (pertain-

ing to colour, gender and type classification) of the base-

lines. This is indicative of ReStGAN’s ability to generate

diverse images at each time step while retaining semantics

of the text conditioning. ReStGAN also gives a significant

improvement in FID scores over the different variants of

StackGAN.

We compute the Fréchet Inception Distance (FID) for

generated samples at each step in the sequence for quan-

tifying ReStGAN’s ability to maintain diversity in samples

generated across a sequence (Table 2). For sequence lengths

greater than two, we collapse generated samples into buck-

ets of step size greater than three and four. This is done

to ensure that sufficient generated examples are present at

each sequence step to compute FID statistics. For FID

score computations of ReStGAN across sequence steps, we

maintain the same real image set. We observe that the FID

scores across steps are of the same order as the FID ob-

tained by considering all sequence steps. We observe a

nominal increase in FID as the sequence progresses. We

attribute this to the increase in specificity of apparel cate-

gories in the larger valued sequence steps. To verify that

this increase in FID is indeed due to specificity of genera-

tions, we also compute FID scores for real examples with

sequence lengths greater than three and four against all real

examples in Table 2. We observe an analogous increase in

FID (indicative of shift in distribution) for the real samples

with larger sequence lengths.

Thirty seven additional generations by ReStGAN along

with further quantitative analysis is available in the supple-

mentary material.

5. Conclusion

We propose ReStGAN for generating images from text

streams like customer search queries. It learns to incre-

mentally generate possible images complementing the fine-

grained style, colour of the apparel in the query. Addi-

tionally, we incorporate a novel colour modelling approach

enabling the GAN to render a wide spectrum of colours

accurately. We also compile a dataset from a popular e-

commerce website’s catalogue to train ReStGAN. The pro-

posed approach outperforms the baselines on qualitative

and quantitative evaluations. In future work, we would like

to expand ReStGAN’s scope to more vivid apparel types.
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time series generation with recurrent conditional gans. ICLR,

2018. 2

[7] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled

generative adversarial networks. International Conference

on Representation Learning, 2017. 2

[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. ICLR,

2013. 4

[9] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014. 2

[10] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spec-

tral normalization for generative adversarial networks. ICLR,

2018. 4

[11] O. Mogren. C-rnn-gan: A continuous recurrent neural net-

work with adversarial training. In Constructive Machine

Learning Workshop (CML) at NIPS 2016, page 1, 2016. 2

[12] A. Odena, C. Olah, and J. Shlens. Conditional image synthe-

sis with auxiliary classifier gans. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70,

pages 2642–2651. JMLR. org, 2017. 2, 3, 4

[13] J. Pennington, R. Socher, and C. Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014

conference on empirical methods in natural language pro-

cessing (EMNLP), pages 1532–1543, 2014. 4

[14] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. International Conference on Representation

Learning, 2016. 2

[15] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee. Generative adversarial text to image synthesis. In

33rd International Conference on Machine Learning, pages

1060–1069, 2016. 2, 5

[16] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

Advances in neural information processing systems, pages

2234–2242, 2016. 2, 4, 7

[17] K. Sechidis, G. Tsoumakas, and I. Vlahavas. On the stratifi-

cation of multi-label data. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases,

pages 145–158. Springer, 2011. 6

[18] D. Shen, G. Wang, W. Wang, M. Renqiang Min, Q. Su,

Y. Zhang, C. Li, R. Henao, and L. Carin. Baseline needs

more love: On simple word-embedding-based models and

associated pooling mechanisms. In ACL, 2018. 3

[19] R. Shu, H. Bui, and S. Ermon. Ac-gan learns a biased dis-

tribution. In NIPS Workshop on Bayesian Deep Learning,

2017. 8

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition,, 2016. 8

[21] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals,

A. Graves, et al. Conditional image generation with pixel-

cnn decoders. In Advances in Neural Information Processing

Systems, pages 4790–4798, 2016. 2

[22] A. Yadav, S. Shah, Z. Xu, D. Jacobs, and T. Goldstein. Stabi-

lizing adversarial nets with prediction methods. ICLR, 2018.

2, 4

[23] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Con-

ditional image generation from visual attributes. In European

Conference on Computer Vision, pages 776–791. Springer,

2016. 2

[24] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and

D. N. Metaxas. Stackgan: Text to photo-realistic image syn-

thesis with stacked generative adversarial networks. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 5907–5915, 2017. 2, 3, 4

[25] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and

D. N. Metaxas. Stackgan++: Realistic image synthesis with

stacked generative adversarial networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2018. 2

[26] S. Zhu, R. Urtasun, S. Fidler, D. Lin, and C. Change Loy.

Be your own prada: Fashion synthesis with structural coher-

ence. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1680–1688, 2017. 2

1208


