
Image identification of Protea species with attributes and subgenus scaling

Peter Thompson

Stellenbosch University

peter@hoekwil.com

Willie Brink

Stellenbosch University

wbrink@sun.ac.za

Abstract

The flowering plant genus Protea is a dominant repre-

sentative for the biodiversity of the Cape Floristic Region

in South Africa, and from a conservation point of view im-

portant to monitor. The recent surge in popularity of crowd-

sourced wildlife monitoring platforms presents both chal-

lenges and opportunities for automatic image based species

identification. We consider the problem of identifying the

Protea species in a given image with additional (but op-

tional) attributes linked to the observation, such as loca-

tion and date. We collect training and test data from a

crowd-sourced platform, and find that the Protea identifi-

cation problem is exacerbated by considerable inter-class

similarity, data scarcity, class imbalance, as well as large

variations in image quality, composition and background.

Our proposed solution consists of three parts. The first part

incorporates a variant of multi-region attention into a pre-

trained convolutional neural network, to focus on the flow-

erhead in the image. The second part performs coarser-

grained classification on subgenera (superclasses) and then

rescales the output of the first part. The third part con-

ditions a probabilistic model on the additional attributes

associated with the observation. We perform an ablation

study on the proposed model and its constituents, and find

that all three components together outperform our baselines

and all other variants quite significantly.

1. Introduction

The iconic plant genus Protea has its centre of diversity

in the Cape Floristic Region (CFR) of South Africa; a re-

gion that accounts for 40% of the country’s 20,400 species

of indigenous flowering plants [30] while covering only 4%
of the country’s area. The diversity of Protea makes it a

fitting surrogate for the biodiversity of the region [8] and

consequently an important genus to monitor for the sake of

conservation.

The monitoring of biodiversity is traditionally performed

by expert scientists, but there is a growing trend to utilise the

power of crowd-sourced data [5, 26]. Such data is becoming

Figure 1. Different species of Protea, such as Protea neriifolia

and Protea laurifolia shown here, can exhibit considerable visual

similarity.

important for understanding species populations [3] in the

midst of issues like global warming, pollution and poach-

ing. The crowd-sourced platform iNaturalist for example

allows users to upload observations of wildlife, which typ-

ically include images, locations, dates, and identifications

that can be verified by fellow users [31]. As of October

2019 the iNaturalist database contains over 27,000,000 ob-

servations for over 237,000 species, and it is impossible for

experts to keep up with the sheer influx of data [33].

Automated tools based on computer vision may ease the

task of identification, and could potentially provide expert-

like knowledge to amateur naturalists. iNaturalist imple-

ments a top-k recommender system built on deep convolu-

tional models for image identification [31], but challenges

due to large class imbalances and fine granularity in biolog-

ical domains remain [34, 3].

We focus on the problem of automatically identifying

Protea species from images, as a surrogate both for the

biodiversity of the CFR and for the unbalanced and fine-

grained databases of citizen science projects in general. The

problem is complicated by a number of factors. Firstly, it

is a fine-grained classification problem where some species

share striking visual similarities with others, as demon-

strated in Figure 1. Secondly, image data is extremely

scarce for many of the rarer species. When we constructed
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Figure 2. The distribution of images per species in our dataset,

indicating a degree of class imbalance and long tail. Species left

of the short vertical line are those for which at least 20 images are

available.

our dataset (as detailed in section 3), only 41 of the 70 Pro-

tea species known to exist in the CFR had at least 20 dif-

ferent images depicting an inflorescence (flowerhead). Un-

fortunately the prevalence of hybrid cultivars prevent scrap-

ing the Internet for additional images, labelled or otherwise.

Thirdly, the data is unbalanced as indicated in Figure 2.

Four of the 41 species mentioned above account for nearly

40% of the data. Finally, the image data is sourced from

populations in the wild, by many different observers. There

is no standard in how images were taken, resulting in large

amounts of compositional and background variation.

In order to address these challenges we restrict the prob-

lem to the 41 species for which at least 20 images could be

found, and propose an automated identification model that

consists of three components. The first is a convolutional

neural network (CNN) with a variant of multi-region atten-

tion [38], trained to classify over the 41 species. The sec-

ond component leverages the fact that Protea species can

be categorised into more easily distinguishable subgenera

(the two species in Figure 1 are both Bearded Sugarbushes,

for example) and accordingly consists of a CNN trained

for subgenus classification. Its output is used essentially

to rescale the class scores of the first network. The occur-

rence of Protea species tends to be relatively finely depen-

dent on location and elevation, and different species also

flower during different times of the year. Such attributes

are often available as part of an observation, and the third

component of our model exploits such additional data (if

available) through a simple Bayesian approach.

An ablation study on the proposed model suggests that

all three components together outperform the baselines sub-

stantially in terms of test accuracy and recall. The image

dataset can be found within a project called “Sugarbushes

of South Africa” on iNaturalist.

2. Related work

The idea of image recognition for automated species

identification has been around for some time [11]. While

a lot of previous work on plant identification rely on hand-

crafted features, recent advances in deep feature learning

are opening new opportunities for more challenging, fine-

grained identification.

2.1. Feature engineering

A review on plant species identification by Wäldchen et

al. [32] mentions that different plant organs such as leaves,

flowers, fruit and stems, have typically been considered.

It is then common to define and extract shape, colour or

texture features from these organs [7, 14, 15, 19, 20, 21];

a trend that has seen some continuation beyond the deep

learning revolution [1, 6, 22, 23, 36].

Hong and Choi [13], for example, identify flowers based

on detected edge contours and also colour features found

through clustering in the HSV space. Apriuanti et al. [1]

identify orchid species from images by first segmenting

flowers from the background and then finding shape and

colour features. Shape features include segment size, as-

pect ratio and roundness, while the saturation component of

the segmented image is used as a colour feature. Zawbaa

et al. [36] use textures, by transforming an input image to

a set of binary images and extracting texture patterns. Nils-

back and Zisserman [19] describe texture by convolutional

filters.

2.2. Deep learning based approaches

Recent work on plant identification tend to make use of

deep neural networks that learn statistically relevant feature

representations from the data. Zhang et al. [37] train a six-

layer CNN for leaf identification on the Flavia dataset [35].

Barré et al. [2] find improved performance on the same task

with a 17-layer CNN, and also show significant improve-

ments over the use of hand-crafted features.

A common approach is to leverage the power of pre-

trained CNNs such as AlexNet [17] or ResNet [12]. Simon

and Rodner [27] use this idea as a method of feature extrac-

tion, with an SVM for classification, on the Oxford Flow-

ers 102 dataset [20]. Given the challenges in our particular

case, notably the data scarcity, we also utilise a pretrained

network as a basis in our approach.

There have also been advances in applying active learn-

ing to fine-grained image classification [16], which seeks

to increase the training set on-the-fly in a manner that opti-

mises network performance. It is not really applicable to our

niche problem, where Protea species are sometimes rare,

not well documented, or found only in difficult to reach en-

vironments.
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2.3. Fine­grained image recognition

A standard approach to tackle fine-grained recognition is

to localise and then separately classify diagnostic features

in images with a number of subnetworks. Zheng et al. [38]

use the outputs of a pretrained CNN to construct an atten-

tion mechanism for a subsequent classification subnetwork.

This technique does not rely on part-based annotations of

training images (as some earlier methods did), and has be-

come a norm in fine-grained recognition [10, 28] and one

that we also adopt.

Another popular method for fine-grained classification is

end-to-end feature encoding with bilinear CNNs [18]. Such

a model consists of two parallel CNNs acting as feature ex-

tractors, whose outputs are multiplied and pooled to obtain

an image descriptor vector for classification.

2.4. Incorporating additional data

Additional data, such as the recorded location of an

observation, has been used to solve biological classifica-

tion problems. An example of this is BirdSnap [4] which,

through an application of Bayes’ rule, takes geographical

distributions of bird species into consideration to aid an im-

age based identification module. We incorporate location,

elevation and date information in a similar way.

3. Dataset

This section describes our process of collecting an an-

notated dataset of images of Protea species, as well as our

construction of per-species distributions according to loca-

tion, elevation and time of flowering.

3.1. iNaturalist

We collected images from the crowd-sourced platform

iNaturalist, where people across the world upload observa-

tions of fauna and flora in the wild, under a Creative Com-

mons license. An observation typically consists of at least

an image, a location, a date and a community-aided iden-

tification. Of all the Protea records found on iNaturalist at

the time of our dataset creation, we were interested only

in those from non-cultivated, research-grade (having two

or more unanimous species-level identifications from sep-

arate users) observations in the CFR. We also kept only im-

ages depicting flowering inflorescences, and restricted the

dataset to species with at least 20 such images. This fil-

ter process resulted in a dataset containing 4,849 images in

total, across 41 species.

We emphasise that the set is unbalanced in terms of sam-

ples per species, has fine granularity among many of the

classes, and also contains significant variability in back-

ground, image quality, image composition and the size of

the inflorescence in the image, etc. It is, however, represen-

tative of the real world [31].

Every image corresponds to a latitude and longitude

value of where it was taken, an elevation reading in metres

above sea level, the date of the observation, and a commu-

nity identification to species level. We note that elevation

can to some degree be inferred from latitude and longitude,

but we rather treat it as an additional attribute because of

the sensitivity of certain Protea species to it. We also in-

clude the iNaturalist observation identification number in

our dataset, for potential future use (to trace a specific ob-

servation, for example).

We split our dataset into a training set with 3,652 images

and a test set with 1,197 images, by splitting the images of

each of the 41 classes randomly with a fixed ratio.

3.2. The Protea Atlas Project

The Protea Atlas Project [24] was launched in November

1991 by Rebelo, in an effort to document the Proteaceae in

Southern Africa. The project culminated in a vast collection

of data: 252,513 species records at 61,591 locations.

We isolate the data for our 41 Protea species, for an in-

dication of where each species is found. We discretise the

CFR into a gridmap, and for each species separately pop-

ulate the grid cells with frequency counts from the Protea

Atlas Project records. These frequencies are normalised

and then interpreted as a conditional probability distribu-

tion over observation location, given a species. An example

of such a distribution is shown in Figure 3.

We construct similar distributions over elevation and

flowering time, using the summarised data in Rebelo’s field

guide [25]. For every species we set up binary-valued distri-

butions over discrete elevation intervals (in steps of 100m)

and discretised flowering time of year (in months). These

values are then smoothed with a simple 1D Gaussian filter

to reduce potential quantisation effects, and normalised.

0.0

0.5

1.0

Figure 3. The location distribution of Protea magnifica, as inferred

from the Protea Atlas Project records. Every cell in the discretised

Cape Floristic Region is shaded according to the probability of

occurrence in that location, given the species.
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Figure 4. Our model for Protea species identification operates on an image with additional (but optional) attributes linked to the observation,

and combines three parts: (a) a CNN with attention, (b) a separate network that classifies the image into coarser subgenera, and (c) a

probabilistic model conditioned on the attributes.

4. Our approach

An overview of our approach is given in Figure 4. The

goal is to perform Protea species identification from an ob-

servation, which we assume consists of a single image and

additional (but optional) position and date information. The

proposed model has three parts, each to be explained in

more detail in the subsections below.

The first part is a convolutional neural network with at-

tention (CNN-A) that outputs a normalised score for each of

the 41 possible species (classes). The second part leverages

the fact that the 41 species can be grouped into 13 subgen-

era (superclasses) that are more distinct from one another.

This somewhat easier classification problem is solved with

a CNN, whose output is used essentially to rescale the class

scores from the first part. The third part of our model condi-

tions the distribution over species on evidence of location,

elevation and date of the observation. The final result from

the three parts is a classification score vector.

4.1. CNN with attention

The first part of our model makes use of a CNN to trans-

form images to normalised class scores associated with the

different species. As a first baseline we make use of the

Inception-V3 architecture [29] with weights pretrained on

ImageNet [9]. We choose this particular architecture for

its good balance between complexity and performance. We

freeze the convolutional layers, replace the last five fully-

connected layers such that a 41-class softmax output is pro-

duced, and train the network on our data.

Prompted by the unconstrained nature of images from

field observations, as well as the potentially large variations

in backgrounds, we opt to explore the inclusion of an at-

tention mechanism. We base this component on the multi-

region method of Zheng et al. [38], which learns to find a

preset number of attention regions in an image specifically

for fine-grained classification. We extract two regions per

image: one that ought to focus on the prominent inflores-

cence, and one that might pick up salient areas in the back-

ground. Only the first of these is passed to the next phase of

the model. Through informal experiments we found this

approach to perform better than a single-region attention

model, likely because of the extra constraints that the sec-

ond region imposes on the first during training.

More specifically, a 299 × 299 colour image is fed into

the convolutional base of a pretrained Inception-V3 net-

work, yielding 2,048 feature maps each of size 8 × 8. The

idea now is to create two separate combinations of these

feature maps that will form the two attention maps over

the given image. The transformation from feature maps

to attention maps can be performed by two fully-connected

neural networks [38]. The feature maps are first clustered

into two groups by k-means on their peak responses over

the training set, and then averaged per cluster into atten-

tion maps M1 and M2. The networks are initially trained

to reproduce these maps, and then further fine-tuned under

a grouping loss that favours tightness within each map and

dissimilarity between them. This loss is computed over at-

tention map i, where i ∈ {1, 2} and may be expressed as

L(i)
group =

∑

(x,y)

Mi(x, y)
[

(x− px)
2 + (y − py)

2
]

+ λ
∑

(x,y)

Mi(x, y)
[

M3−i − α
]

, (1)

where Mi(x, y) is the value of attention map i at grid loca-

tion (x, y). Coordinates (px, py) represent the location of

the maximum value of Mi, and α is a scalar margin. The
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(a) Input image

(b)

(d)

(c)
Feat. maps

(e) Lgroup
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(f)

(g) Output

Figure 5. An image (a) is passed through the convolutional layers of Inception-V3 (b), which leads to 2,048 feature maps (c). These are

combined into attention maps through two fully-connected networks (d), learned jointly through the minimisation of a group loss (e). The

most prominent of the two maps is scaled and multiplied with the original image (f), to produce an attention-boosted image (g).

importance of the first term (for in-map tightness) relative

to the second term (for between-map dissimilarity) is con-

trolled by the hyper-parameter λ.

As mentioned above we take only one of the two atten-

tion maps further; ideally the one that focuses on the Protea

inflorescence. Through some experimentation on our train-

ing set we found that this map is easily discernible as being

by far the largest of the two clusters from k-means (which

again can be attributed to the nature of the data, where al-

most all images contain the inflorescence as a large salient

object). The attention map is upscaled and element-wise

multiplied with the input image, as illustrated in Figure 5.

The resulting attention-boosted images are used to train a

CNN similar to the fine-tuned Inception-V3 network de-

scribed at the beginning of this section.

The attention map extractor and the attention-boosted

image classifier can be optimised end-to-end, or alternately

for a number of iterations (similar to what is done in [38]).

4.2. Subgenus scaling

The 41 species of Protea in our dataset can be grouped

into 14 subgenera, according to common traits, and the sec-

ond part of our model attempts to classify a given image

into one of these subgenera. It can be regarded slightly eas-

ier than the 41-class problem above, due to the 14 classes

being less fine-grained and more distinct, the data being less

unbalanced, and the availability of more samples per class.

We employ a pretrained Inception-V3 network, replace the

last five fully-connected layers, impose a 14-class softmax

layer as output, and train the new layers with our data. Note

that relabelling our training data from species to subgenera

is straightforward with a guide like [25]. We experimented

with an attention mechanism in this network as well, but

found no significant change in performance. It might be

due to the simplified nature of the problem, which already

leads to a marked improvement in accuracy (as we see in

section 5).

The subgenus classifier produces 14 class scores for a

given image, which we transform into scores over the 41

Protea species by distributing the score of each parent sub-

genus equally among its children. Here we essentially as-

sume a uniform distribution over the species given the sub-

genus. An alternative would be to incorporate the class im-

balance over the species, but there is a risk of overcompen-

sation since the species-level CNN with which the subgenus

classifier is to be combined might already be learning the

class imbalance. The 41 scores produced here are used to

rescale the output of the CNN-A model from section 4.1,

through element-wise multiplication.

4.3. Attributes

For the third part of our model we consider the possi-

ble availability of three attributes accompanying an image,

namely location, elevation and date. The location can be

mapped to our discrete grip map from section 3.2. Simi-

larly, the elevation is binned to one of our discrete inter-

vals. Since we consider only observations of Protea species

in flower, the date can be interpreted as an observation of

flowering time.

We combine the three attributes x1, x2, x3 with a sim-

ple Bayes model that assumes conditional independence be-

tween them:

p(yi | x1, x2, x3)

∝ p(yi) p(x1 | yi) p(x2 | yi) p(x3 | yi), (2)

where yi is the event of the observation being species i. The
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conditionals p(xj | yi) are straightforward implementations

of the probability tables we constructed from the Protea At-

las Project (section 3.2). The prior p(yi) is a distribution

over species before any attributes are observed. We may

view the output of our image classification network as such

a prior, since it does not carry any information of the at-

tributes. Of course, the output of the image classifier may

in turn be viewed as the combination of a prior and evidence

of image data.

The model in (2) can be altered easily to incorporate a

subset of observed attributes (or none at all, in which case

we simply return the prior p(yi)).

5. Results and discussion

The aim of this work is to provide a dataset for Pro-

tea identification and to establish a baseline solution for

this task. We focus specifically on gauging the individual

and joint effects of the various components of our proposed

model, which would hopefully be useful for future improve-

ments or to solve similar problems. To this end, we pro-

ceed to report on the test performance of various versions of

our model. All classification CNNs are trained with cross-

entropy loss and the Adam optimiser with its default learn-

ing rate of 0.001. The λ and α parameters in equation (1)

are set to 2 and 0.02, as recommended in [38]. No further

hyper-parameter optimisation is performed for any of the

networks.

Performance is measured in three ways: (1) top-1 accu-

racy, which is simply the ratio of correctly identified species

over the entire test set; (2) top-3 accuracy, which is the ra-

tio of test samples for which the correct species appeared

in the model’s top three scores (useful in a semi-automated,

recommender-type environment); and (3) recall, which in

our context is average per-class accuracy. Recall ignores

the class imbalance, and gives a better indication of whether

rare species are correctly identified.

As a starting point we replaced and trained the fully-

connected layers of a standard Inception-V3 network, as

explained at the beginning of section 4.1. Here we imple-

mented early stopping in two ways: one favouring high ac-

curacy and one favouring high recall on the test set. Note

that this is the only place where the test set is used for val-

idation. We do so only to establish a baseline, not to use

these models ever again. Results are shown in the first few

lines of Table 1 (where a random classifier taking the class

imbalance into account is also evaluated). Accuracy is al-

most double the recall, indicating that this network might

have a bias for the more commonly occurring species.

The CNN-A model in Table 1 includes an attention

mechanism, and performs markedly better than the previ-

ous model in terms of top-1 accuracy and recall (though not

much in terms of top-3 accuracy, which is perhaps interest-

ing).

The subgenus network described in section 4.2 on its

own achieves a top-1 accuracy of 66.15% and a recall of

44.21%. These values are not directly comparable to those

in Table 1, since the subgenus network solves a different

problem. That said, it is an easier problem and we would

expect performance to be relatively high.

The manner in which attributes are used in section 4.3

requires a prior. We experimented with a uniform prior

(which gives a purely attribute-based classifier), and also

priors obtained from the CNN-A network and the subgenus

network (Subg). It might be worth noting that the pure

attribute-based classifier performs similar to the standalone

CNN without attention.

We also experimented with various combinations of the

attributes, CNN-A model that classifies images on a species

level, and the Subg network that classifies images on sub-

genus level. It is clear that the combination of all three

components outperforms all other versions. We note that

the inclusion of an attention mechanism in the species-level

CNN, and also the incorporation of attributes, impact per-

formance significantly. The effect of the subgenus-level

CNN is slightly less, but still useful.

The per-class accuracies obtained with our full model

on the test set can be seen in Figure 6. The class IDs in

this graph are ordered the same as those in Figure 2, and

it is encouraging to see that the model is able to identify

rarer species with an accuracy more-or-less similar to that

of more common species.

Figure 7 shows a few correct and incorrect identifications

made by the full model on test images. The high degree

of visual similarity between species like Protea neriifolia

and Protea lepidocarpodendron is evident. The amount of

training data for Protea burchellii is roughly six times less
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Figure 6. The per-class test accuracy from the final model shows

no significant bias for the classes with more training images. The

horizontal line indicates the average per-class accuracy (which is

the recall value of 66.88% in Table 1).
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Model Top-1 Top-3 Recall

Random classifier 6.35% 18.11% 2.44%
CNN (without attention) 30.32% 59.29% 13.51%
CNN-A (with attention) 55.06% 77.15% 35.59%
Attr with uniform prior 25.86% 60.75% 34.84%
Attr with Subg prior 47.28% 76.78% 55.39%
Attr with CNN-A prior no Subg 65.77% 83.35% 65.83%
CNN-A with Subg scaling no Attr 56.73% 78.86% 35.43%
Attr with CNN and Subg prior no attention 56.64% 80.45% 51.91%
Attr with CNN-A and Subg prior full model 70.43% 85.80% 66.88%

Table 1. Test performance comparison of various versions of our model. The best performance is achieved by our full model that combines

a CNN with attention, a subgenera network, and attributes.

P. neriifolia

P. lepidocarpodendronP. neriifolia

P. cynaroides

Protea burchellii Protea lorea

Protea lepidocarpodendron Protea neriifolia

Figure 7. Example identification by our full model on four Protea species. The true label of each of the four species is shown above a set

of test images, correctly identified images are outlined in green, and predicted labels are shown below incorrectly identified images.

than that of Protea neriifolia, so we may expect some of

the latter to be confused for the former. Protea lorea has

very few training images (only 22), yet is mostly correctly

identified.

Figure 8 demonstrates the effects of the various attributes

on the top 3 classification scores for a number of test im-

ages. Protea cryophila is localised to fewer than 10 high-

altitude mountain peaks, and it is expected that the inclu-

sion of location and elevation should impact its identifica-

tion significantly. Similarly, Protea effusa is a high-altitude

and highly localised species, and we observe a similar ef-

fect. For the example of Protea lanceolata the visual iden-

tification (without attributes) is already fairly certain, and

the attributes further boosts the certainty in the desired way.

The last example in the figure shows how the inclusion of

all the attributes may still not be sufficient for the system

to correctly identify the species. The inclusion of location

does lead to the correct label appearing in the top 3 scores.

6. Conclusion

We considered the problem of Protea species identifica-

tion from an image and optional information specifying the

location, elevation and date of the observation (which we

collectively refer to as attributes). The contribution of the

paper is two-fold: we firstly introduce a challenging dataset

for fine-grained image classification, and secondly propose

an identification model that consists of a CNN with atten-

tion, a second CNN to classify on the coarser subgenera-

level and rescale the output of the first CNN, and a proba-

bilistic model to condition the identification on the observed

attributes. The proposed combination of these three parts

performs reasonably well on test data, and can form a basis

for future studies.

As also noted in [31], datasets and studies like ours not

only provide computer vision researchers with new chal-

lenges representative of the real world, but are also useful
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Figure 8. We compare the effects of including attributes on top 3 classification scores for four examples from the test set. “No attributes”

means that only the CNN-A model on the image is used, and green indicates the correct label. The potentially important effect of the

location and elevation attributes for Protea identification is apparent in the top two rows.

for a number of well-defined conservation and field biology

purposes.
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