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Abstract

Overhead image geolocalization is becoming increas-

ingly important due to the growing collection of drone im-

agery without location information. In this paper, we per-

form large-scale overhead image geolocalization by match-

ing a query image to wide-area reference imagery with

known location. We use deep local features so that the query

image need not align with but only overlap the tiled refer-

ence imagery. We further address two key challenges. For

when the query and reference imagery are from different

dates, we perform cross-time geolocalization using time in-

variant features learned using a Siamese network. For when

the query and reference imagery are oriented differently,

we introduce an orientation normalization network. We

demonstrate our contributions on two new high-resolution

overhead image datasets. Our method significantly outper-

forms strong baselines on cross-time geolocalization and is

shown to exhibit promising orientation invariance.

1. Introduction

While there has been a fair amount of work on locat-

ing ground level imagery [1, 10, 17, 21, 29, 32], there has

been little work on the overhead case [6]. However, we be-

lieve this is an increasingly important problem due to the

ease with which anyone can capture overhead imagery us-

ing drones and share it online. While location information

typically accompanies traditional overhead imagery, such

as from satellite and aerial platforms, location information

is often missing or unreliable for drone imagery. It might

become lost as the imagery is distributed or deliberately ob-

scured. Our focus on overhead imagery geolocalization is

thus timely and important.

This paper focuses on the problem of geolocating over-

head imagery captured from satellite, aerial, or drone plat-

forms. By geolocating we mean assigning geographic coor-

dinates such as latitude and longitude values. We allow the

“search region” to be large and so this is a difficult problem.

As shown in Figure 1, we formulate the problem as match-

Aerial imagery

Reference set

Orientation 
normalization

Feature extraction

Similarity matching

Query image

Figure 1: We perform overhead image geolocalization by

matching a query image to reference imagery with known

location. We address two fundamental challenges: cross-

time matching and orientation-invariant matching. Com-

pare the query image with the reference set above.

ing a query image to tiled wide-area reference imagery with

known location. We address two fundamental challenges:

the query and reference imagery 1) might have been taken

at difference times, and 2) might be oriented differently.

We exploit recent advances in deep learning, particularly

convolutional neural networks (CNNs), to perform the im-

age matching. We show that, as expected, global image

features extracted using the fully connected (fc) layers are

not appropriate due to query-reference tile misalignment

and so we instead derive local features from the locality

preserving feature maps of the convolutional (conv) layers.

We show these deep local features significantly outperform

traditional local features, such as Scale Invariant Feature

Transform (SIFT) features [18], when the query and ref-

erence images are from different dates. We next develop a

Siamese network to explicitly learn time-invariant features

to make our approach even more robust to changes in sea-

son, illumination, and sensors, and to changes in what is

on the ground. Finally, we tackle the real but challenging

problem of when the query and reference imagery are ori-
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ented differently (e.g., not both pointing north). For this, we

develop an Orientation Normalization Network (ONN) that

rotates the query and reference imagery to the same canon-

ical orientation. We demonstrate our methods on two new

high-resolution overhead image datasets.

The key and novel contributions of our work include:

• We perform large-scale overhead geolocalization via

image matching using learned time-invariant deep lo-

cal features.

• We propose an Orientation Normalization Network to

account for when the query and reference imagery are

oriented differently.

• We introduce two high-resolution overhead image

datasets which will be made publicly available for

other researchers.

2. Related Work

Image geolocalization. Estimating the geographic location

of an image has been of interest to the computer vision com-

munity for some time [1, 14, 15, 16, 22, 23, 24, 28, 30].

However, the focus has been mostly on geolocating ground

level imagery which is a related but different problem than

ours, and has a different set of challenges. Ours is one of

the first works to focus on overhead image geolocalization.

Ground level imagery has been geolocated by matching

it to maps in geographic information systems (GIS) [3], to

other ground level imagery with known location [1, 10, 17,

21, 29, 32], to overhead imagery [2, 11, 15, 16, 26, 28, 30,

33], or to combinations of this reference data [14].

Geolocating a ground level query image by matching

it to ground level reference imagery is limited to regions

where reference imagery is available such as in urban ar-

eas [19, 20, 27] or along roads. It also typically assumes the

query and reference images are both oriented with the sky

at the top. We instead can geolocate overhead imagery from

anywhere and which might be oriented differently from our

reference imagery.

The fundamental challenge to geolocating a ground level

query image by matching it to overhead imagery is the dif-

ference in perspective and so most of the work on this prob-

lem focuses on cross-view matching [15, 16, 24]. For ex-

ample, Shi et al. propose a novel Cross-View Feature Trans-

port (CVFT) layer to facilitate feature alignment between

ground and aerial domains [24]. In contrast, our query and

reference imagery are taken from the same viewpoint and

so we face a different set of challenges.

We also expect to be able to geolocate overhead imagery

more accurately than ground level imagery.

We know of only one other work on geolocating over-

head imagery [6]. It also uses an image matching frame-

work but uses traditional local features and does not address

the cross-time or orientation-invariant cases. We include it

as one of our baselines.

Orientation alignment. The concept of orientation is very

different for overhead images than for images taken at

ground level. Most ground level images have a canonical

orientation [7]. Street view images and the like typically

have the ground at the bottom and sky at the top. Most

objects have a canonical orientation when viewed from the

side which then dictates the canonical orientation of the im-

age [28]. In fact, researchers have exploited this fact to learn

better representations in an unsupervised manner [8]. In

contrast, overhead imagery typically does not have a canon-

ical orientation. While most overhead imagery is oriented

so that north points up, this has nothing to do with the con-

tent of the image and cannot be derived from it in the gen-

eral case. There has been work on classifying rotation ag-

nostic images [7] in the ImageNet dataset [5] by splitting

the image representation into rotation related and unrelated

parts. This, however, produces global features which are

not appropriate for our problem.

CNNs are inherently limited in their ability to model ge-

ometric transformations due to the fixed geometric structure

of their constituent modules [4]. Modules have been pro-

posed that enable spatial manipulation, including rotation,

of data within the networks [4, 12, 31]. We utilize one such

module, Spatial Transformer Networks [12], in our Orien-

tation Normalization Network below.

Image retrieval. Our matching framework has many sim-

ilarities with image retrieval methods. We distinguish

it, though, from the following two main image retrieval

paradigms. Similarity-based image retrieval methods seek

to retrieve similar images and not necessarily images of

the same scene. Retrieving similar images is not sufficient

to geolocate overhead imagery since many locations might

look very similar from above. Indeed, our results show that

even when our matching framework fails, it still retrieves

similar images. We need our matching to be more discrimi-

nating (yet still allow for differences due to time and orien-

tation). Image retrieval has been used to geolocate ground-

level imagery by matching it against ground-level images

of the same scene. This is the approach taken by Raden-

ovic et al. [21] using a method called fine-tuning image re-

trieval (FITR). These approaches tend to use global features

though, which, as we will demonstrate, are not effective for

our problem. We include FITR as one of our baselines.

3. Methodology

We formulate overhead image geolocalization as an im-

age matching problem in which a query image is matched

to wide-area reference imagery with known location. We

assume the search area is covered by one contiguous refer-

ence image even though, in reality, it will be a registered

mosaic of large but individually acquired images. In order

to localize the matching, we partition the contiguous refer-

ence image into tiles the same size as the query (this also

enables easy parallelization). Our problem thus reduces to
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Figure 2: Siamese network for learning features for cross-

time matching. The positive training samples are co-located

images from different times.

finding a good representation F (.) for overhead imagery so

that given a query image q, we are able to find at least one

spatially overlapping tile r from reference set R by comput-

ing the distance between F (q) and F (r).
Several things make this challenging. First, the query

image is randomly located and thus not aligned with any of

the reference tiles. The query image overlaps several of the

reference tiles but by varying amounts and so we have to

be able to perform matching based on this varying overlap.

Second, the query and reference imagery might have been

taken at different times, for example, when geolocating cur-

rent drone imagery using archived satellite imagery. And,

third, they might not have the same orientation. We de-

scribe our novel technical contributions to overcome these

challenges in the following.

3.1. Deep Local Features

CNNs have proven effective at mapping images to pow-

erful and often semantically rich feature vectors [13, 34].

Most work utilizes global features extracted from the fully

connected layers including the work mentioned above on

geolocating ground level imagery by matching against

ground or aerial images [1, 15, 16, 21, 24, 28]. How-

ever, since our query and reference tiles only overlap, us-

ing global features to perform the matching is unlikely to

be effective. Our results below demonstrate this.

We instead extract deep local features from the conv lay-

ers since locality is preserved in the feature maps. We split

these feature maps along the channel dimension to produce

a set of deep local features. Specifically, given an image

x, we apply a trained CNN to compute a conv layer out-

put F (x) of size H ×W ×C, where H ×W are the spatial

dimensions of the feature map and C is the number of chan-

nels. F (x) is then split into a set of H ·W vectors of length

C. We denote these features as pi
x where x is the image and

i is the feature number which is in the range (1, H · W ).
Each image x, either query or reference, is thus represented

by the set of deep local features Sx =
{

p
i
x

}H·W

i=1
.

Matching between a query image and a set of reference

tiles is then performed by finding, for each of the query’s

features, the nearest neighbor in feature space among all

the features of the all reference tiles. Each nearest neighbor

𝒗𝒙
𝟎

𝒗𝒙
𝟏
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Rotated image: 𝒙0
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𝟎
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𝟏
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Rotated image: 𝒙1
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Rotation regressor

Figure 3: Orientation normalization network (ONN) which

learns a rotation regressor to transform differently oriented

images of the same location to the same orientation. ST is a

spatial transformer layer.

match votes for a reference tile and the votes are accumu-

lated over all the query image’s features to rank the refer-

ence tiles. Specifically, given a query image q with local

features pi
q and a set of reference tiles r ∈ R, each with lo-

cal features pi
r, for each p

i
q , we use the Euclidean distance

to find the nearest neighbor:

p
j
r = arg min

r∈R,j=1,...,H·W

‖pi
q − p

j
r‖2. (1)

This will result in a vote for reference tile r. We then rank

the reference tiles in order of decreasing votes and pick the

top one as the match for query image q. That is, we use only

the best match among all the reference tiles to geolocate the

query tile even though it overlaps multiple reference tiles.

(See Figure 6.)

We first investigate deep local features extracted using a

VGG16 network [25] trained on the ImageNet dataset [5].

These features are not specific to overhead image matching

nor are they invariant to potential time differences between

the query and reference images. One of our key technical

contributions therefore is a Siamese network which learns

improved deep local features specific to overhead imagery

and for cross-time matching.

3.2. Siamese Network for CrossTime Matching

Our proposed Siamese network is shown in Figure 2. It

consists of two embedding CNNs that share weights. Dur-

ing training, the network is presented with either a pair of

images from the same geographic location but taken at dif-

ferent times (positive examples) or a pair of images from

different locations (negative examples). Positive examples

are shown in Figure 5. The goal of the Siamese network

is to learn a feature representation (non-linear embedding)

g(.) such that images from different locations are far apart

in feature space while images from the same location are

close even if they are from different times. This is done by

training the network to minimize a contrastive loss [9]

Lfc =
1

2
lD

2 +
1

2
(1− l)max

(

0,
(

m−D
2
))

, (2)

where l ∈ {0, 1} is the label indicating whether the input

pair x, y is from the same location (l = 1) or not (l = 0),

D2 is the squared distance between g(x) and g(y), and m is

the margin parameter that omits the penalty if the distance

between images from different locations is too large.
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Figure 4: Our cross-time orientation normalization network (CTONN) learns a regressor that can orient images at different

orientations and from different times to the same canonical orientation. Our RotSiamese network provides rotation invariance

to deal with the noisy output of the CTONN at inference time.

Structurally, our Siamese network consists of two pre-

trained VGG16 networks which we modify for fine-tuning

on our overhead imagery. We remove the last fully con-

nected layer fc8 and use the 4096-dim feature from fc7
to compute the Euclidean distance between g(x) and g(y).
We investigate deep local features extracted from conv1 to

conv4 of the trained embedding network in our experiments.

3.3. Orientation Normalization Network

A fundamental challenge to performing overhead image

geolocalization through image matching is that the query

and reference imagery typically do not have the same ori-

entation. While the reference imagery is usually oriented

northwards, the orientation of the query image is generally

arbitrary and unknown. Further, unlike ground level im-

agery, which has a standard orientation (such as the sky is

up) that can be estimated and exploited by works like [8],

there is no such standard orientation that can be estimated

from overhead imagery.

Therefore, instead of trying to reorient the query image

to a standard orientation so that it matches the reference im-

agery, we instead reorient both the query and reference to

the same, potentially arbitrary direction. We seek a frame-

work that can estimate such scene-specific canonical orien-

tations.

Figure 3 shows our framework for learning a network

that can be used to normalize the orientation of overhead

images. This framework takes as input differently rotated

versions of an overhead image and learns a rotation regres-

sor that aligns the images. Specifically, we define a set of

K discrete rotation transformations T = t(.|αk)
K

k=1
, where

t(.|αk) is the operator that applies to image x the rotation

transformation with angle αk that yields the rotated image

xk = t(x|αk). The αk are evenly sampled from 0◦ to 360◦

depending on K. We investigate the choice of K in the

experiments.

The goal of the rotation regressor in Figure 3 is to predict

angles θ0x and θ1x such that when input image x0 is rotated

by θ0x, it has the same orientation as input image x1 rotated

by θ1x. If image x0 was derived by rotating x by α0 and

image x1 was derived by rotating x by α1 , then the rotation

regressor can be learned by minimizing the loss function Lθ

Lθ =
∣

∣

(

α
0 + θ

0

x

)

−
(

α
1 + θ

1

x

)
∣

∣ , (3)

where θkx is the predicted angle for the rotated image xk.

(Note that the rotation regressor has no knowledge of α0

and α1.)

However, this objective alone leads to a trivial solution

which predicts θ = 0 regardless of the input. So, we mod-

ify the network to also compare the normalized images dur-

ing training, that is the similarity of image x0 rotated by θ0x
and image x1 rotated by θ1x. We do this by inserting a spa-

tial transformer (ST) layer [12] to produce images v0x and

v1x (see Figure 3). Here, vkx = ST
[

xk|(θkx, rr
)

], where vkx
denotes the transformed image whose input is xk with the

predicted rotation angle θkx, and rr denotes the reduced ra-

tio to crop the center of the rotated image in order to avoid

introducing blank regions in the corners.

The rotation regressor is then learned by minimizing the

joint loss function

L =
∣

∣

(

α
0 + θ

0

x

)

−
(

α
1 + θ

1

x

)
∣

∣+ λv

∣

∣v
0

x − v
1

x

∣

∣ , (4)

which includes the L1 loss between images v0x and v1x. The

weighting parameter λv is chosen empirically.

We implement the rotation regressor using a VGG16

convolutional backbone followed by a two-layer regressor

module to produce the angle θ. A scaled Tanh activation

layer is appended to the regression model to constrain θ to

meaningful values.

3.4. CrossTime OrientationInvariant Matching

We are only able to train our Orientation Normalization

Network (ONN) using differently oriented images from the
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Figure 5: Co-located cross-time training pairs. Top: 2012.

Bottom: 2014.

same time due to the sensitivity of the L1 loss to time-

related differences. The learned rotation regressor is ef-

fective for normalizing images from the same time but has

difficulties with images from different times. We therefore

develop the cross-time ONN (CTONN) framework shown

in Figure 4 left. This network now takes co-located image

pairs x and y from different times and separately applies the

random rotations α0 and α1 to produce x0 and y1. The ro-

tation regressor is applied to predict θ0x and θ1y from these

images. The spatial transformer module now applies rota-

tion θ1y to x1 instead of y1 to produce v1x, where x1 is x
rotated by θ1y (the amount y was rotated to get y1). v0x and

v1x are now from the same year and can be compared using

L1. The loss function for training CTONN becomes

L = ‖
(

α
0 + θ

0

x

)

−
(

α
1 + θ

1

y

)

‖+ λv

∣

∣v
0

x − v
1

x

∣

∣ . (5)

The proposed CTONN results in a rotation regressor that

is more effective for normalizing the orientations of images

from different times. However, the normalized images are

still not aligned well enough for our cross-time feature ex-

tractor, which was trained using images with the same ori-

entation. We therefore need to make our cross-time feature

extractor more robust to these slight misalignments.

We develop the second Siamese network shown in Fig-

ure 4 right to make our feature embedding network more

orientation invariant. We refer to this network as Rot-

Siamese (RotSia for short). This network learns to ex-

tract deep local features that are more orientation invariant

through 1) the addition of another loss term, and through

2) data augmentation. Specifically, the input images (same

location different time) are separately rotated by small ran-

dom angles sampled from a limited range (−φ, φ) before

being fed into the embedding network. This data augmen-

tation alone does not result in improved orientation invari-

ance as the loss function computed on the global features is

not sensitive to slight differences in orientation. We there-

fore modify the loss to also compare the convolutional fea-

ture maps. We perform average pooling along the channel

dimension (CAP ) of the conv layer that we use for deep

feature extraction and compare these averages.

Specifically, given two rotated images x′ and y′, fea-

ture maps F (x′) and F (y′) are extracted from the conv
layer. The pooled feature maps CAP (F (x′)) and CAP (F (y′))

Dataset
2012 2014

SF LA SF LA

Query 800 900 800 900

Reference 5569 6525 5569 6525

Table 1: The number of 256×256 pixel tiles in our dataset.

are then flattened and compared using the Euclidean dis-

tance: D2

conv = ‖CAP (F (x′))− CAP (F (y′))‖. This is then in-

corporated into a contrastive loss Lconv

Lconv =
1

2
lD

2

conv +
1

2
(1− l)max

(

0,
(

m−D
2

conv

))

. (6)

Finally, the overall objective of the RotSiamese network is

the weighted sum of this loss and the original one

L = Lfc + λcLconv. (7)

The weighting parameter λc is chosen empirically. Note

that the CTONN and RotSiamese networks are trained sep-

arately but training them together in an end-to-end manner

could be future work.

3.5. Geolocalization pipeline

Again, we perform geolocalization by matching the fea-

tures of the query image to the features of the reference tiles

and pick the top match through voting. When the query and

reference tiles are from different times and have different

orientations, we first perform orientation normalization on

each tile separately using our trained CTONN and then ex-

tract deep local features using the feature embedding from

the trained RotSiamese network. Figure 1 illustrates this

pipeline. Note that the features can be pre-computed offline

for all the reference tiles.

4. Experiments

In this section, we first introduce two new high-

resolution overhead image datasets and describe our imple-

mentation details. We then we demonstrate our results on

the cross-time, orientation-invariant overhead image geolo-

calization problem with comparison to strong baselines.

4.1. Dataset

We use high-resolution aerial imagery from the National

Agriculture Imagery Program (NAIP) for our experiments.

The images have a ground sample distance (GSD) of one

meter (spatial resolution is 1m/pixel) and measure approxi-

mately 6k×7k pixels. We download eight pairs of spatially

contiguous NAIP images from the San Francisco area and

nine pairs from Los Angeles area. Each pair of images con-

sists of co-located images but taken at different times, one

in 2012 and the other in 2014. These pairs thus form our

cross-time dataset. The reference datasets are constructed

by partitioning the NAIP images into non-overlapping tiles

measuring 256 × 256 pixels. The query images are not

aligned with these reference tiles but are randomly extracted

from the NAIP images and also measure 256 × 256 pixels.

Table 1 summarizes the dataset. We will make our dataset

publicly available.
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Figure 6: A sample query in red and its ground truth in yel-

low. Geolocalization is successful if the top ranked image

in the matched reference set overlaps the query image.

During training, the Siamese networks and the cross-

time ONN require pairs of co-located images from differ-

ent times. We thus construct a training set of 12k pairs for

SF and 13.5k pairs for LA. Examples of training pairs are

shown in Figure 5. The negative training samples are cross-

time images from different pairs to ensure they are not co-

located.

4.2. Implementation Details

Siamese networks We fine-tune the Siamese models using

an Adam optimizer with a batch size 24. We set the initial

learning rate to 10−4 for the fc layers and to 10−5 for other

layers. The learning rate is decayed by 0.1 every 30 epochs.

For the RotSiamese network, we set λc to 1 and φ to either

10◦ or 20◦.

Orientation normalization networks For training the rota-

tion regressor, we use an Adam optimizer with a batch size

24 and an initial learning rate of 2 × 10−5. We decrease

the learning rate by a factor of 10 every 30 epochs. The

last Tanh function is scaled by a factor of 1.5π. For ONN

training, we set reduce radio rr to 150/224 and λv to 1. For

CTONN training, we set rr to 28/224 and λv to 0.1. We ex-

periment with different sets of rotation transformations for

training the rotation regressor (parameter K in Section 3.3).

We consider sets of size 4, 8, and 36 corresponding to mul-

tiples of 90◦, 45◦, and 10◦ respectively. In order to avoid

introducing blank regions into the corners of the rotated im-

ages, we rotate images of size 370 × 370 pixels and then

extract images of size 256× 256 from the center.

Evaluation metrics We consider the geolocalization to be

correct if the top ranked reference tile overlaps the query

image. As shown in Figure 6, the ground truth for the red

query image is the four reference tiles in yellow since pick-

ing any of these tiles would geolocate the query. Using only

the top ranked image corresponds to top-1 accuracy which

is quite strict. In practice, the top-n ranked images could be

marked as candidates and the user could easily make the fi-

Model conv3 conv4 conv5 fc6 fc7

Same-time 100 100 91.63 64.00 65.25

Cross-time 76.50 70.63 31.50 19.13 18.50

Table 2: Results of performing geolocalization in the SF

dataset using features extracted from various layers of a

VGG16 network trained on ImageNet. Top: the query and

reference images are from the same time; Bottom: they are

from different times.

nal selection manually. This would greatly increase perfor-

mance with modest manual effort. In the case of a correct

geolocalization using our method, we assume that image

registration could be used to determine the exact location of

the query image (such as the geographic coordinates of its

corners) using the overlapping reference tiles.

The accuracy for a set of queries is the percentage of

successful searches for that set. This is the metric that we

report below.

4.3. Results

Global vs. local CNN features We first compare global

versus local features extracted using a VGG16 model

trained on the ImageNet dataset. Table 2 compares the

performance of deep global features extracted from the fc

layer and deep local features extracted from various conv

layers. (See Section 3.1 for details on how these features

are extracted.) These results are for the SF dataset and from

when the query and reference tiles have the same orienta-

tion. The top row corresponds to when the query and ref-

erence tiles are from the same year and the bottom row to

when they are from different years (cross-time). We draw

three conclusions. First, as expected, the local features sig-

nificantly outperform the global features due to the query

and ground truth reference tiles only overlapping (see Fig-

ure 6). Second, the deep local features extracted from conv3

or conv4 significantly outperform those from conv5 espe-

cially in the cross-time case. This indicates the features in

the final conv have possibly become too specialized. (When

we train our VGG16 networks on the overhead imagery, the

features from conv4 turn out to be optimal so that is what

is used in the experiments below.) Finally, the performance

is significantly worse in the cross-time case indicating these

features possess limited time-invariance.

Cross-time features and baselines Table 3 compares our

cross-time features trained using the Siamese network to

several baselines: NetVLAD [1], fine-tuning image re-

trieval (FTIR) [21], and SIFT [6]. We also copy the re-

sults from the global (VGG fc) and local (VGG conv) fea-

tures extracted using the VGG16 network trained on the Im-

ageNet dataset. The query and reference tiles again have

the same orientation. NetVLAD and FTIR are global fea-

tures and so again perform poorly. Matching using the lo-

cal SIFT features is also done through voting. While the

SIFT features work well in the same-year case, they per-
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(a) Successful examples (b) Failed examples

Figure 7: (a) Successful and (b) failed orientation normalization examples. The first and third rows contain co-located images

from years 2012 and 2014 at various orientations. The second and fourth rows contain the normalized images.

Method
SF LA

Same year Cross year Same year Cross year

VGG fc [25] 65.25 18.50 56.89 7.33

NetVLAD [1] 63.63 30.00 65.22 14.00

FTIR [21] 57.11 38.75 55.22 32.33

SIFT [6] 99.75 61.00 100 39.22

VGG conv [25] 100 70.63 100 47.44

Siamese 100 82.50 99.89 74.11

Table 3: Comparison of our cross-time features (Siamese)

with several baselines.

form poorly in the cross-year case, indicating they too pos-

sess limited time-invariance. Our cross-time deep local fea-

tures trained using the Siamese network (Section 3.2) are

shown to outperform all other approaches especially in the

cross-year case. The improvement over VGG conv in the

cross-year case in particular demonstrates the effectiveness

of our cross-time Siamese training framework.

ONN: orientation invariance Table 4 shows the results

when the query and reference tiles are oriented differently.

The columns indicate the difference in orientation between

the query and reference: 90◦, 180◦, 270◦, or an arbitrary an-

gle randomly sampled from (0◦, 360◦). The rows indicate

different configurations: no ONN corresponds to no orien-

tation alignment and the other rows indicates the sizes of the

sets of rotations the ONN is trained with (K in Section 3.3).

For example, in the 4 classes cases, the ONN is trained with

images at four rotations: 0◦, 90◦, 180◦, and 270◦.

We first focus on the same-time case (top of Table 4).

The no ONN results show just how difficult geolocalization

becomes when the query and reference are not oriented the

same. Our proposed ONN is shown to significantly improve

performance. In particular, the ONN trained with 36 differ-

ence rotations achieves around 90% accuracy even in the

difficult case of the query having an arbitrary rotation from

0◦to 360◦. For the fixed rotation cases (90◦, 180◦, 270◦),

performance decreases with an increase in training rotation

classes. This is because these fixed rotations occur in the

training set more often when there are fewer classes.

We now focus on the cross-time case (bottom of Table 4).

Incorporating the ONN still improves the performance over

no ONN but not by as much, especially in the arbitrary ori-

entation case. This demonstrates that the ONN has diffi-

culty normalizing the orientation of images from different

times since that is not what it is trained on.

Figure 7 visually illustrates this. The images on the left

show the successful normalization of images from differ-

ent years. The first and third rows show co-located images

from different years rotated by varying amounts. These are

the inputs to the ONN. The second and fourth rows show

the normalized images. These images are similarly oriented

both within and between years. In contrast, the images on

the right of Figure 7 show a failure case. Here, the normal-

ized images on the second and fourth rows are misaligned

by 180◦. This is a difficult case, though, even for humans.

CTONN: cross-time orientation invariance Table 5

shows the results from our CTONN and RotSiamese frame-

works when the query and reference are from different

times and the query has arbitrary orientation. Remember

that the CTONN is trained using differently oriented images

from different years and RotSiamese incorporates addi-

tional orientation invariance to deal with the noisy CTONN

output. (Please refer back to Section 3.4 for details.) Sia

corresponds to the original Siamese network (Section 3.2)

and RotSia(20) and RotSia(10) correspond to the RotSi-

amese networks with φ = 20 and φ = 10 (Section 3.4).

The results in Table 5 demonstrate that CTONN im-

proves the orientation normalization for images from dif-

ferent times and that the RotSiamese framework learns fea-

tures that are more orientation-invariant. The best results

are achieved by combining these two improvements.

5. Discussion

Limitations: We note that our orientation normalization

framework only works if the normalized images can be
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Test set SF LA

Rotations 90◦ 180◦ 270◦ (0◦, 360◦) 90◦ 180◦ 270◦ (0◦, 360◦)

S
am

e
ti

m
e no ONN 6.50 35.38 6.75 24.25 4.33 27.89 4.11 18.11

4 classes ONN 99.75 99.63 99.75 69.13 99.56 98.67 99.33 70.89

8 classes ONN 94.63 94.75 95.13 88.75 97.67 97.78 97.56 96.00

36 classes ONN 90.38 90.63 90.38 89.25 90.22 91.67 91.67 90.44

C
ro

ss
ti

m
e no ONN 4.75 19.5 3.63 11.63 2.11 14.11 1.22 7.89

4 classes ONN 79.63 78.13 81.13 35.38 24.78 24.78 26.33 12.56

8 classes ONN 35.73 36.00 37.38 27.75 14.44 14.33 14.33 12.89

36 classes ONN 32.5 34.88 32.00 30.13 23.89 26.56 26.11 19.33

Table 4: Geolocalization results for when the query and reference have different orientations. See the text for details.

Classes ONN CTONN Sia RotSia(20) RotSia(10) SF LA

4

X X 35.38 12.56

X X 43.5 14.22

X X 46.88 21.89

X X 40.25 22.89

8

X X 27.75 12.89

X X 31.00 13.33

X X 64.88 37.33

X X 56.38 43.33

36

X X 30.13 19.33

X X 30.63 20.33

X X 62.00 37.56

X X 54.75 45.00

Table 5: Cross-time and arbitrary query orientation results.

See the text for details.

matched. It cannot improve over the case where the query

and reference have the same orientation.

Our performance will of course depend on the content of

the query. If the query is not distinctive, such as a homo-

geneous image of water, forest, or even dense housing, our

framework will likely fail due to there being tiles in the ref-

erence which, particularly in the cross-year case, are more

similar to the query than the ground truth. But, any image-

based approach would fail in this case. In the supplemen-

tary materials, we provide examples of the types of scenes

that our method succeeds and fails on. We note, though,

that even when we fail to geolocate the query images, the

top matches are visually and semantically very similar. This

again emphasizes that performing effective similarity-based

image retrieval is not sufficient for our problem.

Our approach currently uses co-located image pairs from

the query and reference datasets when training the cross-

time and orientation-invariant components. Such pairs will

not always be available and so this is another limitation.

Finally, our framework will fail when we do not have ref-

erence imagery for the query location. But, high-resolution

overhead imagery is available for most if not all of the Earth.

Scalability to partial overlap Finally, we explore how sen-

sitive our approach is to the overlap between the query and

the reference tiles. Figure 8 shows the performance as a

function of % overlap. Success here means that a ground

truth tile that overlaps the query by a certain amount is in

0

10

20

30

40

50

60

70

80

90

85-95 75-85 65-75 55-65 45-55 35-45 25-35 15-25 5-15 0-5

S
u

cc
es

s 
(%

)

Overlap (%)

Figure 8: Performance versus % overlap between the query

and ground truth tiles. See the text for details.

the top n matches where n is the number of ground truth

tiles. (The ground truth tiles are those that overlap the

query.) Note, though, that our geolocalization framework

only requires that one of the ground truth tiles is the top

match, not that all of the ground truth tiles are in the top

matches. Since we assume a set of contiguous references

tiles, as the overlap between the query and any one ground

truth tile decreases, the overlap with another ground truth

tile necessarily increases (see Figure 6). At least one refer-

ence tile overlaps with the query image more than 25%.

Figure 8 shows that, as expected, the ability of our

matching framework to retrieve a ground truth tile decreases

as the overlap decreases. The features are only so local due

to the spatial entanglement of the convolutional maps.

6. Conclusion

We perform large-scale overhead image geolocalization

by matching a query image to wide-area reference imagery

with known location. We demonstrate that local features,

particularly those extracted using CNNs, are more effective

than global features due to the partial overlap of the query

and reference tiles. We develop several technical innova-

tions to deal with the real but challenging cases of when

the query and reference are from different times and when

the query has an arbitrary orientation. We demonstrate the

effectiveness of these innovations on two large datasets of

high-resolution aerial imagery.
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