
Boosting Standard Classification Architectures Through a Ranking Regularizer

Ahmed Taha1 Yi-Ting Chen2 Teruhisa Misu2 Abhinav Shrivastava1 Larry Davis1

1University of Maryland, College Park 2Honda Research Institute, USA

Abstract

We employ triplet loss as a feature embedding regu-

larizer to boost classification performance. Standard ar-

chitectures, like ResNet and Inception, are extended to

support both losses with minimal hyper-parameter tuning.

This promotes generality while fine-tuning pretrained net-

works. Triplet loss is a powerful surrogate for recently

proposed embedding regularizers. Yet, it is avoided due to

large batch-size requirement and high computational cost.

Through our experiments, we re-assess these assumptions.

During inference, our network supports both classifica-

tion and embedding tasks without any computational over-

head. Quantitative evaluation highlights a steady improve-

ment on five fine-grained recognition datasets. Further

evaluation on an imbalanced video dataset achieves signif-

icant improvement. Triplet loss brings feature embedding

capabilities like nearest neighbor to classification models.

Code available at http://bit.ly/2LNYEqL

1. Introduction

Standard convolutional architectures [7, 34] learn pow-

erful representation for classification. Pretrained Ima-

geNet [3] weights scale their strength through fine tuning

to novel domains and relax the large labeled dataset re-

quirement. Yet, the learned representation through soft-

max attains limited intra-class compactness and inter-class

separation. To advocate for a better embedding quality,

we propose a two-head architecture. We leverage triplet

loss [29] as a classification regularizer. It promotes a better

feature embedding by attracting similar and repelling dif-

ferent classes as shown in Figure 1. This embedding also

raises classification model interpretability by enabling near-

est neighbor retrieval.

Embedding losses have been successfully applied in con-

junction with softmax loss as regularizers. For example,

center loss [38] was proposed for better face recognition

efficiency. Magnet loss [26] generalizes the unimodal-

ity assumption of center loss. A recent triplet-center loss

(TCL) [8] uses only a unimodal embedding but introduced

a repelling force between class centers, i.e., inter-class mar-

(a) Softmax Loss (b) Triplet Loss Regularizer

Figure 1: Softmax learns powerful representations with lim-

ited embedding regularization. Triplet loss promotes better

embedding without an explicit number of class centers.

gin maximization. All these methods assume a fixed num-

ber of class centers (embedding modes) for all classes.

Unlike the aforementioned approaches, the standard

triplet loss requires no explicit number of embedding

modes. Thus, it avoids computing class centers while pro-

moting intra-class compactness and inter-class margin max-

imization. Surprisingly, recent papers [38, 8] do not re-

port the softmax+triplet loss quantitative evaluation. As-

sumptions about large training batch requirement [29] for

faster convergence or high batch-processing complexity, to

compute pairwise distance matrix, have hindered triplet

loss’s adoption. Our experiments reassess these assump-

tions through multiple triplet loss sampling strategies.

To incorporate embedding losses, previous approaches

employ loss-specific architectures. This custom setting is

imperfect for the softmax baseline as it omits the pre-trained

ImageNet weights. Through our proposed seamless inte-

gration into standard CNNs, we push our baselines’ limits.

We introduce an embedding head similar to the classifica-

tion head. Each head applies a single fully connected (FC)

layer on the pre-logit convolutional layer features. Figure 2

shows our two head architecture where the pre-logit con-

volutional features support both softmax and triplet losses

for classification and embedding respectively. This integra-

tion boosts classification performance while promoting bet-

ter embedding.

We evaluate our approach on various classification do-

mains. The first is a fine-grained visual recognition (FGVR)

758

FC→ emb_dim

FC→ no_cls

h
7x7x2048

1x1x2048
x

Input
Conv2_block Conv3_block Conv4_block Conv5_block

conv
7x7x64

Figure 2: Our proposed two-head architecture builds on standard networks – ResNet used for visualization, xinput =
pool(hinput). Besides computing classification logits, the pre-logits layer supports the embedding head. Softmax and triplet

losses are applied to the classification logits and embedding features, respectively.

across five datasets. The second domain is an ego-motion

action recognition task with high class imbalance. Large

improvements (1-4%) are achieved in both domains. Eval-

uation on multiple architectures with the same hyper-

parameters highlights our approach’s generality. The large

batch size requirement represents a key challenge for triplet

loss adoption; Schroff et al. [29] use a batch-size b = 1800
and trained on a CPU cluster for 1,000 to 2,000 hours. In

our experiments, we show that using a small batch size

b = 32 still improves performance. A further qualitative

evaluation highlights beneficial qualities like nearest neigh-

bor retrieval added to standard classification architectures.

In summary, the key contributions of this paper are:

1. A two-head architecture proposal that uses triplet loss

as a regularizer to boost standard architectures’ perfor-

mance through promoting a better feature embedding.

2. A re-evaluation of the large batch size requirement and

high computational cost assumptions for triplet loss,

3. Enable better nearest neighbor retrieval on standard

classification architectures.

2. Related Work

Visual recognition deep networks employ softmax loss

as follows

Lsoft = −
b

∑

i=1

log
e
WT

yi
xi

∑n

j=1 e
WT

j
xi

, (1)

where xi ∈ Rd denotes the ith deep feature, belonging to

the yith class. In standard architectures, xi is the pre-logit

layer; the result of flattening the pooled convolutional fea-

tures as shown in Figure 2. Wj ∈ Rd denotes the jth col-

umn of the weights W ∈ Rd×n in the last fully connected

layer. b and n are the batch size and the number of class

respectively. The softmax loss only cares about separating

samples from different class. It disregards properties like

intra-class compactness and inter-class margin maximiza-

tion. Embedding regularization is one way to tackle this

limitation. Figure 3 depicts different embedding regulariz-

ers; all require an explicit number of embedding modes.

2.1. Center Loss

Wen et al. [38] propose center loss to minimize intra-

class variations. By maintaining a per class representative

feature vector cyi ∈ Rd, the novel loss term in equation 2

is proposed. The class centers are computed by averaging

corresponding class features. They are updated after every

training mini-batch. To avoid perturbations caused by noisy

samples, a hyper-parameter α controls the learning rate of

the centers, i.e., moving average.

Lcen =
1

2

b
∑

i=1

‖ xi − cyi ‖22. (2)

2.2. Magnet Loss

Rippel et al. [26] propose a center loss term support-

ing multi-modal embedding, dubbed magnet loss. It com-

putes K class representatives, i.e., K-clusters per class.

Each sample is iteratively assigned to one of the K clusters

and pushed towards its center. The magnet loss adaptively

sculpts the representation space by identifying and enforc-

ing intra-class variation and inter-class similarity. This is

formulated as follows

LM = 1
N

∑N

i=1 − log
exp(−1

2σ2 ‖ xk
i − µc

k ‖22 − α)

∑

c 6=C(xk
i
)

∑
K
k=1 exp(−1

2σ2 ‖ xk
i − µc

k ‖22 − α)
,

(3)

where N and K are the number of samples and clusters

per class respectively. xk
i ∈ Rd denotes the ith deep fea-

ture, belonging to cluster k in the yith class, µc
k ∈ Rd is

the kth cluster center belonging to class c. Finally σ2 =

759

(a) Softmax Loss (b) Center Loss Regularizer (c) Magnet Loss Regularizer (d) Triplet Center Regularizer

Figure 3: Visualization of softmax and feature embedding regularizers. Softmax separates samples with neither class com-

pactness nor margin maximization considerations. Center loss promotes unimodal compact class while magnet loss supports

multi-modal embedding. Triplet center loss strives for unimodal, margin maximization and class compactness. The computed

classes’ centers are depicted using a star symbol

1
N−1

∑ ‖ xk
i − µc

k ‖22 is the variance of all samples from

their respective centers. One criticism of magnet loss is the

complexity overhead to maintain multiple clusters per class

and their assigned samples. Moreover, the constant number

of clusters per-class disputes with imbalanced data distribu-

tions.

2.3. Triplet Center Loss

While promoting class compactness, the center loss de-

pends on the softmax loss supervision signal to push dif-

ferent classes apart. The learned features optimized with

the softmax loss supervision signal are not discriminative

enough, i.e., no explicit repelling force pushes different

classes apart. Inter-class clusters can overlap due to miss-

ing an explicit inter-class repelling incentive. He et al. [8]

propose triplet center loss (TCL) to avoid this limitation.

By maintaining a per class center cyi ∈ Rd similar to [38],

TCL is formulated as follows

Ltcl =
b

∑

i=1

[

(D(xi, cyi)−min
j 6=i

D(xi, cyj) +m)

]

+

, (4)

where m is a separating margin, [.]+ = max(0, .) and D(.)
represents the squared Euclidean distance function.

Triplet loss is a well-established surrogate for TCL.

It achieves the intra and inter-class embedding objectives

without computing class centers. Yet, it is largely avoided

for its computational complexity and large training batch re-

quirement assumptions. In the experiment section, we ad-

dress these concerns and evaluate the utility of triplet loss

as a regularizer. Our approach is evaluated on the chal-

lenging FGVR task where intra-class overwhelm inter-class

variations. Further evaluation on the Honda driving dataset

(HDD) demonstrates our approach’s competence on an im-

balanced video dataset. Triplet loss regularization not only

lead to higher classification accuracy but also enables better

feature embedding.

3. The Triplet Loss Regularizer

The next subsection introduces triplet loss [29] as a soft-

max loss regularizer. Then, we explain our standard archi-

tectural extension to integrate an embedding loss.

3.1. Triplet Loss

Triplet loss [29] has been successfully applied in face

recognition [29, 28] and person re-identification [2, 31, 27].

In both domains, it is used as a feature embedding tool

to measure similarity between objects and provide a met-

ric for clustering. In this work, we utilize triplet loss as

a classification regularizer. It is more efficient than con-

trastive loss [6, 18], and less computationally expensive

than quadruplet [12, 1] and quintuplet [11] losses. While

the pre-logits layer learns better representations for classifi-

cation using the softmax loss, triplet loss promotes a better

feature embedding. Equation 5 shows the triplet loss for-

mulation

Ltri =
1

b

b
∑

i=1

[(D(ai, pi)−D(ai, ni) +m)]+, (5)

where an anchor image’s embedding a of a specific class

is pushed closer to a positive image’s embedding p from

the same class than it is to a negative image’s embedding n

of a different class. Equation 6 is our loss function with a

balancing hyper-parameter λ.

L = Lsoft + λLtri. (6)

Sampling: Triplet loss performance is dependent on its

sampling strategy. We evaluate both the hard [9] and semi-

hard [29] sampling strategies. In semi-hard negative sam-

pling, instead of picking the hardest positive-negative sam-

ples, all anchor-positive pairs and their corresponding semi-

hard negatives are considered. Semi-hard negatives satisfy

equation 7. They are further away from the anchor than the

760

a
n₁

p

n₃

m
n₂

Figure 4: Triplet loss tuple (anchor, positive, negative) and

margin m. Hard, semi-hard and easy negatives highlighted

in red, cyan and orange, respectively.

a

n

p₂

p₁

Figure 5: Hard sampling promotes unimodal embedding by

picking the farthest positive and nearest negative (a, p1, n).
Semi-hard sampling picks (a, p2, n) and avoids any tuple

(a, p, n) where n lies between a and p.

positive exemplar, yet within the banned margin m.

D(a, p) < D(a, n) < D(a, p) +m. (7)

Figure 4 shows a triplet loss tuple and highlights the dif-

ferent types of negative exemplars: easy (n2), semi-hard

(n1) and hard (n3) negatives. An easy negative satisfies

the margin constraint and suffers a zero loss. Unlike hard-

sampling, semi-hard sampling supports a multi-modal em-

bedding. Hard sampling picks the farthest positive and near-

est negative without any consideration for the margin. In

contrast, Figures 5 illustrates how semi-hard sampling ig-

nores hard negatives. Two classes, red and green, are em-

bedded into one and two clusters respectively. A hard sam-

pling strategy pulls the farthest positive from one cluster

to the anchor in the other cluster, i.e. promotes a merge.

The semi-hard sampling strategy omits this tuple because

the negative sample is nearer than the positive.

The existence of a semi-hard negative is not guaranteed

in small batches, especially near convergence. Thus, we pri-

oritize negative exemplars as illustrated in Figure 4. First

priority is given to semi-hard (n1), then easy (n2) and fi-

nally hard negatives (n3).

Embedding Head

Classification Head

7x7x2048

FCN

FCN

Avg
Pool

Flatten

Flatten

1x1x2048 2048

100352 emb_dim

No_cls

h
x

Figure 6: Our proposed two-head architecture. The last

convolutional feature map (h) supports both embedding and

classification heads. Operations and dimensions are high-

lighted with blue and pink colors, respectively. ResNet-50

dimensions used for illustration.

3.2. TwoHead Architecture

Standard convolutional architectures, with ImageNet [3]

weights, are employed in various applications for their pow-

erful representation. We seek to leverage pre-trained stan-

dard networks for their advantages in tasks like fine-grained

visual recognition [20, 16, 15]. This key integration pro-

motes the generality of our approach and distances our work

from [38, 8, 32] which use custom architectures. Through

experiments, we demonstrate how triplet loss achieves su-

perior classification efficiency compared to center loss.

Unlike VGG [30], recent architectures [7, 35, 13] em-

ploy a convolutional layer before the classification head. To

generate logits, the classification head pools the convolu-

tional layer features, flatten them, then utilize a customiz-

able fully connected layer to support various numbers of

classes. Similarly, we integrate triplet loss to regularize em-

bedding as shown in Figure 6. Before pooling, we flatten the

convolutional layer features then apply another fully con-

nected layer Wemb to generate embeddings as illustrated in

equation 9.

Logits = Wlogits ∗ flatten(x) (8)

Embedding = Wemb ∗ flatten(h), (9)

where x = pool(h). Orderless pooling, like averaging, dis-

regard spatial information. Thus, a fully connected layer

Wemb applied on h has a better representation power. The

final embedding is normalized to the unit-circle and the

square Euclidean distance metric is employed. During in-

ference, the two-head architecture enables both classifica-

tion and retrieval with negligible overhead.

761

F
lo

w
er

s-
1
0
2

[2
3
]

A
ir

cr
af

ts
[2

2
]

N
A

B
ir

d
s

[3
7
]

S
ta

n
fo

rd
C

ar
s

[1
7
]

S
ta

n
fo

rd
D

o
g
s

[1
4
]

Num Classes 102 100 550 196 120

Avg samples Per Class 10 100 43.5 41.55 100

Train Size 1020 3334 23929 8144 12000

Val Size 1020 3333 N/A N/A N/A

Test Size 6149 3333 24633 8041 8580

Total Size 8189 10000 48562 16185 20580

Table 1: Statistics of five FGVR datasets and their corre-

sponding train, validation and test splits.

4. Experiments

4.1. Evaluation on FGVR

Datasets: We evaluate our approach on five FGVR datasets.

These datasets comprise both make/model classification

and wildlife species. The Aircrafts dataset contains 10,000

images of aircraft spanning 100 aircraft-models. The finer

level differences between models makes visual recognition

challenging. The NABirds dataset contains 48,562 im-

ages across 550 visual categories of North American birds.

The Flower-102 dataset contains 8189 images across 102

classes. The Stanford Cars dataset contains 16185 images

across 196 car classes that represent variations in car make,

model, and year. Finally, the Stanford Dogs dataset has

20,580 images across 120 breeds of dogs. These datasets

provide challenges in terms of large intra-class but small

inter-class variations. Table 1 summarizes the datasets’ size,

number of classes and splits.

Baselines: We evaluate our approach against two baselines:

(1) Single head softmax; (2) Two-head leveraging center

loss [38] with it’s proposed hyper-parameters λ = 0.003
and α = 0.5. We found Magnet loss [26] implementation

computationally expensive. It applies k-means to cluster all

training samples after each epoch, i.e., O(N2) where N is

the train split size. For triplet loss, both hard [9] and semi-

hard [29] sampling variants are evaluated. By default, our

hyper-parameter λ = 1 and embedding normalized to the

unit circle with dimensionality demb = 256. With triplet

hard sampling, a soft margin between classes is imposed by

the softplus function ln(1+exp(•)). It is similar to the hinge

function max(•, 0) but it decays exponentially instead of a

hard cut-off. With triplet semi-hard sampling, we employ

the hard margin m = 0.2 as proposed by [29]

All experiments are conducted on Titan Xp 12GB GPU

with batch-size b = 32. All networks are initialized with

ImageNet weights, and then fine-tuned. Momentum opti-

mizer is utilized with momentum 0.9 and a polynomial de-

caying learning rate lr = 0.01. We quantitatively evalu-

ate our approach on three architectures: (1) ResNet-50 [7]

and (2) DenseNet-161 [13] both trained for 40K iterations,

and (3) Inception-V4 [33] trained for 80K iterations. While

early stopping is a valid regularization form to avoid a fixed

number of training iteration, not all datasets provide a vali-

dation split as illustrated in table 1. The chosen number of

training iterations achieve comparable results with recent

FGVR softmax baselines [19, 16, 4].

To evaluate our approach, our training batches contain

both positive and negative samples. We follow the batch

construction procedure proposed by Hermans et al. [9]. A

class is uniformly sampled then K = 4 sample images,

with resolution 224 × 224, are randomly drawn. Train-

ing images are augmented online with random cropping

and horizontal flipping. This process iterates until a batch

is complete. Table 2 presents our fine-tuning quantitative

evaluation on the five datasets. Our two-head architecture

with hard triplet loss achieves large steady (1-4%) improve-

ment on ResNet-50. Similar trend appears with Inception-

V4 but suffers an interesting fluctuation between hard and

semi-hard triplet loss. Section 4.3 reflects on this phe-

nomena through a quantitative embedding analysis. Vanilla

DenseNet-161 achieves comparable state-of-the-art results

on all FGVR datasets, yet triplet loss regularizer maintains

a steady trend of performance improvement.

Center loss achieves an inferior classification perfor-

mance especially on the Dogs dataset – a lag ≈ 4% behind

vanilla softmax on Inception-V4 and DenseNet-161. The

single mode embedding assumption is valid for face recog-

nition [38] and vehicle re-identification [21] because differ-

ent images for the same identify belong to a single cluster.

However, when working with categories of high intra-class

variations, this assumption degenerate the feature embed-

ding quality. Our feature embedding evaluation (Sec 4.3)

highlights the consequence of using a single mode/cluster,

for general classification problems, in terms of feature em-

bedding instability or collapse.

Our simple but vital integration into standard ar-

chitectures distance our approach from similar soft-

max+clustering formulations. In addition, all recent con-

volutional architectures share similar ending structure; the

last convolutional layer is followed by an average pooling,

and then a single fully connected layer. Thus, apart from

the studied architectures, our secondary embedding head

proposal can be applied to other architectures, e.g., Mo-

bileNet [10].

4.2. Task Generalization

For further evaluation, we leverage the Honda Research

Institute Driving Dataset (HDD) [25] for action recogni-

tion. HDD is an ego-motion video dataset for driver behav-

ior understanding and causal reasoning. It contains 10,833

events spanning eleven event classes. Moreover, the HDD

event class distribution is long-tailed which poses an im-

762

Database Cars Flowers Dogs Aircrafts Birds

ResNet-50

Softmax 85.85 85.68 69.76 83.22 64.23

Two-Head (Center) 88.23 85.00 70.45 84.48 65.5

Two-Head (Semi) 88.22 85.52 70.69 85.08 65.20

Two-Head (Hard) 89.44 86.61 72.70 87.33 66.19

Inception-V4

Softmax 88.42 88.22 77.20 86.76 74.90

Two-Head (Center) 89.50 88.35 70.83 87.78 76.86

Two-Head (Semi) 89.72 88.69 77.71 88.59 76.99

Two-Head (Hard) 89.06 90.66 75.97 89.04 76.57

DenseNet-161

Softmax 91.64 92.56 81.58 89.13 78.69

Two-Head (Center) 89.08 92.58 77.02 89.97 79.05

Two-Head (Semi) 92.36 93.65 80.89 89.64 79.57

Two-Head (Hard) 92.41 93.25 81.16 89.34 79.47

Table 2: Quantitative evaluation on the five FGVR datasets

using ResNet-50, Inception-V4, and DenseNet-161.

Background

Interse
ctio

n Pass

Left Turn

Right Turn

Left Lane Change

Right Lane Change

Cross-
walk

passi
ng

U-Turn

Left Lane Branch

Right Lane Branch
Merge

0

0.5

1

·104

Figure 7: Honda driving dataset long tail class distribution

Figure 8: Stack of difference motion encoding. Instead of

six frames, three are used for visualization purpose. The

first row shows a stack of two difference frames constructed

by subtracting consecutive pairs of grayscale frames in the

second row. These images are best viewed in color/screen.

balance data challenge. Figure 7 shows the eleven event

classes with their distributions. To reduce video frames’ re-

dundancy, three frames are sampled per second, and events

shorter than 2 seconds are omitted.

To leverage standard architecture for action recognition,

stack of difference (SOD) motion encoding proposed by

Fernando et al. [5] is adopted. While better motion en-

coding like optical-flow exists, the SOD is utilized for its

simplicity and ability to achieve competitive results [5, 36].

Given a sequence of frames representing an event, six con-

secutive frames spanning 2 seconds are randomly sampled.

Micro Acc Macro Acc

Softmax (b = 33) 84.43 47.66

Two-head (Semi) (b = 33) 84.93 53.70

Softmax (b = 63) 84.45 46.53

Two-head (Semi) (b = 63) 84.85 54.08

Table 3: Action recognition quantitative evaluation on the

Honda dataset. b indicates the batch-size used. Macro aver-

age accuracy highlights performance on minority classes.

Softmax Two-Head Softmax Two-Head

Event Batch-size 33 Batch-size 63

Background 96.28 95.29 97.32 96.28

Intersection Passing 74.61 75.86 74.26 74.68

Left Turn 85.49 84.87 85.18 86.11

Right Turn 88.47 87.22 86.91 86.60

Left Lane Change 59.40 66.33 55.44 62.37

Right Lane Change 44.79 61.45 40.62 51.04

Cross-walk Passing 18.18 18.18 12.12 12.12

U-Turn 0.00 11.76 0.00 23.52

Left Lane Branch 53.84 64.10 41.02 64.10

Right Lane Branch 0.00 6.24 12.49 18.74

Merge 3.22 19.35 6.45 19.35

Macro Accuracy 47.66 53.70 46.53 54.08

Table 4: Detailed evaluation on the Honda driving dataset.

Our two-head architecture using semi-hard triplet loss

achieves better performance on minority classes.

They are converted to grayscale, and then every consecutive

pair is subtracted to create a stack of difference ∈ ZW×H×5

as depicted in Figure 8. Standard architectures are easily

adapted to this input representation by treating the SOD in-

put as a five-channel image instead of three.

Unlike FGVR input ∈ [0, 255], SOD ∈ [−255, 255].
Thus, a ResNet-50 [7] architecture initialized with random

weights is employed. It is trained for 10K iterations with

λ = 1 and a polynomial decaying learning rate lr = 0.01.

Batch sizes 33 and 63 are used to compare the vanilla soft-

max against our approach. To highlight performance on mi-

nority classes, both micro and macro average accuracies are

reported in Table 3. Macro-average computes the metric for

each class independently before taking the average. Micro-

average is the traditional mean for all samples. Macro-

average treats all classes equally while micro-averaging fa-

vors majority classes. Table 4 highlights the efficiency of

our approach on minority classes.

4.3. Retrieval Evaluation on FGVR

In the two-head architecture, the secondary embedding

head brings values like an enhanced feature embedding,

nearest neighbor retrieval and interpretability. Following

Song et al. [24], we evaluate the quality of feature em-

bedding using Recall@K metric on the test split. We also

leverage the Normalized Mutual Info (NMI) score to evalu-

ate the quality of cluster alignments. NMI = I(Ω,C)√
H(Ω)H(C)

,

where Ω = {ω1, .., ωn} is the ground-truth clustering while

C = {c1, ...cn} is a clustering assignment for the learned

763

NMI R@1 R@4 R@8 R@16

Car - ResNet

CNTR 0.549 67.73 75.36 81.91 87.28

SEMI 0.879 89.45 93.14 95.24 96.62

HARD 0.900 91.95 94.22 95.70 96.78

Flowers - ResNet

CNTR 0.723 74.53 86.78 90.94 94.06

SEMI 0.822 87.56 94.29 96.39 97.89

HARD 0.856 90.40 94.00 94.84 95.64

Dogs - ResNet

CNTR 0.419 30.41 40.69 63.96 75.14

SEMI 0.708 60.70 79.55 85.84 90.15

HARD 0.740 64.01 81.60 86.41 89.97

Aircrafts - ResNet

CNTR 0.645 64.36 80.32 85.57 89.41

SEMI 0.846 82.15 90.01 92.38 94.45

HARD 0.879 85.84 91.63 92.89 93.94

NABirds - ResNet

CNTR 0.517 32.16 50.89 60.03 68.70

SEMI 0.749 56.30 76.08 82.99 88.30

HARD 0.769 59.09 77.35 83.49 88.12

Cars - Inc-V4

CNTR 0.120 2.98 5.96 8.84 13.87

SEMI 0.880 85.45 93.56 95.66 97.15

HARD 0.652 46.97 71.14 80.87 87.90

Flowers - Inc-V4

CNTR 0.183 9.01 11.97 13.82 16.13

SEMI 0.828 88.70 94.70 96.47 97.89

HARD 0.885 93.66 96.13 96.96 97.59

Dogs - Inc-V4

CNTR 0.726 65.47 76.62 79.01 81.04

SEMI 0.760 68.48 85.10 90.26 93.83

HARD 0.458 19.52 41.41 55.63 70.63

Aircrafts - Inc-V4

CNTR 0.333 27.21 36.75 42.81 49.62

SEMI 0.872 86.53 92.35 93.88 95.08

HARD 0.887 87.79 92.47 93.67 94.42

NABirds - Inc-V4

CNTR 0.209 3.77 6.26 8.29 11.50

SEMI 0.808 67.30 83.81 88.96 92.79

HARD 0.503 15.92 31.84 42.66 54.64

Cars - Dense

CNTR 0.914 88.93 93.97 95.01 95.65

SEMI 0.905 88.77 95.72 97.08 98.30

HARD 0.913 89.40 95.57 96.99 98.15

Flowers - Dense

CNTR 0.910 95.23 97.19 97.61 98.13

SEMI 0.869 94.52 97.90 98.68 99.14

HARD 0.898 87.73 91.87 92.32 92.65

Dogs - Dense

CNTR 0.795 72.03 84.11 86.55 88.39

SEMI 0.802 73.33 88.24 92.21 95.02

HARD 0.807 73.99 88.66 92.44 94.99

Aircrafts - Dense

CNTR 0.898 87.73 91.87 92.32 92.65

SEMI 0.883 86.98 93.49 95.11 96.28

HARD 0.889 87.82 94.27 95.38 96.07

NABirds - Dense

CNTR 0.847 76.90 85.37 88.03 90.57

SEMI 0.829 72.09 86.90 91.24 94.35

HARD 0.829 72.02 87.11 91.61 94.70

Table 5: Detailed feature embedding quantitative analysis

across the five datasets using ResNet-50, Inception-V4 and

DenseNet-161. Triplet with hard mining achieves supe-

rior embedding with ResNet-50 trained for 40K iterations.

Semi-hard triplet is competitive and stable with Inception-

V4 trained for 80K iterations. Center loss learns an inferior

embedding while suffering the highest instability.

embedding. I(•, •) and H(•) denotes mutual information

and entropy respectively. We use K-means to compute C.

Table 5 presents a detailed feature embedding quanti-

tative analysis. Triplet loss with hard-mining consistently

learns the best embedding on ResNet-50. However, semi-

hard sampling, on Inception-V4 and DenseNet, is stabler.

Despite having an explicit rebelling force pushing nega-

tive samples away from their anchors, hard triplet min-

ing can in practice lead to bad local minima (as can be

seen in inception-V4). It can result in a collapsed mode

(i.e., f(x) = 0) [29]. Center loss suffers the same model

collapse problem. It is a more vulnerable variant of hard-

Cars Flowers-102 Dogs Aircrafts NABirds

ResNet-50

Classification Top 1 89.44 86.61 72.70 87.33 66.19

Retrieval Top 1 91.95 90.40 64.01 85.84 59.09

Retrieval Top 4 94.22 94.00 81.60 91.63 77.35

Inception-V4

Classification Top 1 89.72 90.66 77.71 89.04 76.99

Retrieval Top 1 85.45 93.66 68.48 87.79 67.30

Retrieval Top 4 93.56 96.13 85.10 92.47 83.81

DenseNet-161

Classification Top 1 92.36 93.65 81.58 89.97 76.57

Retrieval Top 1 89.40 95.23 73.99 87.82 76.90

Retrieval Top 4 95.72 97.90 88.66 94.27 87.11

Table 6: Comparative quantitative evaluation between re-

trieval and classification as an upper bound. Both retrieval

and classification accuracies are comparable. Retrieval top

4 is superior to classification top 1.

triplet loss, i.e., missing the repelling force. It learns an

inferior embedding while suffering the highest instability.

It often degenerates with Inception-V4. These conclusions

follow Schroff et al. [29] semi-hard mining findings.

Table 6 compares classification and retrieval perfor-

mance quantitatively. The reported classification accuracy

provides an upper bound for retrieval. Retrieval and classi-

fication top 1 accuracies are comparable. Recall@4 is su-

perior to the classification top 1 on all datasets. Figure 9

presents a qualitative retrieval evaluation across center loss,

triplet semi-hard, and triplet hard regularizers.

It is challenging, for the current classification architec-

tures, to interpret a test image misclassification. By learn-

ing image embedding through a secondary head, it becomes

trivial to investigate an image’s test and train splits neigh-

borhood. Figure 10 shows nine (three images per odd

column) misclassified test images and their corresponding

nearest neighbor from the train split. The resembles be-

tween a misclassified test image and a particular training

image can reveal corner cases omitted while collecting the

data. One interesting statistic is that 79.34% of misclassi-

fied predictions, from Flowers-102 test split, match the la-

bel of their nearest training neighbor. This emphasizes the

classification complexity level of FGVR.

4.4. Ablation Analysis

Hyper-Parameter Stability: Our approach has two hyper-

parameters: λ and the embedding dimensionality demb. λ

is tuned on the Flowers-102 dataset through the validation

split. All hyper-parameter tuning experiments are executed

for 2000 iterations. Figure 11 highlights λ stability within

[0.1, 2]. A larger λ making triplet loss dominant is dis-

couraged. Intuitively, further hyper-parameters tuning can

achieves better performance.

Two-Head Time Complexity: The computational cost of

the embedding head is negligible. Both sampling and back-

propagation are implemented on GPU. Training time in-

764

Query ↓ Query ↓ Query ↓

Figure 9: Retrieval qualitative evaluation on three FGVR datasets: Flowers-102, Aircrafts and Cars. Given a query image,

the three nearest neighbors are depicted. The three consecutive rows show search results using center loss, semi-hard and

hard triplet regularizers. Green and red outlines denote match and mismatch between the query and it’s result respectively.

Figure 10: Qualitative misclassification interpretation. The

odd columns show a misclassified test image while the even

columns show the nearest neighbor from the training split.

0.1 0.2 0.5 1 2 5 10

85

90

95

Figure 11: Hyper-parameter λ tuning on the Flowers-102

dataset.

creases by 1%, 3%, and 2% for semi-hard, hard and center

losses on Titan XP GPU, respectively. Figure 12 shows a

time complexity analysis in terms of batch processing time

(secs). Please note that triplet loss approaches retain from

computing classes centers or enforcing a specific number of

modes.

4.5. Discussion

Our experiments demonstrate how a two-head architec-

ture with triplet loss outperforms a vanilla single-head soft-

max network. Triplet loss attains the center loss, triplet

center loss and magnet loss objectives without enforcing

explicit class representatives. It promotes both intra-class

compactness and inter-class margin maximization. Semi-

Softm
ax

Two-Head-Center

Two-Head-Semi

Two-Head-Hard

0.2

0.4

0.6

B
at

ch
T

im
e

(s
ec

)

ResNet Inception DenseNet

Figure 12: Two-head time complexity analysis on ResNet-

50, Inception-V4 and DenseNet-161 using Flowers-102

dataset.

hard triplet loss relaxes the unimodal embedding constraint

while maintaining stabler learning curve. Hard triplet loss

achieves larger improvement margins but can suffer model

collapse. Triplet loss effectively regularizes softmax and

promote better feature embedding.

The two-head architecture with triplet loss is the main

scope of this paper. Investigating other recent ranking

losses, e.g. Margin loss [39], and comparing their benefits

to softmax remains an open question.

5. Conclusion

We propose a seamless integration of triplet loss as an

embedding regularizer into standard classification architec-

tures. The regularizer competence is illustrated on multiple

datasets, architectures and recognition tasks. Triplet loss,

without the large batch requirement, boosts standard archi-

tectures’ performance. With minimal hyper-parameter tun-

ing and a single fully connected layer on top of pretrained

standard architectures, we promote generality to novel do-

mains. Promising results are achieved on an imbalanced

dataset. We incur a minimal computational overhead dur-

ing training, but raise classification model efficiency and

interpretability. Our architectural extension enables both re-

trieval and classification tasks during inference.

765

References

[1] W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond triplet

loss: a deep quadruplet network for person re-identification.

In CVPR, 2017.

[2] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Per-

son re-identification by multi-channel parts-based cnn with

improved triplet loss function. In CVPR, 2016.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009.

[4] A. Dubey, O. Gupta, P. Guo, R. Raskar, R. Farrell, and

N. Naik. Pairwise confusion for fine-grained visual classi-

fication. In ECCV, 2018.

[5] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-

supervised video representation learning with odd-one-out

networks. In CVPR, 2017.

[6] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In CVPR, 2006.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[8] X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai. Triplet-

center loss for multi-view 3d object retrieval. arXiv preprint

arXiv:1803.06189, 2018.

[9] A. Hermans, L. Beyer, and B. Leibe. In defense of the

triplet loss for person re-identification. arXiv preprint

arXiv:1703.07737, 2017.

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[11] C. Huang, Y. Li, C. Change Loy, and X. Tang. Learning deep

representation for imbalanced classification. In CVPR, 2016.

[12] C. Huang, C. C. Loy, and X. Tang. Local similarity-aware

deep feature embedding. In NIPS, 2016.

[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, 2017.

[14] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel

dataset for fine-grained image categorization: Stanford dogs.

In CVPRW, 2011.

[15] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained

recognition without part annotations. In CVPR, 2015.

[16] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev,

T. Duerig, J. Philbin, and L. Fei-Fei. The unreasonable effec-

tiveness of noisy data for fine-grained recognition. In ECCV,

2016.

[17] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object repre-

sentations for fine-grained categorization. In CVPRW, 2013.

[18] Y. Li, Y. Song, and J. Luo. Improving pairwise ranking for

multi-label image classification. In CVPR, 2017.

[19] T.-Y. Lin and S. Maji. Improved bilinear pooling with cnns.

arXiv preprint arXiv:1707.06772, 2017.

[20] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn mod-

els for fine-grained visual recognition. In ICCV, 2015.

[21] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang. Deep rel-

ative distance learning: Tell the difference between similar

vehicles. In CVPR, 2016.

[22] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi.

Fine-grained visual classification of aircraft. arXiv preprint

arXiv:1306.5151, 2013.

[23] M.-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In ICVGIP, 2008.

[24] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In

CVPR, 2016.

[25] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko. Toward

driving scene understanding: A dataset for learning driver

behavior and causal reasoning. In CVPR, 2018.

[26] O. Rippel, M. Paluri, P. Dollar, and L. Bourdev. Metric

learning with adaptive density discrimination. arXiv preprint

arXiv:1511.05939, 2015.

[27] E. Ristani and C. Tomasi. Features for multi-target

multi-camera tracking and re-identification. arXiv preprint

arXiv:1803.10859, 2018.

[28] S. Sankaranarayanan, A. Alavi, C. Castillo, and R. Chel-

lappa. Triplet probabilistic embedding for face verification

and clustering. arXiv preprint arXiv:1604.05417, 2016.

[29] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In CVPR,

2015.

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[31] C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian. Deep

attributes driven multi-camera person re-identification. In

ECCV, 2016.

[32] Y. Sun, X. Wang, and X. Tang. Deeply learned face repre-

sentations are sparse, selective, and robust. In CVPR, 2015.

[33] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, 2017.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016.

[36] A. Taha, M. Meshry, X. Yang, Y.-T. Chen, and L. Davis.

Two stream self-supervised learning for action recognition.

DeepVision CVPRW, 2018.

[37] G. Van Horn, S. Branson, R. Farrell, S. Haber, J. Barry,

P. Ipeirotis, P. Perona, and S. Belongie. Building a bird

recognition app and large scale dataset with citizen scientists:

The fine print in fine-grained dataset collection. In CVPR,

2015.

[38] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative fea-

ture learning approach for deep face recognition. In ECCV,

2016.

[39] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl.

Sampling matters in deep embedding learning. In ICCV,

2017.

766

