
Toward Explainable Fashion Recommendation

Pongsate Tangseng1 and Takayuki Okatani1,2

1Graduate School of Information Sciences, Tohoku University
2RIKEN Center for AIP

{tangseng,okatani}@vision.is.tohoku.ac.jp

Abstract

Many studies have been conducted so far to build sys-

tems for recommending fashion items and outfits. Although

they achieve good performances in their respective tasks,

most of them cannot explain their judgments to the users,

which compromises their usefulness. Toward explainable

fashion recommendation, this study proposes a system that

is able not only to provide a goodness score for an outfit

but also to explain the score by providing reason behind it.

For this purpose, we propose a method for quantifying how

influential each feature of each item is to the score. Using

this influence value, we can identify which item and what

feature make the outfit good or bad. We represent the im-

age of each item with a combination of human-interpretable

features, and thereby the identification of the most influen-

tial item-feature pair gives useful explanation of the output

score. To evaluate the performance of this approach, we

design an experiment that can be performed without human

annotation; we replace a single item-feature pair in an out-

fit so that the score will decrease, and then we test if the

proposed method can detect the replaced item-feature pair

correctly using the above influence values. The experimen-

tal results show that the proposed method can accurately

detect bad items in outfits lowering their scores.

1. Introduction

Recently, there have been many studies of applying com-

puter vision techniques to various problems of fashion,

such as quantifying/measuring goodness of outfits [7, 11,

16, 33, 38] and recommending to users outfits from a pool

of items [19, 38] or outfits that fit users’s personal prefer-

ences [13] or location [40]. However, many of the exist-

ing studies, particularly the recent ones that employ CNNs,

rely on black-box models, which may provide good perfor-

mance on respective tasks but cannot explain the reason of

their judgments [13,16,19,38]. There are a few attempts to

develop models that can provide useful explanations [7,40],

but they require a large amount of manually annotated data

for supervised training of the models, which is expensive

and usually not publicly available.

In this study, we propose a system that is able not only

to judge and quantify goodness/badness of an outfit but also

to provide a reason(s) of the prediction. Similar to exist-

ing methods, our system receives images of multiple items

comprising an outfit as inputs and then computes a score

quantifying its goodness/badness of the outfit; example in-

puts are shown in the rows of Fig. 1. This forward computa-

tion is done by a part of our system called the outfit grader.

To explain the output score, we quantify and use how large

the influence of each item, or of each feature of each item, is

on the predicted score. This enables to identify which item

and what feature make the outfit good or bad; examples of

the identification are shown in Fig. 1. For this purpose, we

represent each item, rigorously its image, with a combina-

tion of human-interpretable features, and thereby the iden-

tification of the most influential item-feature pair will be a

useful explanation of the score.

To measure the influence of item-feature pairs, we em-

ploy the multiplication of an individual feature with the gra-

dient of the output score with respect to the feature. This is

similar to the methods for visualizing inference of CNNs,

such as the multiplication of an input image with its sensi-

tivity map [35, 37] (i.e., the score gradient with respect to

image pixels) and Grad-CAM [32]. The values thus com-

puted are averaged and normalized within each feature of

each item to yield our measure of the influence of the item-

feature pair, which we call its Item-Feature Influence Value

(IFIV). Note that our method does not need extra training

data other than those for training the outfit grader.

It is usually hard to evaluate explanations provided by

AI systems, since their quality can theoretically be evalu-

ated only by humans. Human evaluation is generally costly;

moreover, in our case, it is difficult to perform and conveys

open problems, as the judgments to be explained are often

2153

Item
Flaw detection

Shape-texture
Flaw detection

Color
Flaw detection

Figure 1: Our system first predicts a goodness score of an

input outfit consisting of multiple items. It then identifies

which item and what feature is the cause of, for instance, a

low score. It is able not only to perform item-level identifi-

cation (first row) but also to perform feature-level identifi-

cation (second and third rows).

subjective. To cope with this difficulty, we employ an auto-

matic evaluation method by designing a test for the evalu-

ation that is based on synthesis of datasets. The basic idea

is that i) we first replace a single item or its single feature

of an outfit so that the resulting score will decrease and ii)

we then test if the proposed method can detect the replaced

item by identifying the item-feature pair with the maximum

IFIV.

The organization of this paper is as follows. We first dis-

cuss the related work in Sec. 2. Next, we describe the pro-

posed method for explaining judgments made by our outfit

grader on the quality of input outfits in Sec. 3. Section 4

explains and evaluates the outfit grader that is the target of

explanation. Experimental results on the proposed method

for explaining its judgments are provided in Sec. 5. Sec-

tion 6 concludes this study.

2. Related Work

2.1. Measuring Goodness of Outfits

There is a growing interest in the application of com-

puter vision techniques to measure the goodness of outfits.

The authors of [33] predicted fashionability scores from

an outfit image and tags. The authors of [11] use bidi-

rectional LSTM (Bi-LSTM) [9] to learn the compatibility

relationship among fashion items by modeling an outfit as

a sequence, whereas fully-connected layers are employed

in [16, 38]. In [11, 16, 38], CNNs trained for generic image

recognition are used to extract features for their respective

purposes. Overall, the proposed methods in these studies

work fairly well for measuring the goodness of outfits, i.e.,

predicting a score for each outfit. However, these methods

lack the ability of providing reasons of the predicted scores.

2.2. Explaining Inference of Models

Recent advances in deep learning have dramatically

improved accuracy of many computer vision tasks, such

as image classification [12, 34, 36], object detection [30],

object segmentation [5, 21], Visual-Question Answering

(VQA) [1, 8, 22, 29], etc. These progresses have left be-

hind explanation and understanding of what the deep neu-

ral networks have learned as well as how they make infer-

ence/judgments. Thus, there is a growing concern particu-

larly about life-critical applications [18]. A number of stud-

ies have been conducted to resolve this so far; [2,31,32,41]

to name a few. LIME [31] is a method for explaining

the prediction of a machine learning model for an input,

which estimates a linear model that locally approximates

the model at the neighborhood of the input, and then uses

it for explanation. There are many studies of visualization

of inference made by CNNs. The authors of [41] proposed

the Class Activation Map (CAM) for a particular class of

CNN models, which shows the region in the input image

that is responsible for the prediction. This is later extended

to Grad-CAM [32], which is be applicable to more general

CNN models, including image captioning [4, 15, 39], and

Visual Question Answering (VQA) [1, 8, 22, 29].

2.3. Explainable Models for Fashion

The aforementioned computer vision systems for fashion

[13, 16, 19, 23, 24] employ black-box models, too, which

show fairly good performance for the respective tasks but

lack ability of providing reason of inference/judgment. It

is not straightforward to apply the above generic methods

for explaining machine learning and deep learning models

to these systems for fashion, because the problems are ba-

sically more complicated (e.g., multiple items contained in

an outfit, stratified factors affecting the goodness/badness of

an outfit etc.)

There are a few studies that attempt to provide useful

explanation on model’s evaluation of outfits [7, 17]. The

method proposed in [7] relies on a massive amount of an-

notated data to train a multi-category attribute predictor and

create a composition graph based on pairwise co-occurrence

of those predicted attributes in outfits. On the other hand,

the method proposed in [17] provides an upper-lower

matching recommendation with textual explanation by uti-

lizing comments provided by users of polyvore.com.

Although this method does not require manual annotation,

it can deal with only two items in each outfit.

3. Explaining Goodness of Outfit

Figure 2 shows an overview of the proposed system. It

employs the outfit grader developed in [38], which classi-

fies an input outfit either as positive (a good outfit) or neg-

ative (a bad outfit). We wish to explain judgment made by

2154

S(𝚽)

[𝜙0,𝜙1,...,𝜙n]

H(·)G1(x1)

G0(x0)

K1,e(·)

K1,c(·)

K0,c(·)

K0,e(·)

x0,edge_image

Outfit
Representation 𝚽

Temp.
Scaling

Soft
max Score

E(·)

E(·) 0

Backprop till item's feature representations

Shape and texture

Main colors

1

Activation
Gradient

Scaled Logits

+ + + + ++ + + + +

Shape and texture
-0.2 1.7 0.1 -0.2 -0.3

U
pp

er

Lo
w

er

Fe
et

A
cc

_0

A
cc

_1

Colors
0.2 -0.1 0.2 -0.5 1

U
pp

er

Lo
w

er

Fe
et

A
cc

_0

A
cc

_1

Feature-wise outfit flaw detection Item-wise outfit flaw detection

0.0 1.6 0.3 -0.7 0.7

U
pp

er

Lo
w

er

Fe
et

A
cc

_0

A
cc

_1item-wise
sum

x0,edge_image

x0,colors

raw

x0,colors
raw

x1,edge_image

x1,colors

x0

x1

Figure 2: The overview of the proposed system. Given an outfit as a set of items, it extracts edge image and main colors of

each item. The edge image is forward-propagated through a pretrained CNN E, then the output and main colors are forward-

propagated through a series of concatenation and fully connected layers with ReLU (i.e., K, G and H) to obtain the score.

The system also computes the gradient of the score (rigorously, the logit before softmax) with respect to the representation

of each item through backpropagation. The gradients are multiplied with the corresponding features, yielding Item Feature

Influence Value (IFIV). There is a single IFIV for each item-feature pair.

the grader for an outfit, i.e., why it classifies an input out-

fit as positive or as negative. For this purpose, we evaluate

influence of each item and its features on the grader’s judg-

ment. The former (i.e., the influence of each item) provides

item-level explanations, e.g., this outfit is bad because of

the inclusion of this particular item. For this, we use the

internal features (i.e., penultimate layer activation) that the

grader uses. To further enable to obtain deeper explana-

tions, we use human-interpretable features for the purpose,

e.g., shape, texture, and colors extracted from the item im-

ages comprising the input outfit. To do this, we redesign

the grader so that it can make judgments solely from these

features.

3.1. Interpretable Item Features

The idea is to represent each item in terms of its at-

tributes that are human-interpretable. We also rebuild the

grader so that it can judge an input outfit from its attribute

representation, and then attempt to explain its judgments

according to influence of each attribute on the final score.

There are many candidate for this purpose, such as item

type, brand, color, shape, texture, style etc. However, it may

be a difficult task even for fashion experts to define such at-

tributes determining the goodness of outfit. Moreover, we

also need to be able to accurately predict those attributes

Figure 3: Item with their edge image and three main colors.

from input item images, which will require costly annota-

tion for training a proper model (e.g., a CNN). Additionally,

the attributes need to be sufficiently rich so that the grader

can properly judge goodness of outfits only from them.

Considering these requirements, we choose primitive

image features that can be easily extracted from the item

images: shape, texture, and colors. To be specific, we first

divide contents of item images into color and non-color in-

formation. For the former, we extract three dominant col-

ors from each image by finding clusters of pixels in color

space. For non-color information, we first convert the im-

age into gray-scale and then extract edges, which are ex-

pected to maintain shape and texture of the item. Figure 3

shows examples of original images, their edge image, and

three dominant colors. Their details are given below.

For colors, after removing background from the item im-

2155

age, we apply K-mean clustering [20] to cluster all the pix-

els in the item image into three main colors in RGB color

space. We use their centroids as three dominant colors of

the item, yielding a 9-dimensional vector (3 colors× 3 RGB

color values) for each item image. We denote it by xraw
i,colors,

where the subscript i indicate that this is the color of the

item that occupies i-th outfit part. In addition, since we use

a zero-vector to represent absence of an outfit part, to en-

able to deal with outfits with a variable number of items, as

in [38], we add 1 to all color values to avoid the conflict of

a zero-vector with black color, resulting in the shift of the

color value range from [0,1] to [1,2].

For shape and texture, we extract features in the follow-

ing way. Let I be the input item image. We first apply the

Canny edge detector [3] to I to obtain an edge map Ie1 .

In parallel, we also apply a simple 3 × 3 filter f to I as

Ie2 = I ∗ f ; f is defined as

f =

−1 −1 −1
−1 8 −1
−1 −1 −1

 . (1)

We add these two edge-like maps to obtain

Ie = Ie1 + Ie2 . (2)

We call its black-white inverted version (i.e., Ie ← 255 −
clip(Ie, 0, 255)) edge image of I . We then use a pre-

trained convolutional neural network (CNN) to extract an

n-dimensional embedding of edge image, which we denote

by xraw
i,edge image, as

xraw
i,edge image = E(edge image) (3)

where E is the CNN (up to its penultimate layer). We will

use this as the representation of shape and texture of the

item occupying the i-th outfit part.

The features xraw
i,colors and xraw

i,edge image obtained as

above are transformed by a trainable item-feature encoders

Ki,c and Ki,e into item-feature encodings xi,colors and

xi,edge image respectively. We use a stack of a few fully-

connected layers for Ki,c and Ki,e each. Finally, we con-

catenate them together and denote the resultant vector by

xi = [x⊤

i,edge image,x
⊤

i,colors]
⊤, which gives a representa-

tion of an item.

3.2. Outfit Grader

Our outfit grader is basically the same as the one pro-

posed in [38] except the representation of items described

above. We summarize its design here. The input is an out-

fit consisting of n items, each of which occupies a different

part. Given the feature of an i-th part item as mentioned

above, our grader first transforms it by a trainable item en-

coder Gi as

φi = Gi(xi). (4)

We use a stack of a few fully-connected layers for Gi. The

representations of n items are then concatenated and trans-

formed to the representation Φ of the entire outfit as

Φ = H([φ0, φ1, . . . , φn]), (5)

where H is a trainable outfit encoder, for which we employ

a single fully-connected layer (followed by BN and ReLU).

The grader performs binary classification on the repre-

sentation Φ of the input outfit O. To do this, the outfit rep-

resentation is transformed by a single fully-connected layer

S to two logits s = [spos, sneg] as s = S(Φ). Then they are

normalized by softmax to yield scores for positive and nega-

tive classifications. Denoting the score for O being positive

by F (O), it is given by

F (O) = σpos(s) =
exp (spos)

exp (spos) + exp (sneg)
. (6)

For the CNNs extracting item features (e.g.,

xedge image), we use those pretrained on other tasks

such as object recognition. Thus, the learnable parameters

in the grader are in Ki,e, Ki,c, Gi, H , and S. They are

learned by minimizing a cross-entropy loss on training data

consisting of pairs of outfit O and the ground-truth label

(i.e., positive or negative).

Calibration of Outfit Scores It is known [10] that mod-

ern deep neural networks employing softmax for multi-class

classification tend to be over-confindent, that is, the score

of the predicted class, or confident (i.e., the max of softmax

outputs), tends to be large and even close to one, even if the

prediction is wrong. We found that this is exactly the case

with our implementation of the outfit grader [38]. A simple

but effective method to alleviate this overconfidence is to

perform calibration of the softmax outputs using tempera-

ture scaling [10,28]. To be specific, we replace s in the soft-

max (6) with s/T . T is determined using validation samples

so that the resulting score F (O) is as close to classification

accuracy as possible; then the score will better represent

confidence of the prediction. We use q̂ = 100 · F (O) (in

percent) as the fashionability score of an outfit O.

3.3. Item Feature Influence Value (IFIV)

Suppose that we input an outfit to the above grader and

receive its judgment. To explain the judgment, we evaluate

influence of each feature of each item. If the judgment is

negative and a particular feature of an item has large influ-

ence on it, we regard that feature of the item to be the reason

for the negativity; the same is true for a positive judgment.

To be specific, we define the influence on the logit sc
(c ∈ {neg, pos}) of a feature f(∈ {edge image, colors})
of i-th item, denoted by xi,f , as follows. We first compute

gi,f = xi,f ⊙
∂sc
∂xi,f

, (7)

where ⊙ is element-wise multiplication. Note that the logit

sc here is the temperature-scaled version mentioned above.

2156

A similar method is used for visualization of CNNs for ob-

ject classification, where the pixel-wise multiplication of an

input image and the gradient of a class score with respect to

its pixels is used to show which part positively or negatively

affects the score and which part has no influence on it. As

we consider influence of only each feature, not its element,

we compute the sum over all its elements as

IFIVi =
∑

f

IFIVi,f , (8a)

where

IFIVi,f =
∑

k

gi,f,k, (8b)

where gi,f,k is the k-th element of gi,f . Figure 2 shows

the diagram explaining how Item Feature Influence Value

(IFIV) of each item feature is computed.

4. Evaluation of the Outfit Grader

4.1. Prediction Accuracy vs. Interpretability

We redesign the outfit grader for the purpose of im-

proved explanability. The original model [38] is designed

to be an end-to-end model receiving raw item images as

inputs, aiming at the best prediction accuracy of outfit qual-

ity. Our redesigned model receives hand-engineered fea-

tures extracted from item images for the sake of explanabil-

ity. This will sacrifice accuracy of outfit quality prediction.

We conducted experiments to examine this.

Model architecture We compare two models that differ

only in the item representation x. One is the model we de-

scribed in Sec. 3. The other is a baseline model, which uses

a CNN feature directly extracted from RGB item images;

to be specific, the feature of the i-th part item is given by

xi = E(RGB image), where E is a pretrained CNN that

is the same as the one used to extract xraw
i,edge image. The

configurations and parameters that are shared by the two

models are as follows:

• For the feature extractor E, we employ ImageNet-

pretrained InceptionV3 [36]. The activation of pool5

layer for an input item image is used for x, which

forms a 2048-dimensional vector.

• An identity function is used for item-feature encoders

Ki,e, Ki,c and item encoder Gi.

• A single fully-connected layer with 4096 units is used

for the outfit encoder H , followed by batch normaliza-

tion [14] and ReLU [26] activation function.

• The both models are trained for 50 epochs with learn-

ing rate 1e − 4 and batch size 256 on Polyvore409k

dataset [38].

Table 1: Accuracy and average f1 of a baseline and an in-

terpretable outfit grader on Polyvore409k dataset [38].

Partition Metric
Outfit Grader

Baseline Interpretable

Train
Acc. 98.41 99.04

Avg. F1 98.20 98.92

Validation
Acc. 83.19 80.23

Avg. F1 81.86 79.06

Test
Acc. 79.19 76.36

Avg. F1 74.11 71.42

Figure 4: Eight best (upper) and worst (lower) outfits from

testing partition of Polyvore409k dataset according to our

outfit grader.

Results Table 1 shows the results. Accuracy indicates that

of binary classification, where a prediction is considered

to be correct if it matches the ground truth. As expected,

the baseline model shows better performance than the inter-

pretable model by 2.83% accuracy and 2.69% average f1.

This is a noticeable gap but is arguably not so large to make

the explanation by the interpretable model meaningless.

Configuration of Outfit Grader To recover the perfor-

mance drop as much as possible and further achieve better

prediction accuracy, we tested a number of configurations of

the interpretable grader. To be specific, we tested different

configurations of the item-feature encoder Ki,c and Ki,e,

the item encoder Gi and the outfit encoder H . The configu-

rations and their performance on testing samples are shown

in Table 2. Since the model #3 has the best performance,

we will use this model for the experiments on explainabil-

ity using feature influence values. Figure 4 shows examples

of judgments of the grader; outfits with the highest score

and those with the lowest scores.

4.2. Effect of Calibration of Score (Confidence)

As mentioned in Sec. 3.2, we employ the temperature

scaling to calibrate the outfit score (or confidence) q̂. Fig-

ure 5 shows the reliability diagrams [6, 27] before and after

2157

Table 2: Testing accuracy and average f1 of various con-

figurations of outfit grader after training for 50 epochs of

Polyvore409k dataset [38]. Each cell in the “Item-feature

Encoder Ki,c, Ki,e”, “Item Encoder Gi”, and “Outfit En-

coder H” columns specify the size of the fully-connected

layer The × indicates a stack of multiple layers.

#

Item-feature

Encoder

Ki,c, Ki,e

Item

Encoder

Gi

Outfit

Encoder

H

Acc.
Avg.

F1

1 - - 4096 76.36 71.42

2 128 1024 2048 80.19 75.76

3 1024 1024 2048 80.75 76.76

4 128 128 128 77.56 71.61

5 128×64 512×256 2048 80.05 75.70

6 128×64×32 512×256 2048 79.04 75.84

the calibration. Searching for the best value for the tem-

parature T on the validation samples yielded T = 6.77. To

do this, we split all the testing samples into 10 bins with

an equal width, using which we plot the expected accu-

racy of samples in each bin against the average confidence

from the outfit scores. A perfectly calibrated model will

yield an identity relation between them. We also calcu-

lated expected calibration error (ECE) [25], the difference

in expectation between confidence and accuracy. ECE is re-

duced from 11.32 and 14.97 before the calibration to 0.92

and 0.46 after calibration for validation and testing partition

of Polyvore409k dataset [38] respectively. Figure 6 shows

distributions of outfit scores for samples with positive la-

bels and those with negative labels. The distributions with

the temperature scaling clearly have a much wider spread,

making the score more meaningful. We can conclude from

Figs. 5 and 6 that the temperature scaling is able to calibrate

the outfit scores.

5. Experimental Results

We conducted experiments to evaluate the proposed

method for explaining judgment of the outfit grader. For the

grader, we used the 1024-1024-2048 model from Table 2.

5.1. Experimental Design

Suppose that an outfit is bad (i.e., not fashionable) due

to a single item contained in it. There should also be a rea-

son why the item does not match the outfit and makes it

bad, e.g., because of its incompatible color or its unmatched

shape and texture. We want to identify the item as well as

the reason for the bad outfit.

Based on the proposed framework, this is formulated as

a task of identifying the item-feature pair that has the most

negative influence on an input outfit. We apply the proposed

method to this task and evaluate its performance.

For this purpose, we create a set of negative outfits from

Validation Test

Before

temperature

scaling

50 60 70 80 90 100
Confidence

20

40

60

80

100

Ac
cu

ra
cy

ECE= 11.3235

Confidence
Accuracy
Ideal Acc.

50 60 70 80 90 100
Confidence

20

40

60

80

100

Ac
cu

ra
cy

ECE= 14.9709

Confidence
Accuracy
Ideal Acc.

After

temperature

scaling

50 60 70 80 90 100
Confidence

20

40

60

80

100

Ac
cu

ra
cy

ECE= 0.9235

Confidence
Accuracy
Ideal Acc.

50 60 70 80 90 100
Confidence

20

40

60

80

100

Ac
cu

ra
cy

ECE= 0.4601

Confidence
Accuracy
Ideal Acc.

Figure 5: Reliability diagrams and ECE values before and

after temperature scaling for validation and testing partition

of Polyvore409k dataset [38]. Confidence is equivalent to

the outfit score.

Validation Test

Before

temperature

scaling
0 100

Score

 0%

25%

50%

75%

%
 o

f s
am

pl
es pos

neg

0 100
Score

 0%

25%

50%

75%

%
 o

f s
am

pl
es pos

neg

After

temperature

scaling
0 100

Score

 0%

10%

20%

%
 o

f s
am

pl
es pos

neg

0 100
Score

 0%

 2%

 4%

 6%
%

 o
f s

am
pl

es pos
neg

Figure 6: Distribution of outfit scores before and after tem-

perature scaling for positive and negative samples in valida-

tion and testing partition of Polyvore409k dataset [38].

positive ones in the dataset in the following way. For a posi-

tive outfit, we choose an item from those contained in it and

then replace its feature f(∈ {edge image, colors}) and

ensure that the replacement does decrease the outfit score.

Note that we are interested here not in the correctness of the

judgment of the outfit grader but in how well its judgment

can be explained, more precisely, accuracy of the proposed

method identifying the item-feature pair lowering the score.

Detailed procedures for the creation of data are as follows:

1. 1,000 base outfits with the highest scores are chosen

2158

Table 3: Statistics of the base samples and the negative

samples created from them. The three types of negative

samples, i.e., edge image-wise, colors-wise, and item-wise,

have identical statistics by their construction.

Sample type Number of samples containing following

outfit parts number of items

Base sample

Outer

Upper

Lower

Full

Feet

Accessory0

Accessory1

Accessory2

205

682

715

330

967

986

901

691

3 items

4 items

5 items

6 items

7 items

8 items

Total

14

98

396

383

107

2

1,000

Outfit flaw

detection sample

Outer

Upper

Lower

Full

Feet

Accessory0

Accessory1

Accessory2

2,050

6,820

7,150

3,300

9,670

9,860

9,010

6,910

3 items

4 items

5 items

6 items

7 items

8 items

Total

420

3,920

19,800

22,980

7,490

160

54,770

from the test partition of Polyvore409k dataset [38].

Their average score is 98.37 (out of 100).

2. For each item and its feature f in each base outfit, we

create 10 mod samples in the following way:

2.1 500 mod samples are first created by changing

the item-feature f in the base sample. In the

case of edge image, we replace it with that of

other item occupying the same part of an out-

fit randomly chosen from the test partition of the

dataset. In the case of colors, we replace it with

random colors.

2.2 Their scores are computed by the outfit grader

and the worst ten samples are selected and all the

others are discarded.

Step 2.2 ensures that the grader gives low scores to the

created outfits with a replaced item-feature pair. For the

two features of edge image and colors, the above proce-

dure produces two datasets, which we call edge image-wise

and colors-wise samples, respectively. Additionally, we

create “item-wise” samples by replacing the entire item in

Step 2.1. An example of created negative samples is shown

in Fig. 8. The statistics of the base samples and the three

types of negative samples are shown in Table 3. The distri-

butions of scores for these samples are shown in Fig. 7.

5.2. Results

We apply our method to the three types of samples cre-

ated as explained above. To be specific, inputting each

0 20 40 60 80 100
Score

 0%

20%

40%

%
 o

f s
am

pl
es

Distribution of the score
item-wise
edge_image-wise
colors-wise
base samples

Figure 7: The distribution of scores of each type of samples.

sample to the grader, which yield a lower score as ex-

plained above, we compute IFIVs for the score defined in

(8). We then find the part with the minimum IFIV, or equiv-

alently, that the maximum negative IFIV over all features

f(∈ {edge image, colors}) as

i∗ = argmax
i,f

(−IFIVi,f). (9)

We regard the prediction i∗ as correct if it matches the true

item, which is the replaced one when creating the negative

sample. Figure 8 shows examples of IFIVs for different

types of samples. It is seen that the replaced item-feature

pairs yield high negative IFIVs, meaning that our method

can successfully detect the item lowering the outfit score

with the reason why it is bad (i.e., the feature lowering the

outfit score).

Table 4 show the performance over all the samples.

The proposed method can detect the replaced items for

item-wise samples with 99.51% accuracy and those for

edge image-wise samples with 98.99% accuracy, respec-

tively. The accuracy for colors-wise samples is 81.83%

and is lower than the others. This is due to the fact that

the scores of the colors-wise samples tend to be higher and

their gap to the original outfits are smaller than the other

two types, as shown in Fig. 7. That said, this is fairly good

considering the chance rate. Note that for the samples of

edge image-wise and colors-wise, it is necessary to predict

both the feature and the item correctly.

Table 5 shows accuracy values for different numbers of

items. They are quite consistent for item- and edge image-

wise samples, except for the outfit with eight items. Note

that there is only two out of 1,000 base samples that has

eight items, as shown in Table 3, and thus the performance

for eight items could be statistically unreliable. For col-

ors-wise samples, there is a tendency that the accuracy de-

creases as the number of items increases.

Table 6 shows accuracy values calculated for each part of

outfits. It is seen that for item- and edge image-wise sam-

ples, the performance are almost the same across all outfit

parts, except the full outfit part showing slightly lower ac-

curacy. For colors-wise samples, the accuracies are lower

the other two types and are somewhat different for different

parts.

2159

Sample

Type
Items in outfit, its features, and IFIV scores of each feature

base

sample

up
pe

r

lo
we

r

fe
et

ac
c0

ac
c1

0.5

0.0

IFIVs

item
edge_image
colors

item-

wise

up
pe

r

lo
we

r

fe
et

ac
c0

ac
c1

0

2

IFIVs

item
edge_image
colors

edge-

image-

wise

up
pe

r

lo
we

r

fe
et

ac
c0

ac
c1

0

1

IFIVs

item
edge_image
colors

base

sample

up
pe

r

lo
we

r

fe
et

ac
c0

ac
c1

0

1

IFIVs

item
edge_image
colors

Figure 8: An example of computation of IFIVs. The red

boxes indicate the replaced entities from the original high-

quality outfits, which makes the new outfits have low outfit

scores. “IFIV score” means negative IFIV value.

6. Conclusion

In this paper, we have proposed a novel method for item-

feature-wise explanation of outfits. The method can quan-

tify the effect of interpretable features of each item on the

goodness of an outfit with the proposed Item Feature Influ-

ence Value (IFIV). It does not need any item-level attribute

annotation. Using the IFIV of each item-feature pair in an

outfit, we can detect the bad item in an outfit lowering its

Table 4: Overall accuracy (%) of detection of replaced item-

feature pairs.

Method Sample type Prediction accuracy

Random
item-wise

feature-wise

18.26

9.13

Proposed

method

item-wise

edge image-wise

colors-wise

99.51

98.99

81.83

Table 5: Accuracy (%) of replaced item-feature detection

for different numbers of items contained in each outfit. The

By chance column shows the chance rate for feature-wise

samples.

Number

of items

By

chance

Proposed method (by sample type)

item edge image colors

3 16.67 95.71 95.71 76.43

4 12.50 99.90 97.37 86.91

5 10.00 99.72 98.94 85.39

6 8.34 99.51 99.26 79.57

7 7.15 99.39 99.57 76.92

8 6.25 80.00 86.25 86.25

Table 6: Accuracy (%) of replaced item-feature detection

classified by different outfit parts. Note that there are eight

outfit parts in Polyvore409k dataset; the By chance column

shows the chance rate for feature-wise samples.

Outfit

part

By

chance

Proposed method (by sample type)

item edge image colors

outer 7.77 100.00 99.66 58.93

upper 8.58 99.75 99.96 57.95

lower 8.59 99.40 99.36 68.20

full 9.93 96.36 87.70 66.36

feet 8.87 99.65 99.38 90.91

accessory0 8.88 99.68 99.69 94.07

accessory1 8.72 99.76 99.99 89.39

accessory2 8.49 100.00 99.99 93.70

score by finding the item-feature pair with the maximum

negative IFIV. The experiments have shown that our method

can detect the bad items at 99.51, 98.99, and 81.83%, for

datasets of item-wise, edge image-wise, and colors-wise

samples, respectively.

Acknowledgements

This work was partly supported by JSPS KAKENHI

Grant Number JP15H05919 and JP19H01110 and JST

CREST Grant Number JPMJCR14D1.

2160

References

[1] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Ba-

tra, C. Lawrence Zitnick, and D. Parikh. Vqa: Vi-

sual question answering. In Proceedings of the IEEE

International Conference on Computer Vision, pages

2425–2433, 2015. 2

[2] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Tor-

ralba. Network dissection: Quantifying interpretabil-

ity of deep visual representations. arXiv preprint

arXiv:1704.05796, 2017. 2

[3] J. Canny. A computational approach to edge detection.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, (6):679–698, 1986. 4

[4] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta,

P. Dollár, and C. L. Zitnick. Microsoft coco captions:

Data collection and evaluation server. arXiv preprint

arXiv:1504.00325, 2015. 2

[5] J. Dai, K. He, and J. Sun. Instance-aware semantic

segmentation via multi-task network cascades. In Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3150–3158, 2016. 2

[6] M. H. DeGroot and S. E. Fienberg. The comparison

and evaluation of forecasters. The Statistician, pages

12–22, 1983. 5

[7] Z. Feng, Z. Yu, Y. Yang, Y. Jing, J. Jiang, and M. Song.

Interpretable partitioned embedding for customized

multi-item fashion outfit composition. In Proceedings

of the 2018 ACM on International Conference on Mul-

timedia Retrieval, pages 143–151, 2018. 1, 2

[8] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and

W. Xu. Are you talking to a machine? dataset

and methods for multilingual image question. In

Advances in Neural Information Processing Systems,

pages 2296–2304, 2015. 2

[9] A. Graves. Supervised sequence labelling. In Su-

pervised sequence labelling with recurrent neural net-

works, pages 5–13. Springer, 2012. 2

[10] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On

calibration of modern neural networks. arXiv preprint

arXiv:1706.04599, 2017. 4

[11] X. Han, Z. Wu, Y.-G. Jiang, and L. S. Davis. Learning

fashion compatibility with bidirectional lstms. In Pro-

ceedings of the 25th ACM International Conference

on Multimedia, pages 1078–1086, 2017. 1, 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep resid-

ual learning for image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016. 2

[13] Y. Hu, X. Yi, and L. S. Davis. Collaborative fashion

recommendation: a functional tensor factorization ap-

proach. In Proceedings of the 23rd ACM International

Conference on Multimedia, pages 129–138, 2015. 1,

2

[14] S. Ioffe and C. Szegedy. Batch normalization: Accel-

erating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

5

[15] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap:

Fully convolutional localization networks for dense

captioning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages

4565–4574, 2016. 2

[16] Y. Li, L. Cao, J. Zhu, and J. Luo. Mining fashion out-

fit composition using an end-to-end deep learning ap-

proach on set data. IEEE Transactions on Multimedia,

2017. 1, 2

[17] Y. Lin, P. Ren, Z. Chen, Z. Ren, J. Ma, and M. de Ri-

jke. Explainable fashion recommendation with joint

outfit matching and comment generation. arXiv

preprint arXiv:1806.08977, 2018. 2

[18] Z. C. Lipton. The mythos of model interpretability.

arXiv preprint arXiv:1606.03490, 2016. 2

[19] S. Liu, J. Feng, Z. Song, T. Zhang, H. Lu, C. Xu, and

S. Yan. Hi, magic closet, tell me what to wear! In Pro-

ceedings of the 20th ACM International Conference on

Multimedia, pages 619–628, 2012. 1, 2

[20] S. Lloyd. Least squares quantization in pcm. IEEE

Transactions on Information Theory, 28(2):129–137,

1982. 4

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convo-

lutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3431–3440, 2015. 2

[22] M. Malinowski, M. Rohrbach, and M. Fritz. Ask your

neurons: A neural-based approach to answering ques-

tions about images. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1–9,

2015. 2

[23] K. Matzen, K. Bala, and N. Snavely. StreetStyle: Ex-

ploring world-wide clothing styles from millions of

photos. arXiv preprint arXiv:1706.01869, 2017. 2

[24] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hen-

gel. Image-based recommendations on styles and sub-

stitutes. In Proceedings of the 38th International ACM

SIGIR Conference on Research and Development in

Information Retrieval, pages 43–52, 2015. 2

[25] M. P. Naeini, G. F. Cooper, and M. Hauskrecht. Ob-

taining well calibrated probabilities using bayesian

binning. In Proceedings of the 29th AAAI Conference

on Artificial Intelligence, pages 2901–2907, 2015. 6

2161

[26] V. Nair and G. E. Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proceed-

ings of the 27th International Conference on Machine

Learning, pages 807–814, 2010. 5

[27] A. Niculescu-Mizil and R. Caruana. Predicting good

probabilities with supervised learning. In Proceed-

ings of the 22nd International Conference on Machine

Learning, pages 625–632, 2005. 5

[28] J. Platt et al. Probabilistic outputs for support vec-

tor machines and comparisons to regularized likeli-

hood methods. Advances in Large Margin Classifiers,

10(3):61–74, 1999. 4

[29] M. Ren, R. Kiros, and R. Zemel. Exploring models

and data for image question answering. In Advances in

Neural Information Processing Systems, pages 2953–

2961, 2015. 2

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn:

Towards real-time object detection with region pro-

posal networks. In Advances in Neural Information

Processing Systems, pages 91–99, 2015. 2

[31] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should

i trust you?: Explaining the predictions of any clas-

sifier. In Proceedings of the 22nd ACM SIGKDD In-

ternational Conference on Knowledge Discovery and

Data Mining, pages 1135–1144, 2016. 2

[32] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,

D. Parikh, D. Batra, et al. Grad-cam: Visual explana-

tions from deep networks via gradient-based localiza-

tion. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 618–626, 2017. 1,

2

[33] E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and

R. Urtasun. Neuroaesthetics in fashion: Modeling

the perception of fashionability. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 869–877, 2015. 1, 2

[34] K. Simonyan and A. Zisserman. Very deep convo-

lutional networks for large-scale image recognition.

CoRR, abs/1409.1556, 2014. 2

[35] D. Smilkov, N. Thorat, B. Kim, F. Vigas, and M. Wat-

tenberg. Smoothgrad: removing noise by adding

noise. arXiv preprint arXiv:1706.03825, 2017. 1

[36] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna. Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

pages 2818–2826, 2016. 2, 5

[37] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,

D. Erhan, I. Goodfellow, and R. Fergus. Intrigu-

ing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013. 1

[38] P. Tangseng, K. Yamaguchi, and T. Okatani. Recom-

mending outfits from personal closet. In Proceedings

of IEEE Winter Conference on Applications of Com-

puter Vision, pages 269–277, 2018. 1, 2, 4, 5, 6, 7

[39] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show

and tell: A neural image caption generator. In Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3156–3164, 2015. 2

[40] X. Zhang, J. Jia, K. Gao, Y. Zhang, D. Zhang, J. Li,

and Q. Tian. Trip outfits advisor: Location-oriented

clothing recommendation. IEEE Transactions on Mul-

timedia, 19(11):2533–2544, 2017. 1

[41] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

A. Torralba. Learning deep features for discriminative

localization. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages

2921–2929, 2016. 2

2162

