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Abstract

Traditionally, an object detector is applied to every part

of the scene of interest, and its accuracy and computational

cost increases with higher resolution images. However, in

some application domains such as remote sensing, purchas-

ing high spatial resolution images is expensive. To reduce

the large computational and monetary cost associated with

using high spatial resolution images, we propose a rein-

forcement learning agent that adaptively selects the spatial

resolution of each image that is provided to the detector.

In particular, we train the agent in a dual reward setting

to choose low spatial resolution images to be run through

a coarse level detector when the image is dominated by

large objects, and high spatial resolution images to be run

through a fine level detector when it is dominated by small

objects. This reduces the dependency on high spatial reso-

lution images for building a robust detector and increases

run-time efficiency. We perform experiments on the xView

dataset, consisting of large images, where we increase run-

time efficiency by 50% and use high resolution images only

30% of the time while maintaining similar accuracy as a

detector that uses only high resolution images.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have been

successfully applied to different computer vision tasks in-

cluding image recognition [20, 13, 42], object detection [26,

35, 33], object tracking [19, 2, 48, 49]. Traditionally, CNNs

use images resized to a pre-determined number of pixels

for each dimension. For instance, CNNs for image recog-

nition typically use images resized to 224×224px to utilize

weights pre-trained on ImageNet [15, 14].

On the other hand, convolutional object detectors are

traditionally applied to images resized to dimensions less

than 1,000 pixels on each side (e.g.∼500px for images from

the MSCOCO and PASCAL VOC2007/VOC2012 datasets

[27], and ∼600px for satellite images from the xView

dataset [39]). However, in some application domains, im-

ages may be much larger, on the order of several thousands

of pixels in each dimension. These large images enable

higher detection accuracy, especially for smaller objects rel-

ative to the field of view [33], but they require additional

computation, time, and/or financial resources to process.

For example, in the field of self-driving vehicles or traf-

fic monitoring, fusing together images from multiple sen-

sors produces large images, which presents a computational

challenge to maintain real-time processing [54, 30]. Simi-

larly, most satellite images in the xView dataset have about

1,000-10,000px on each side [22]. Yet, in realistic remote

sensing applications, these high spatial resolution satellite

images (e.g.<1m/px) are financially costly to acquire, com-

pared to publicly available low spatial resolution satellite

images (e.g. 10m/px) [6]. Therefore, it is desirable to build

a system that minimizes dependency on large images to re-

duce the costs of analyzing satellite images for computer

vision tasks including image recognition [41, 50], object

detection [22, 4], object tracking [46, 47], and poverty map-

ping [40].

Directly applying existing state-of-the-art convolutional

detectors on large images not only increases processing

time but also the memory required to store large feature

maps [23, 52]. The traditional sliding window approach

mitigates the memory requirement by “sliding” the convo-

lutional detector over crops of the image until the full im-

age has been processed. However, the processing time of

this technique increases quadratically with respect to side-

length of the image, and it may have lower accuracy because

the detector is unable to “see” the whole image at once.

Considering the trade-off between accuracy and various

costs associated with using high spatial resolution images,

we propose an adaptive framework that only chooses high

spatial resolution images when fine information is required,

and uses low spatial resolution images when the coarse in-

formation provides sufficient information for the objects of

interest. This maintains the overall detection accuracy while

increasing run-time efficiency and reducing the dependency

on expensive, high resolution (HR) imagery.

To describe our approach at a high level, we train an

agent using reinforcement learning to explicitly maximize

accuracy while minimizing the amount of HR images. It
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first processes a low resolution (LR) image, learning the

global image context, then selectively requests certain HR

patches that it deems necessary for making accurate object

detections. Importantly, the agent is not given the HR im-

age, thus limiting potential acquisition costs for the HR im-

age to only the patches that it selects. Experiments on the

xView dataset show that compared to an object detector that

exclusively uses HR images, our method maintains nearly

the same accuracy but uses HR images only about 30% of

the time, in turn increasing run-time performance by about

50%.

2. Related Work

Convolutional Object Detection Earlier convolutional

object detectors such as R-CNN and Fast-RCNN [9, 8] use

a selective search algorithm [45] to identify box proposals

to run the detector on. On the other hand, Faster-RCNN [36]

jointly learns box proposals and the classifier in an end-to-

end manner [36], but the two-stage design limits computa-

tional efficiency. Instead, single-shot detectors [27, 34, 25]

directly predict bounding boxes from fixed anchors on in-

put images without relying on a region proposal network,

thereby achieving real-time performance. To replace fixed

anchors with sparse adaptive anchors, [28] propose a search

method to predict anchor boxes that are likely to contain

objects. Their method improves efficiency on cases with

sparse object instances.

Sliding Windows on Large Images Running single and

two stage detectors on large images requires a large amount

of memory to store large feature maps [33, 7]. To avoid that,

the traditional sliding window technique divides the image

into smaller (often overlapping) windows and then runs the

detector on each window [11, 44, 52, 23]. While this ap-

proach has the same memory footprint as a detector running

on a single window, the number of windows (and therefore

run time) increases quadratically in the image side length.

Furthermore, this technique is wasteful if the detector is run

on a window that contains no objects or has objects large

enough to be detected in a LR image.

Pruning the image search space Various techniques

have been proposed to reduce the search space, such as

selectively choosing windows to evaluate based on previ-

ously observed windows [1, 10, 31]. However, such sys-

tems introduce non-trivial overhead on the order of seconds

per image, and they are not designed to take advantage of

the global image context. Other works adopt a cascade

of object detectors to narrow the search space: [24] starts

with downsampling the sliding windows to 12×12px im-

ages to process with a shallow 12Net to easily remove neg-

atives. They then process the faces detected by 12Net using

the 24Net with 24×24px images. On the other hand, [21]

adopts a two-stage CNN where the first stage learns a rough

heat map of moving vehicles whereas the second stage pro-

cesses the chosen ROIs to localize the vehicles. However,

both [24, 21] assume access to the HR image correspond-

ing to every object in the image, which may be costly to

obtain, and [21] additionally uses temporally consecutive

video frames of the same region, which are not available

everywhere and only help locate non-stationary objects.

Reinforcement Learning for Efficient Detection Re-

inforcement Learning (RL) has been recently used to (1)

replace classical detectors such as SSD and Faster-RCNN,

(2) replace exhaustive box proposal techniques in two-stage

detectors, and (3) find ROIs in very large images to run a

detector on. Most of the methods proposed in this cate-

gories focus on learning sequential policies. Under cate-

gory (1), [3, 29] proposed a top-down sequential object de-

tection models trained with the Q-learning algorithm. [3]

uses an action space that deforms the bounding box by ap-

plying translation and scale factors whereas [29] uses ac-

tions to fixate a bounding box in image space. Most of the

RL methods associated with object detection fall into cate-

gory (2). For example, [16] recursively divides up an image

in a top-down approach where the divisions are decided by

the RL agent. The box proposals returned by the agent are

then passed through Fast-RCNN. Some other studies use

RL for sequentially finding box proposals to replace the first

stage of two-stage detectors [10, 32]. Our approach, like

[7], falls into category (3) where a RL agent is trained to ex-

amine a down-sampled image and sequentially choose ROIs

to zoom-in on. For efficiency, [7] directly use the detections

on the full down-sampled image if the improvement gained

by zooming-in to a ROI is not sufficiently high. Unlike [16],

they use a cost-sensitive reward function to limit number

the of steps as in [12, 17]. Similarly, we learn the zoom-in

policies with a cost-sensitive reward function. On the other

hand, they downsample the initial large image by a factor of

2 and focus on pedestrians represented by reasonable num-

ber of pixels. In contrast, we consider a higher downsam-

pling ratio for the policy network on very large remote sens-

ing images (e.g. >1,000px on each side) in which objects

are represented by a much smaller number of pixels. Addi-

tionally, similar to our study, their zoom-in ROIs can con-

tain multiple instances of objects whereas [10, 29, 32, 16]

search for the boxes surrounding a single object. Finally,

all of the previous methods proposed for efficient detection

learn sequential policies whereas ours chooses the zoom-in

ROIs in single forward pass. This is beneficial for paral-

lelizing object detection on zoom-in ROIs [52].

3. Proposed Formulation

We propose an efficient object detection framework con-

sisting of two modules named coarse and fine level search.

With coarse level search, we perform an initial search space

optimization on very large images with over 3,000 pixels

in each dimension. At the end of coarse level search, we
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Figure 1. Proposed Bayesian Decision influence diagram. At train-

ing time, HR images are downsampled to LR images which the

agent uses for sampling actions. Detector (coarse/fine) then uses

LR/HR image to output bounding boxes which are used to com-

pute reward together with the labels from HR images.

find an initial set of patches where it may be beneficial to

zoom-in and acquire HR images. In fine level search, we

perform further search space optimization on the patches

chosen by the coarse level search module to make a final

decision about which subpatches to acquire HR images for.

Both coarse and fine level search modules are formulated

similarly with a two-step episodic Markov Decision Pro-

cess (MDP), as shown in our generic influence diagram in

Fig. 1. In the diagram, we represent random variables with

a circle, actions with a square/rectangle, and utilities with a

diamond.

Coarse Level Search This first module of our frame-

work, implemented as CPNet, finds ROIs/patches to zoom

into, conditioned on the low spatial resolution image of

the initial large area. This is achieved by applying the

proposed generic influence diagram as shown in Fig. 1 to

coarse level search. In this direction, a large HR image

xH = (x1
H , x2

H , . . . , xPc

H ) is composed of equal-size non-

overlapping patches, where Pc is the number of coarse-

level patches. Unlike in traditional computer vision set-

tings, xH is latent, i.e., it is not observed by the agent.

Y = {Y1, . . . , YPc
} is an array of arrays of the (unobserved)

ground truth bounding boxes associated with each patch of

xH , where Yi = {y1, . . . , yPf
}. Each bounding box is rep-

resented as a tuple yji = (gx, gy, w, h, c), which is a random

variable containing the centroid, width, height, and object

class. The random variable xL = (x1
L, x

2
L, . . . , x

Pc

L ) de-

notes the LR image of the same scene as xH , where xi
L

represents the lower spatial resolution version of xi
H .

In the first step of the MDP for coarse level search, the

agent observes xL and outputs a binary action array, ac ∈
{0, 1}Pc , where aic = 1 means that the agent would like to

consider acquiring HR subpatches of the i-th patch xi
H . We

define the patch sampling policy model, parameterized by

θcp, as

πc(ac|xL; θ
c
p) = p(ac|xL; θ

c
p) (1)

where πc(xL; θ
c
p) is a function mapping the observed LR

image to a probability distribution over patch sampling ac-

tions ac. The joint probability distribution over the random

variables xH , Y , xL, and action ac, can be written as

p(xH , xL, Y, ac)

= p(xH) p(Y |xH) p(xL|xH) p(ac|xL; θ
c
p). (2)

In the second step of the MDP, the agent runs the ob-

ject detection policy. Conditioned on ac, it observes ei-

ther xi
H or xi

L and chooses an action ad = Ŷi where

Ŷi = {ŷ1 · · · ŷPf
} and ŷji = (ĝx, ĝy, ŵ, ĥ, ĉ) represents a

predicted bounding box for xi
H or xi

L. We define the object

detection policy as follows:

πd(ad|x
i
L; θ

c
d) = p(ad|x

i
L; θ

c
d), (3)

πd(ad|x
i
H ; θfd ) = p(ad|x

i
H ; θfd ), (4)

where θcd and θfd represent the coarse and fine object detec-

tors operating on xi
L and xi

H .

The overall objective Jc is defined to maximize the ex-

pected utility Rc given the evidence, represented by

max
θc
p,θ

f

d
,θc

d

Jc(θ
c
p, θ

f
d , θ

c
d) = Ep[Rc(ac, ad, Y )], (5)

where the utility depends on ac, ad, and Y . The reward pe-

nalizes the agent for selecting a large number of HR patches

(e.g., based on the norm of ac) and includes a performance

metric evaluating the accuracy of the detector, ad, given the

true label Y (e.g., recall, precision). We detail the reward

function in Section 4.3.

Fine Level Search The CPNet alone can be satisfac-

tory when considering images with <1,000px on each side.

However, for very large images (e.g. >1,000px on each

side), it is desirable to further optimize the search space as

a patch can be represented by a large number of pixels. In

such images, one way to further optimize the search space

is to reduce the size of patches for CPNet, resulting in a

larger action space. However, training CPNet with a larger

action space can be unstable and take a drastically longer

time. For this reason, we use another policy network, called

FPNet, parameterized by θfp , and apply it to the random

variable low spatial resolution patch xi
L sampled from the

latent variable xi
H = (x1

h, x
2
h, . . . , x

Pf

h ) consisting of Pf

overlapping fine-level subpatches. The task of this policy

network is to choose a binary action array af ∈ {0, 1}Pf ,

where ajf = 1 means that the agent would like to acquire the

j-th HR subpatch xj
h. The subpatch sampling policy model

is parameterized by θfp and formulated similarly to Eq 1.

The first step of the MDP can then be modeled similarly

to the CPNet with a joint probability distribution over the

random variables as

p(xi
H , xi

L, Y
i, af ) = p(xi

H)p(Y i|xi
H) (6)

p(xi
L|x

i
H)p(af |x

i
L; θ

f
p ).
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Figure 2. The proposed coarse and fine level policy networks (CPNet, and FPNet) to process very large images (e.g. >1,000px on each

side). The CPNet uses the initial large LR image to choose a set of actions representing a unique patch in the image space. The sampled

patch is then either used by coarse or fine detector to estimate the expected reward. The FPNet uses a patch of an initial large LR image to

choose a set of actions. Next, the coarse or fine detector is run on the sampled subpatch. We train CPNet and FPNet independently. In test

time, in our cascaded approach, we first run CPNet on large image and run FPNet on patches asked to be sampled by CPNet.

In the second step of the MDP, the agent observes the

random variables, xj
h or xj

l for j = {1, . . . , Pf}, based

on af and chooses an action ad = Ŷi, where Ŷi =

{ŷ1, . . . , ŷPf
} and ŷmi = (ĝx, ĝy, ŵ, ĥ, ĉ) represents a pre-

dicted bounding box for xj
h or xj

l . We then define the object

detection policy similarly to Eq 3 and 4. Finally, the overall

objective function Jf is defined as maximizing the expected

utility Rf given the evidence, represented by

max
θ
f
p ,θ

f

d
,θc

d

Jf (θ
f
p , θ

f
d , θ

c
d) = Ep[Rf (af , ad, Yi)]. (7)

Fig. 2 visualizes the proposed CPNet and FPNet in detail.

4. Proposed Solution

4.1. Modeling the Policy Networks and Detectors

In the previous section, we formulated the task of effi-

cient object detection in a cascaded approach where coarse

and fine level search is formulated as a two step episodic

MDP. Here, we detail the action space and how the policy

distributions for ac, af and ad are modelled for each mod-

ule. To represent our discrete action space for ac and af ,

we divide the image space into equal size patches, result-

ing in Pc and Pf number of patches and subpatches. In this

study, for the coarse and fine level search, we use Pc = 16
and Pf = 4 regardless of the size of the input image and

leave the task of choosing variable size bounding boxes as

a future work. In the first step of the two step MDP, the pol-

icy networks, f c
p and ff

p , output the probabilities for all the

actions at once after observing xL and xi
L. An alternative

approach could be in the form of a framework where ai,jc,f
is conditioned on a1:i−1,1:j−1

c,f . However, the proposed con-

cept of outputting all the actions at once provides a more

efficient decision making process.

In this study, we model the action likelihood function of

the policy networks, f c
p and ff

p , by multiplying the proba-

bilities of the individual HR patch/subpatch selections, rep-

resented by Bernoulli distributions as follows:

πc(ac|xL, θ
c
p) =

Pc
∏

i=1

sic(1− sic)
(1−ai

c), (8)

πf (af |x
i
L, θ

f
p ) =

Pf
∏

j=1

sjf (1− sjf )
(1−a

j

f
) (9)

where s is the prediction vector formulated as

sc = f c
p(xL; θ

c
p), (10)

sf = ff
p (x

i
L; θ

f
p ). (11)

To get probabilistic values, sc, sf ∈ [0, 1], we use a sig-

moid function on the final layers of CPNet and FPNet.

The next set of actions for the coarse level search, ad, is

chosen by the coarse and fine level object detectors using

the LR patch xi
L or the sampled HR patch xi

H . For the

fine level search, the actions, ad, are chosen using the LR

subpatch xi
l or the sampled HR subpatch xi

h.
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4.2. Training the Policy Networks

After defining the two step MDP and modeling the pol-

icy and detector networks, we detail the training procedure

of the proposed efficient object detection model. The goal

of training is to learn the optimal parameters of policy net-

works, θcp and θfp . Because the actions are discrete, we can-

not use the reparameterization trick to optimize the objec-

tive w.r.t. θcp and θfp . To optimize the parameters θcp, θfp of

f c
p and ff

p , we need to use model-free reinforcement learn-

ing algorithms such as Q-learning [51] and policy gradi-

ent [43]. Policy gradient is more suitable in our scenario

since the number of unique actions the policy network can

choose is 2P and increases exponentially with P . Finally,

we use the REINFORCE method [43] to optimize the ob-

jective w.r.t. policy network parameters as:

∇θc
p
Jc = E

[

Rc(ac, ad, Y )∇θc
p
log πθc

p
(ac|xL)

]

, (12)

∇
θ
f
p
Jf = E

[

Rf (af , ad, Yi)∇θ
f
p
log π

θ
f
p
(af |x

i
L)
]

. (13)

Averaging across a mini-batch via Monte-Carlo sam-

pling produces an unbiased estimate of the expected value,

but with potentially large variance. Since this can lead to an

unstable training process [53], we replace Rc(ac, ad, Y ) in

Eq. 12 with the advantage function to reduce the variance:

∇θc
p
Jc = E

[

A

Pc
∑

i=1

∇θc
p
log(sica

i
c + (1− sic)(1− aic))

]

(14)

A(ac, âc, ad, âd) = Rc(ac, ad, Y )−Rc(âc, âd, Y ) (15)

where âc and âd represent the baseline action vectors. To

get âc, we use the most likely action vector proposed by

the policy network: i.e., aic = 1 if sic > 0.5 and aic = 0

otherwise. The coarse and fine level detectors, f c
d and ff

d ,

then observes xi
L or xi

H , and outputs the predicted bounding

boxes âd. The advantage function assigns the policy net-

work a positive value only when the action vector sampled

from Eq. 9 produces higher reward than the action vector

with maximum likelihood, which is known as a self-critical

baseline [37]. Similarly to the coarse level search, we intro-

duce the advantage function to the fine level search module

and do not show it in this section for simplicity.

Finally, in this study we use temperature scaling [43] to

encourage exploration during training time by bounding the

probabilities of the policy networks as

s = αs+ (1− α)(1− s). (16)

In our experiments, we tune α to 0 < α < 1, where we ob-

serve that setting it to a small value produces more uniform

probabilities to sample off-policy actions.

4.3. Modeling the Reward Function

The proposed framework uses the policy gradient rein-

forcement learning algorithm to learn the parameters of the

policy networks, adjusting their weights to increase the ex-

pected reward value. Thus, it is crucial to design a reward

function reflecting the desired characteristics of an efficient

object detection method for large images: low image acqui-

sition cost and high run-time efficiency. For the coarse level

policy network, our reward function Rc encourages the use

of LR image patches xi
L with the coarse level detector f c

d .

We define Rc as follows, where Ŷ f are the object detections

by the fine-level object detector on patches of xH , and Ŷ c

are the detections by the coarse-level detector on xL:

Rc = Racc(Ŷ
f , Ŷ c, Y ) +Rcost(ac) (17)

Racc =

Pc
∑

i=1

(Recall(Ŷ f
i , Yi)− (Recall(Ŷ c

i , Yi) + β)) ·Ni

(18)

Rcost = (σ + λ)(1− |ac|1)/Pc (19)

where Racc is detection recall and Rcost combines image

acquisition cost and run-time performance reward. The

Racc term encourages zooming-in when the recall differ-

ence between the coarse and fine detector is positive. The

difference is then scaled with the number of objects in the

patch, Ni, to prioritize zooming-in to regions where there

are more objects. β, on the other hand, prioritizes using LR

images when the recall values from coarse and fine detector

are similar. Note that since our priority is to minimize the

ratio of false negatives, we only use Recall and do not con-

sider Precision in Racc. The other component of reward,

Rcost, represents the run-time and image acquisition costs

with their own coefficients λ and σ. In this case, the reward

increases linearly with the smaller number of zoomed-in

patches. The reward function Rf for the fine-level policy

network is defined similarly.

5. Experiments

5.1. Baselines and StateOfTheArt Models

Sliding Window A simple method for running object

detectors on large images is the sliding window approach.

Using this fixed policy approach, we either apply a coarse

level detector, f c
d , on xj

l or a fine level detector, ff
d , on xj

h

for j = 1, . . . , Pf . We then repeat this for every xi
H or xi

L

for i = 1, . . . , Pc.

Random Policy In this case, we sample patch specific

probabilities from a policy represented by patch specific

uniform distribution.

Entropy Based Policy Sampling In this case, we first

the compute the patch-wise confidence of the coarse level

object detector, sic = 1
M

∑M

m=1 cm, on xi
L where M rep-

resents the number of detected bounding boxes. Next, we
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pass the patch to the fine level search if sic is larger than a

threshold. In the fine level search, we compute sjf similarly

to the coarse level search given that aic = 1 and acquire a

HR subpatch xj
h if sjf is larger than a threshold and use it for

fine level object detection. Otherwise, we use xj
l for coarse

level object detection.

Dynamic Zoom-in Network [7] proposed the state-of-

the-art method for efficiently detecting objects in large im-

ages without changing the underlying structure of the detec-

tor. They show the results on 640x480 pixels images from

the Caltech Pedestrian Detection dataset [5]. Their method

is not suitable for larger images, i.e. ∼3,000px, as it starts

with a detector trained on full images downsampled by 2.

To make it practical for larger images, we train a coarse de-

tector on the full images downsampled by a larger scale.

Variants of the Proposed Approach Additionally, in

this section, we report the coarse level only and fine level

only results for both the baseline models and proposed ap-

proach. In the coarse level only method, we run the coarse

level policy network on xL and acquire HR image xi
H if

aic = 1 and use it for fine level object detection. In the fine

level only approach, we run the fine level policy network on

xi
L unconditioned to ac. Then, we acquire a HR image xj

h

if ajf = 1 and use it for fine level object detection.

5.2. Implementation Details

Policy Networks To parameterize the coarse and fine

level policy networks, we use ResNet [13] with 32 layers

pretrained on the ImageNet Large Scale Visual Recognition

Challenge 2012 (ILSVRC2012) dataset [38]. We train the

policy networks using 4 NVIDIA 1080ti GPUs.

Object Detectors Our coarse and fine level detectors use

the YOLOv3 architecture [34], chosen for its reasonable

trade off between accuracy on small objects and run-time

performance. The backbone network, DarkNet-53, is pre-

trained on ImageNet. We train the detectors using a single

NVIDIA 1080ti GPU.

5.3. Performance Metrics

We evaluate the performance using the following met-

rics: average precision (AP), average recall (AR), average

run-time per image (ms), and ratio of sampled HR image.

For AP and AR, we compute the individual values across

different categories for IoU={.50, .55, .60, . . . , .95}.

5.4. Experiments on xView Dataset

We evaluate the proposed approach and baseline meth-

ods on the xView dataset [22], which consists of large HR

satellite images representing 60 categories. The training,

validation, and test splits of the dataset have 846, 221, and

221 large scale images, respectively, with 3,000-6,000px in

each dimension. The validation and test splits of the dataset

have not been released publicly since the xView dataset was

collected as part of the Object Detection challenge on Satel-

lite Images. For this reason, we use the training split of the

dataset to train the object detectors and policy networks and

test the proposed framework. In particular, 47% and 12%
of the large images are used to train and test the coarse and

fine level detector whereas the remaining 41% is used to

train the policy network. The policy network is then tested

on the same 12% of the large images used to test the detec-

tors. Among the 60 classes in the xView dataset, we test our

efficient object detection model on the small car and build-

ing classes as they are the two classes represented by the

most number of samples.

Coarse and Fine Level Detectors In the first step, we

train the coarse and fine level detectors. We train the coarse

and fine level detectors with a batch size of 8 for 65 and

87 epochs, respectively. The coarse and fine level detec-

tors achieve 26.3% and 39.8% average precision (AP) and

39.0% and 60.9% average recall (AR). The coarse detec-

tor operates on the 64×64px LR images, xj
l , whereas the

fine level detector operates on the 320×320px HR images,

xj
h. In other words, 320×320px images, xj

h, correspond to

a subpatch of 600×600px images, xi
H , where we set the

overlap between subpatches to 40 pixels. The coarse and

fine detectors run on average at 10 and 50 ms per image on

a NVIDIA GeForce GTX 1080 Ti GPU.

Policy Networks In the second step, we train the policy

networks and treat the detectors as black boxes as we keep

their weights fixed. We form the initial large images by

taking 2,400×2,400px crops out of the xView images, then

divide them into 16 non-overlapping 600×600px patches

resulting in 16 output units in CPNet. For CPNet, we down-

sample the images by a factor of about 5 to 448×448px. For

FPNet, we use 4 output units to represent the subpatches in

the patch selected by the CPNet. The subpatches have size

320×320px and an overlap of 40px. As the input, we use

the 112×112px patches of the 448×448px images used by

CPNet. Then, we train CPNet with a batch size of 512 for

643 epochs. In the final step, we train FPNet with a batch

size of 512 for 459 epochs. For both networks, we set the

learning rate to 1e-4 and the hyperparameters α, λ, σ and

β to 0.8, 0.25, 0.25 and 0.05. All the networks are trained

with the Adam optimizer [18].

Quantitative and Qualitative Analysis As shown in Ta-

ble 1, the cascaded approach using CPNet+FPNet provides

optimal results considering the run-time efficiency and im-

age acquisition cost. It yields AP and AR scores only 0.9%
and 1.2% lower, respectively, than the sliding window ap-

proach using HR images with the fine detector. Meanwhile,

our approach uses HR images for 31.5% of the full area of

interest on average and delivers 2.2× higher run-time effi-

ciency. On the other hand, the CPNet+FPNet approach in

test time outperforms CPNet and FPNet only approaches
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Coarse Level Fine Level Coarse + Fine Level

Model/Metric AP AR Run-time HR AP AR Run-time HR AP AR Run-time HR

Random (5×) 29.2 47.0 1770 43.7 27.2 49.3 1920 50 24.1 47.1 1408 31

Entropy (5×) 30.1 47.9 1766 43.7 28.3 50.1 1932 50 25.4 47.2 1415 31

Sliding Window-L (5×) 26.3 39.8 640 0 26.3 39.8 640 0 26.3 39.8 640 0

Sliding Window-H 39.0 60.9 3200 100 39.0 60.9 3200 100 39.0 60.9 3200 100

Gao et al. [7] (5×) 35.3 55.2 1780 40.5 35.2 55.8 1721 35.4 35.2 55.5 1551 31.6

Ours (5×) 38.2 59.8 1725 40.6 38.3 59.6 1683 35.5 38.1 59.7 1484 31.5

Table 1. Results for the building and small car classes. The coarse and fine level only methods refer to using only coarse and fine level

policy network in test time. The coarse + fine level method first runs the coarse level policy network on initial large image, and fine level

policy network is run on the images activated by the coarse network.
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Figure 3. Visualization of the learned policies by the coarse and fine level policy networks. The top row shows the original large LR images

given to the coarse policy network. The second row shows the patches chosen by the coarse policy network, and last two rows represent

the policy learned by the fine level policy network. The coarse and fine level policy networks learn to sample LR-HR patches/sub-patches,

respectively. The regions for using LR images are shown in grey.

in terms of the use of HR images and run-time efficiency.

Additionally, Fig. 3 demonstrates the policies learned by

CPNet and FPNet. For instance, in columns 1, 2 and 4, CP-

Net learns to use HR images as these images mostly con-

tain small buildings and cars. On the other hand, it learns

to use LR images when the image is populated with no ob-

jects or large buildings (columns 3 and 8). Similarly, FPNet

chooses HR images when the subpatches are populated with

small buildings or cars as in columns 1, 4, 10 and 11.

Finally, in Fig. 4 we show the probability of zoom-in for

the CPNet and FPNet when the number and size of objects

in each patch/subpatch increase. The probability of zoom-

in increases w.r.t. number of objects because we scale Racc

with the number of objects Ni in a patch/subpatch. On the

other hand, the increasing average size of the objects does

not necessarily mean an increased probability of zoom-in.

This is expected as the recall difference between the coarse

and fine detector reduces with increasing size of the objects.

Ablation Experiments on xView Previously, we al-

ready performed ablation experiments (Table 1) by exclud-

ing coarse (CPNet) or fine level search (FPNet) from our

cascaded approach. In this section, we want to quantify the

effect of the coarse detector on CPNet, FPNet and the base-

line methods. By removing the coarse level detector from

Eq. 18, we can understand if the policy networks can learn

the difference between zooming-in when there is object of

interest and zooming-in when the fine level detector outper-

forms coarse level detector. Thus, we train the CPNet and

FPNet using the modified reward function. In particular, we

encourage the network to zoom-in when the fine detector

achieves a positive recall value on a HR image.

Table 2 shows that removing the coarse detector im-

proves the run-time efficiency slightly with the cost of using

about 13% more HR images. This can be explained by the
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Figure 4. Visualization of when the CPNet and FPNet zooms-in

w.r.t. the average number of objects and size of objects. Size cor-

responds to the normalized area of the objects in pixels.
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Coarse Level Fine Level Coarse + Fine Level

Model/Metric AP AR Run-time HR AP AR Run-time HR AP AR Run-time HR

Random (5×) 22.7 32.4 1792 56.1 21.5 31.4 1601 50.0 19.9 29.8 1504 47.1

Entropy (5×) 23.0 32.2 1801 56.2 22.2 30.6 1605 50.0 20.5 31.1 1511 47.5

Sliding Window-H 39.0 60.9 3200 100 39.0 60.9 3200 100 39.0 60.9 3200 100

Ours (5×) 37.4 58.1 1882 58 37.5 58.2 1640 45.1 37.3 58.1 1421 44.1

Table 2. Results for the building and small car classes when the coarse detector is disabled. The coarse detector is removed during training

and test time. We removed the method by Gao et al. [7] as its agent uses coarse detector to zoom-in.

fact that maintaining the accuracy requires zooming-in to

more patches with the removal of coarse detector. In con-

clusion, by using the coarse detector we achieve better ac-

curacy and similar efficiency while using fewer HR images.

5.5. Experiments on Caltech Pedestrian Dataset

Finally, we run experiments on the Caltech Pedestrian

dataset (CPD) [5] to quantify the validity of the proposed

approach on traditional images. We resize the original

640 × 480px images to 860 × 860px similarly to [7]. Fol-

lowing reasonable setting in CPD, we use two sets of 5,000

images for training the detectors and policy networks, and

two sets of 3,000 images for validation and test experiments.

Coarse and Fine Level Detectors We first train the

coarse and fine detectors. The fine detector is trained on

320 × 320px patches of the 860 × 860px images and the

coarse detector is trained on downsampled versions of the

patches.

Policy Network Since the images are ∼ 3× smaller than

xView images, we only use CPNet and form its action space

with 9 unique patches. Each patch has size 320×320px with

50px overlap between the patches. We use 172×172px im-

ages downsampled from 860× 860px to maintain the same

5× downsampling ratio as in our xView experiments. We

set the other parameters similarly to our xView experiments

and train the CPNet for 1450 epochs.

Quantitative Analysis As shown in Table 3, the pro-

posed approach outperforms the baselines and state-of-the-

art [7] by a large margin when using a 5× downsampling

ratio. When using 2× downsampling, our method per-

forms similarly to [7] in terms of AP and AR, but delivers

higher run-time performance. This is because their agent

uses coarse detection results over the entire image, whereas

CPNet only chooses a binary action for each image patch

without using coarse detection, thus requiring less over-

head. Our approach can be even further optimized by run-

ning the patches through the coarse or fine detectors in par-

allel, whereas [7] performs sequential inference.

Finally, we measure the performance of CPNet w.r.t. dif-

ferent downsampling factors for the coarse detector. As

seen in Fig. 5, the AP, AR and Run-time do not change dras-

tically with decreasing the downsampling ratio whereas the

number of zoom-ins decreases sharply, since the coarse de-

tector performs better with finer images but also has higher

Model/Metric AP AR Run-time HR

Random (×5) 30.9 62.1 248 44.4

Entropy (×5) 34.0 63.9 250 44.4

Sliding Window-L (×5) 21.2 46.3 90 0

Sliding Window-H 64.7 74.7 450 100

Gao et al. [7] (×2) 64.5 73.1 295 7.1

Gao et al. [7] (×5) 57.3 70.7 309 43.3

CPNet (×2) 64.4 74.5 267 6.6

CPNet (×5) 61.7 74.1 270 44.4

Table 3. Results on the Caltech Pedestrian Dataset.
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Figure 5. Performance of the CPNet when changing the resolution

of the coarse detector on CPD. We use 172×172px images for the

CPNet and only change the resolution of coarse detector.

run-time cost. These results show that CPNet can maintain

high AP, AR and run-time efficiency when used with the

coarse detector trained on images across different resolu-

tions.

6. Conclusion

In this study, we proposed an approach to efficiently pro-

cess large images for object detection without changing the

underlying structure of a detector. In particular, we trained

two policy networks, CPNet and FPNet, using reinforce-

ment learning with the dual reward of maintaining the accu-

racy while maximizing the use of LR images with a coarse

detector. By choosing actions for the full image in one step,

the policy networks introduce minimal overhead. Our ex-

periments on the xView, consisting of very large satellite

images, indicate that the proposed approach increases run-

time efficiency by 2.2× while reducing dependency on HR

images by about 70%. Finally, our approach delivers 40%
run-time increase on Caltech Pedestrian Dataset images.
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