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Abstract

Dealing properly with different viewing conditions re-

mains a key challenge for computer vision in autonomous

driving. Domain adaptation has opened new possibilities

for data augmentation, translating arbitrary road scene im-

ages into different environmental conditions. Although mul-

timodal concepts have demonstrated the capability to sepa-

rate content and style, we find that existing methods fail to

reproduce scenes in the exact appearance given by a refer-

ence image. In this paper, we address the aforementioned

problem by introducing a style alignment loss between out-

put and reference image. We integrate this concept into a

multimodal unsupervised image-to-image translation model

with a novel dual-mode training process and additional ad-

versarial losses. Focusing on road scene images, we eval-

uate our model in various aspects including visual quality

and feature matching. Our experiments reveal that we are

able to significantly improve both style alignment and im-

age quality in different viewing conditions. Adapting con-

cepts from neural style transfer, our new training approach

allows to control the output of multimodal domain adap-

tation, making it possible to generate arbitrary scenes and

viewing conditions for data augmentation.

1. Introduction

Automated driving functions demand a reliable and pre-

cise representation of the car’s environment, which is ex-

tracted by various kinds of sensors. Camera systems are em-

ployed to detect a wide range of objects being indispensable

for the driving task, e.g., vehicles, pedestrians, lane mark-

ings, and traffic signs. For the development of self-driving

cars, the requirements regarding performance of image pro-

cessing algorithms rise tremendously [32].

Handling images captured under varying and occasion-

ally extreme weather and illumination conditions is one of

the main challenges. This applies not only to algorithms,

but also to training and test data which is rare for those cases

Input image (source domain)

MUNIT [8] DMGAN (ours)

Reference image (target domain)

content style

Figure 1. We introduce the concept of domain adaptation with style

alignment. The output image should combine the content (view-

point, scene structure) of the input image with the style of the

reference image in the target domain. Compared to other state-

of-the-art methods, our proposed method enhances image quality

and style control, adopting the appearance of objects given by the

reference (green arrows) and reducing artifacts (red arrows).

and can only be acquired with enormous effort.

Thus, the possibility of synthesizing authentic data for

those rare conditions is desirable. Simulation engines are a

common way to generate synthetic images [12], but often

fail to reproduce real-looking images for all scenarios due

to the complex interaction of scene content, i.e., the struc-

ture and semantics of the road scene, image sensor proper-

ties (e.g., the behavior in changing viewing conditions), and

environmental conditions such as weather and daytime.

Recently, Generative Adversarial Networks (GANs) [5]

have opened up a new research field for data augmenta-

tion, enabling image-to-image translation from one domain

to another [36, 19, 10], e.g., from sunny to rainy viewing

conditions. Multimodal architectures [8, 37, 16] learn dis-
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entangled representations of the content, which contains the

geometric and semantic structure of the image scene, and

style, which encodes illumination and texture. This makes

it possible to either alter the appearance of a fixed content

by generating diverse images with different style codes or

applying a fixed style to different contents resulting in a

style-aligned set of images. In our application, this con-

cept would allow to transfer the appearance of a reference

image in order to reproduce challenging viewing conditions

for arbitrary road scene contents.

However, as we show in our paper, aligning road images

captured at the same location, but under different viewing

conditions, in one domain and style often results in incon-

sistent scene appearance with a state-of-the-art image-to-

image translation framework [8]. This is a result of implicit

learning of content and style representations which does not

guarantee a meaningful disentanglement [13].

Addressing the aforementioned problem, we extend the

concept of cycle reconstruction [36] and disentangled con-

tent and style representation [8] by introducing Dual-Mode

GAN (DMGAN), a modified network architecture and

training setup which does not only allow multimodal and

cross-domain image-to-image translation, but also explic-

itly enforces style alignment and improves translation qual-

ity (see Fig. 1).

Our contributions are summarized as follows:

• Proposing a style alignment loss between output and

reference image, we integrate the constraint into an

image-to-image translation model through a novel

dual-mode training process which alternately switches

between random and guided optimization steps.

• We extend the multimodal image domain adaptation

model with additional adversarial losses that enhance

image quality and style control.

• In our experiments, we show that our approach leads to

significant improvements in style alignment, but also

image quality and feature recovery in road images.

2. Related Work

Generative Adversarial Networks Recently, GANs [5]

have shown impressive results in generative tasks such as

image generation [26, 33], text-to-image synthesis [35, 27],

video frame prediction [15, 18], and face reenactment [34].

GANs usually consist of a generator and a discriminator

network. The generator aims to synthesize images that

closely model the distribution of input data while the dis-

criminator learns to distinguish real and fake images. Aim-

ing to minimize their training losses, both networks ideally

improve in their respective tasks [5].

Image-to-image translation Beside the aforementioned

applications, GANs can be used for cross-domain image-

to-image translation [36, 19], which describes the task of

translating an image from one domain into another one. A

domain may represent a collection of images captured un-

der certain viewing conditions or with a specific sensor, e.g.,

photographs taken at different daytimes [19] or thermal im-

ages [10], but also other types of inputs and representations,

e.g., simulated images or semantic labels [36].

The image-to-image translation can be trained with

paired images, employing the concept of conditional

GANs [24, 10]. Since acquisition of such paired data is

often unfeasible due to scene dynamics, Zhu et al. proposed

CycleGAN [36] for unsupervised learning. By introduc-

ing a cycle consistency constraint which compares input

and cycle-reconstructed images pixel-wisely, the model can

be trained with unpaired image collections. However, the

image-to-image translation is deterministic, neglecting the

multimodality of real-world scenes in which viewing condi-

tions inside a domain can vary heavily [37, 16]. Therefore,

the authors of MUNIT [8] extend the concept by splitting

images into a content feature map and a manipulable style

vector. Combined with cycle reconstruction, this disentan-

gled representation allows synthesis of multimodal target

domain images from a single input image. We extend their

concept by explicitly accounting for style control and en-

hancing image quality with additional adversarial losses.

Domain adaptation for feature-based localization

Image-to-image translation can also be employed for the

task of feature-based localization [29]. Porav et al. [25]

propose a new feature descriptor loss in the cycle recon-

struction step for recovery of features lost due to changes

in viewing conditions. However, the supervised fine-tuning

stage introduces additional effort to collect paired data,

making it unapplicable in many real cases. In the archi-

tecture of ToDayGAN [1], a discriminator architecture

operating separately on blurred-RGB, grayscale, and

gradient images is introduced as a solution for improving

translations and place recognition with night images.

Those results show that feature matching can be used as

an evaluation measure for domain adaptation performance,

which we will also make use of to assess our models.

Neural style transfer Neural style transfer [4, 7, 17] has

become popular in various tasks such as photo editing and

fashion design. Typically, the style of a reference image,

e.g., a painting, is extracted and applied to a normal image

like a photograph. Convolutional Neural Networks (CNNs)

such as VGG [30] have very rich internal representations of

what content and style look like. Gatys et al. [4] have shown

that those representations are independent from each other,

allowing to extract style and content from the reference and
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input images, respectively. Thus, applying the style proper-

ties of the reference image to the content of the input image

results in the desired output.

Other than comparing gram matrices of VGG feature

maps as style loss in an iterative, time-consuming op-

timization process [4], adaptive instance normalization

(AdaIN) [7] presents a different approach to allow real-time

and arbitrary style transfer. By rescaling the normalized fea-

ture map of the input image with the feature mean and vari-

ance of the style image, the network learns to alter image

style and texture during training.

So far, the concept of style transfer has been mainly

applied to modify style and appearance of photographs.

Kazemi [13] have presented first ideas to combine style

losses with adversarial losses to further improve the disen-

tanglement of content and style for image generation. How-

ever, to the best knowledge of the authors, our work is the

first approach combining cycle and style consistency for

bidirectional, cross-domain image-to-image translation.

3. Dual-Mode GAN for Style Control and

Quality Enhancement (DMGAN)

In this work, we consider the problem of style alignment

for domain adaptation of road scene images. Given a refer-

ence style extracted from an image in the target domain, the

output image should show the scene content of the input im-

age, but resemble the style (weather, illumination, road tex-

ture, shadows, reflections, etc.) of the reference image. This

would allow to translate images from arbitrary domains into

a target domain and style while rendering any content given

in the input image in specific viewing conditions.

The basic architecture of our model is based on MU-

NIT [8], a state-of-the-art method for multimodal unsuper-

vised image-to-image translation. In their method, Huang et

al. disentangle content and style of images from two do-

mains while the content is shared by the domains in a mu-

tual latent space. As a result, MUNIT is able to generate

diverse image-to-image translations from one to another do-

main while obtaining a high visual quality.

Given an input image xA from one domain XA, content

cA and style sA are extracted by the content and style en-

coders, Ec
A and Es

A. Combining the content cA with a style

vector sB of the other domain XB via a multi-layer per-

ceptron (MLP) and AdaIN [7], the decoder GB outputs an

image xA→B in domain XB :

xA→B = GB(cA, sB) = GB(E
c
A(xA), sB). (1)

By changing values of the style vector sB , the appear-

ance of the output image can be changed. It can be ei-

ther an arbitrary vector sampled from a prior distribution

p(sB) ∼ N (0, 1) or a reference style vector extracted from

a target domain image xB by the style encoder Es
B .

sA

sB

Mode random:

Mode guided:

  VGG Lstyle alignment

 XA

  XB

 XA

cA

EA
s

EA
c

GB

DB

sA

cA

EA
s

EA
c

GB

MLP

MLP

fake / real

fake / real

DB

sBEA
c

XA  B

XA B

D As

D As

Figure 2. The training procedure is composed of two modes.

For simplification, only one forward translation for each mode is

shown, the opposite translation and cycle-reconstruction is similar

to MUNIT [8]. During training, we switch the mode after each

iteration. The images are sampled independently from each other.

In their work, Huang et al. [8] show that, by using a style

extracted from a reference image, the respective style can

be applied to the output image. As we will reveal in the

results section, this does not always lead to consistent re-

sults when applied to weather and illumination conditions in

road images. Our observation can be explained by the fact

that MUNIT does not explicitly account for style alignment,

but learns the representation in the style space implicitly by

combining random sampling from a prior distribution with

an adversarial network, a concept known from adversarial

autoencoders (AAE) [23].

We address this problem by proposing a novel dual-

mode training with alternating optimization steps employ-

ing a style alignment constraint, which is further explained

in the following section. Afterwards, we explain how we

adapt the composition of discriminators to further boost vi-

sual quality with styles taken from a reference image or a

prior distribution.

3.1. Dualmode training for style alignment

Unlike MUNIT [8], which exclusively samples random

style vectors from a prior distribution during training, we

propose an alternating, dual-mode approach, switching the

sampling of the style vectors after each training iteration as

visualized in Fig. 2. In the first mode, which we call random

mode, we keep the generator concept of MUNIT [8] that

allows to sample and interpolate various styles following a

prior distribution. In the second mode, the guided mode, the

style encoder Es
B extracts a style vector sB from a target

1759



domain image xB which shall guide the translation. This

step explicitly trains the network to adopt reference styles

given by other images instead of using random styles only.

Moreover, with the introduction of the guided mode, we

are able to introduce a style alignment loss Lsa enforcing

style similarity between the translation output and the ref-

erence image while we still stay in an unsupervised train-

ing setup. Modifying a concept from style transfer with

AdaIN [7], a subset of layers from a pretrained VGG16 [30]

network is taken for the style alignment loss (see Fig. 3),

which is computed by comparing mean µ and variance σ

of the output feature maps φ between two images. Our ex-

periments have revealed that putting equal weight to all lay-

ers decreases the visual quality. Instead, we increase the

weights for deeper layers to emphasize semantic, object-

level features [22]. The loss is summed up for all layers:

LxA→B

sa =

L∑

i = 1

wi( ‖µ(φi(xA→B))− µ(φi(xB))‖1

+ ‖σ(φi(xA→B))− σ(φi(xB))‖1),

(2)

where φi is the corresponding feature map of the ith se-

lected layer, xA→B represents the translated output, and

xB the reference style image. The weight for each selected

VGG layer is empirically set to wi = 0.2 · 2i−1.

Similar to MUNIT [8], our model is trained with four

types of reconstruction losses: The image reconstruction

loss (3) trains the convolutional autoencoder for image re-

covery, the content (4) and style (5) reconstruction losses

enforce the reconstruction of the latent code when encoding

the translated image xA→B again:

LxA

recon = ‖GA(E
c
A(xA), E

s
A(xA))− xA‖1, (3)

LcA
recon = ‖Ec

B(GB(cA, sB))− cA‖1 , (4)

LsB
recon = ‖Es

B(GB(cA, sB))− sB‖1 . (5)

The cycle reconstruction loss ensures that the backward

translation xA→B→A is consistent with the input image xA:

LxA

cyc = ‖GA(E
c
B(GB(E

c
A(xA), sB)), E

s
A(xA))− xA‖1 .

(6)

Additionally, a domain-invariant perceptual loss [11]

LxA→B

percep is employed to allow similar high-level convolu-

tional features to be detected in both output xA→B and input

image xA. Since the perceptual loss is already used in MU-

NIT and also based on VGG [30], we can reuse the output

of the forward pass so that there is no slowdown in training

due to the newly introduced style alignment loss.

3.2. Discriminator architecture

The original discriminator used in MUNIT [8] consists

of three identical networks operating on different image res-

olutions where each judges if the input image is real or fake:

D(x) = Dp1(x)+Dp2(favg,p2∗x)+Dp4(favg,p4∗x), (7)
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Figure 3. For computation of the style alignment loss, the differ-

ences of mean and variance from selected VGG16 [30] feature

maps are compared, weighted, and summed up.

Dp4

Dp2

Dp1

fp2

fp2

real
fake

(a) MUNIT discriminator [8].
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(b) ToDayGAN discriminator [1].

Figure 4. Comparison of discriminator architectures operating on

different image transformations. We experiment with both variants

and choose (b) in our final model.

with favg,ps being an average pooling filter with stride s.

In our model, we replace the multi-scale architecture

of the discriminator by an approach introduced in ToDay-

GAN [1], which transforms the output image into three dif-

ferent representations and sends them to separate copies of

the same sub-network. With an output after each convo-

lutional layer, each network assesses the input at multiple

patch levels (see Fig. 4) with ascending weight.

The first transformation is a blurred version of the trans-

lated output, which helps to distinguish brightness, contrast,

and major illumination differences according to [9]. The

second one – in our application – is the identity transforma-

tion, allowing the discriminator to give a prediction based

on image texture. The third transformation is the concate-

nation of horizontal and vertical gradients, assisting the dis-

criminator to differentiate the appearance of edges.

The final decision is obtained by summing up the outputs

of the three networks:

D(x) = Dx(x)+Dblur(fblur∗(x))+Dgrad(fgrad∗x). (8)

The different input types allow the networks to focus on

multiple aspects, making it easier to discriminate between

real and fake images in the respective domains.

So far, our adversarial loss for the generator and discrim-

inator can be formulated as

LGB

adv = (DB(GB(cA, sB))− 1)2, (9)

LDB

adv = (DB(GB(cA, sB)))
2
+ (DB(xB)− 1)2. (10)

Moreover, during training, we introduce a style discrimi-

nator Ds
A following the AAE concept [23] to judge whether
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an encoded style vector sA is close to the prior distribution

N (0, I) the styles are sampled from in the random mode.

The discriminator is comprised of a simple multi-layer per-

ceptron with the following adversarial losses:

L
Es

A

adv = (Ds
A(E

s
A(xA))− 1)2, (11)

L
Ds

A

adv = (Ds
A(E

s
A(xA)))

2
+ (Ds

B(s
′

A)− 1)2, (12)

where s′A is sampled from the prior distribution p(sA).
Through the additional discriminator, we force our model

to encode styles from real images in the same latent space

as p(sA), expecting a more consistent mapping.

3.3. Training losses

In sum, the total generator loss for the guided mode is:

LG,total
adv = λxL

xA

recon + λcL
cA
recon + λsL

sB
recon

+ λcycL
xA

cyc + λpercepL
xA→B

percep + λsaL
xA→B

sa

+ λadvL
GB

adv + λs,advL
Es

A

adv.

(13)

For the random mode, the style alignment loss Lsa is omit-

ted. For both modes, the total discriminator loss is:

LD,total
adv = λadvL

DB

adv + λs,advL
Ds

A

adv. (14)

The loss functions for the opposite translation from XB to

XA can be obtained by adapting the above equations.

4. Experimental Setup

4.1. Datasets

The main dataset we use for our experiments consists

of grayscale images which we recorded with an automo-

tive monocular front camera system with 1280 x 960 px res-

olution and a 46° horizontal field of view. The images

were captured on 26 repetitive test drives on a 43 km route

on public roads including highways, rural roads, and ur-

ban areas in changing environmental conditions (daytime,

weather etc.) which we assign to different categories.

For evaluation of our proposed method, we select three

domains, sun, rain, and night (see Table 1), and train our

model with two condition pairs: sun–rain and sun–night.

For validation, we create a test set by defining ten test spots

along the track with a radius of 150 m each and removing all

images within those spots from training data. Therefore, at

each spot, our test set contains images of multiple domains,

which can later be used to assess translated image quality

by taking image pairs at similar viewpoints for experiments

with style alignment and feature matching.

Another reason for choosing our own dataset is that we

can also evaluate the performance on images captured in

non-urban scenes such as rural roads and highways, which

are often neglected in public datasets [29] although chang-

ing viewing conditions often have a higher impact on their

Table 1. For training and evaluation, we select images from three

domains in our dataset: sun, rain, and night.

Domain Viewing Test Training Test

name conditions drives images images

sun sunny daytime 6 126799 24689

rain rainy daytime 2 46672 7352

night dry nighttime 5 42512 19414

appearance. Moreover, the image sensor used is very robust

to changing viewing conditions such as weather or illumi-

nation, requiring the network to focus on more details.

In addition, we also conduct experiments for the same

domain pairs with sequences taken from the Oxford Robot-

Car Dataset [21] to assess the impact of our improvements

on an urban dataset captured with a more illumination-

sensitive RGB image sensor.

4.2. Training

Following the approach described in Section 3, our mod-

els are trained by switching between the two modes ran-

dom and guided at each iteration. Adam optimizer [14] is

adopted with β1 = 0.5, β2 = 0.999, and the initial learn-

ing rate is set to 0.0001. For all our models, batch size is

set to one and weights of the losses are chosen as follows:

λadv = 1, λs,adv = 5, λx = λcyc = 10, λc = 1, λs = 2,

λsa = 0.5, and λpercep = 3.

In all experiments, we resize the image height to 256 px

while fixing the aspect ratio. During training, random crop

of 256 x 256 px is applied to each sample. The output size

for inference is 340 x 256 px. We trained our networks on

a Nvidia Titan X GPU for at least 400,000 iterations, and a

well-trained model takes about a week.

4.3. Evaluation Methods and Baselines

Style alignment As explained in Section 3, style align-

ment requires precise extraction of a reference style from a

given image and its application to an input content. To allow

convenient comparison and evaluation, we choose reference

images of the target domain which have been captured at a

nearby viewpoint.

Since style alignment is difficult to measure, we compare

the performance between the state-of-the-art model MU-

NIT [8] and our proposed model with a survey which is

conducted among experts who possess at least three years

of professional experience in the field of image process-

ing. The participants are confronted with 80 pairs of trans-

lated images (20 per translation direction) and are asked to

choose the output which better renders the content of the

source image in the style of the reference image (arrange-

ment similar to Fig. 5). The answer results in ’no prefer-

ence’ if a candidate fails to decide within ten seconds.
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GAN image quality metrics GAN research has put a lot

of effort into the topic of measuring similarity between gen-

erated and real data distributions. Similar to other work on

image synthesis, we calculate the following evaluation met-

rics for image quality assessment:

• Inception Score (IS) is a widely adopted metric [28]

based on the Inception network [31] to measure real-

ism for a generated set of images by considering two

criteria, image quality (indicated by low class entropy

for an individual image) and diversity (high entropy for

the overall distribution).

• Mode Score (MS) [2] is an improved version of In-

ception Score which evaluates both visual quality and

variety of generated images in one metric, meanwhile

being able to detect mode collapse.

• Fréchet Inception Distance Score (FID) [6] com-

pares the statistics of synthesized and real images, in-

stead of measuring generated samples solely, and has

shown to be well consistent with human judgement of

visual quality. A lower FID corresponds to a more sim-

ilar distribution between real and generated data.

To better correlate with style alignment and to verify

whether our trained model is capable of generating high-

quality images when taking real image styles, we extract

styles of reference images from all ten spots and apply them

to source domain images for translation. For each domain

pair at each of the ten spots, we pick 100 images per domain

for inference, therefore, each evaluation score is obtained

over 1000 images in total.

Feature matching Inspired by previous work [25, 1], we

further evaluate the quality of domain adaptation and style

alignment with feature matching experiments. An effective

translation model for road scene images is expected to re-

cover keypoints and improve feature matching when images

are aligned in good viewing conditions. We experiment

with different descriptors for feature detection and match-

ing, but only report results for SIFT [20] since the results

for other descriptors are similar. RANSAC [3] is used for

filtering of inlier matches.

We conduct experiments on two-view matching between

images captured in two different domains, but at a nearby

position, comparing the results obtained with original image

pairs that were not preprocessed and pairs where the image

captured under bad conditions (rain/night) has been trans-

lated to sunny conditions. Beside our model, we use the

unimodal UNIT [19] and multimodal MUNIT [8] architec-

ture. For the multimodal models, we experiment with dif-

ferent style vectors: zero (mean of prior distribution), ran-

dom (sampling from prior distribution), and extract (style

given by the sunny reference image).

night→sun

sun→night

rain→sun

sun→rain

Input image

(source domain)

Translation

MUNIT

Translation

DMGAN

Reference image

(target domain)

Figure 5. Style alignment comparison of MUNIT [8] and our

model DMGAN using image pairs captured at similar (odd rows)

and different (even rows) viewpoints. The reference image from

the target domain is used to guide the appearance of the translated

image. Our model improves the rendering of street and sky tex-

ture, lane markings, vegetation, and objects given by the reference

image while it also reduces artifacts in the output.

5. Results

5.1. Style Alignment

For visual comparison, Fig. 5 contrasts the output of

MUNIT [8] and our model. The strong similarity between

output and reference image shows that our proposed model

deals better with aligning image styles. Specifically, when

translating from poor to good viewing conditions, our pro-

posed approach is capable of recovering objects (e.g., road

texture, lanes, vehicles, and trees) with finer edges and
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Figure 6. Domain and style alignment of multimodal, multi-domain image collections. The upper rows depict images captured on the same

street section, but at different viewing conditions. The rows below show the same images aligned in domain sun by our image-to-image

translation models rain→sun and night→sun using the style extracted from a reference image (marked by red frame).

rain→sun

night→sun

Input image

(source domain)

Translation

MUNIT

Translation

DMGAN

Reference image

(target domain)

Figure 7. Domain adaptation with style alignment for images taken

from the Oxford RobotCar Dataset [21]. Instead of using images

captured at a similar viewpoint, the reference images are randomly

selected. The outputs of MUNIT [8] and our proposed model are

compared in the second and third column. Our method improves

rendering of shadows, buildings, and vegetation, among others.

clearer image contents, rendering the scene in the appear-

ance (illumination, weather, road texture, etc.) of the tar-

Table 2. Results of style alignment survey. Scores denote the per-

centage of generated images preferred by the human experts.

Expert Preference

Translation MUNIT [8] DMGAN None

sun→rain 35.36 % 59.64 % 5.00 %

rain→sun 41.43 % 54.57 % 5.00 %

sun→night 18.93 % 73.57 % 7.50 %

night→sun 13.20 % 80.75 % 6.05 %

get image while preserving source image content as much

as possible. In the survey, whose results are depicted in

Table 2, our model outperforms MUNIT [8] by more than

14 % for both sun–rain translations, and by more than 54 %

for the more challenging sun–night dataset. In experiments

with the Oxford RobotCar Dataset, we observe similar im-

provements for RGB images as visualized in Fig. 7.

Furthermore, our model shows the capability to align im-

ages from multiple domains, thus bringing the potential to

create a visually homogeneous sequence from a collection

of images captured under completely different viewing con-

ditions (see Fig. 6). The overall appearance – including il-

lumination and weather – is well-aligned, only details such

as shadows or reflections are not completely consistent.

5.2. Image Quality

Table 3 shows the GAN metrics obtained for the chal-

lenging translations from poor to sunny conditions, reveal-
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Table 3. Ablation study comparing GAN metrics (explained in

Section 4.3) for different model configurations. Only challenging

translations from poor to good conditions are displayed here.

rain→sun night→sun

Method IS MS FID IS MS FID

MUNIT [8] 3.492 3.277 0.190 2.707 2.793 0.274

DMGAN w/o Da 3.663 3.296 0.218 3.301 2.943 0.266

DMGAN w/o SAb 3.042 3.387 0.175 2.770 3.231 0.201

DMGAN (ours) 3.749 3.405 0.183 3.277 3.285 0.198
adiscriminator taken from [1] bdual-mode training + style alignment

Table 4. Results of two-view matching before and after prepro-

cessing with different image-to-image translation methods. Values

represent average results for all ten test spots. For better compara-

bility of multimodal models, different style types are provided.

Preprocessing rain→sun night→sun

Method (Style) matchesa inliersb matchesa inliersb

None — 316.29 37.92 286.73 22.39

UNIT [19] — 461.55 41.26 457.78 29.36

MUNIT [8]

zero 470.76 42.19 431.91 28.53

extract 488.46 42.97 465.60 29.04

random 462.95 42.60 470.41 28.96

DMGAN
(ours)

zero 501.22 43.27 383.49 27.40

extract 483.40 43.21 519.57 31.51

random 480.19 40.91 477.27 29.71
aSIFT feature correspondences bverified by RANSAC

ing that our proposed model outperforms MUNIT [8] in all

quality assessment criteria. The ablation study with dif-

ferent model configurations shows that both the dual mode

training with style alignment loss and the modified discrim-

inator architecture contribute to the improved quality.

The example provided in Fig. 8 visualizes the effect of

the two main contributions proposed in Section 3. The mod-

ified discriminator leads to sharper, clearer objects, while

the style alignment enhances texture of the road surface,

objects, and background. The best results with increased

visibility of objects and background structures and less ar-

tifacts are obtained by the combination of both methods.

5.3. Image Feature Matching

Table 4 summarizes the results of feature matching for

both rain→sun and night→sun translations. By compar-

ing results with the deterministic image translation model

UNIT [19] as an additional baseline other than original im-

ages, we observe that multimodal architectures can be su-

perior in recovering features if we control and utilize the

disentangled representation. To better assess the influence

of style selection on feature matching, different style types

(zero style, extracted style and random style) are provided.

Our proposed model achieves the best matching results

in both datasets. Moreover, we see a clear improvement

between random and extracted styles with our method,

(a) Input image (b) DMGAN output

(c) DMGAN without modified

discriminator

(d) DMGAN without style

alignment

Figure 8. Comparison of image quality for different model config-

urations. For all night→sun translations, the same style was used.

(a) Matching between original images from different domains

(b) Matching with first image translated to sun using random style

(c) Matching with first image translated to sun using extracted style

Figure 9. Visualization of cross-domain feature matching (see Ta-

ble 4) comparing results before and after translation with our

model. In (b) and (c), the first images (left: rain – right: night)

are translated to the domain with better viewing conditions (sun).

Extracting the style for the translation from the reference image

(c) results in the best and most inlier matches (green lines).

demonstrating the effect of the dual-mode training for style

alignment. Some examples of enhanced feature matching

are visualized in Fig. 9.

6. Conclusion

In this paper, we have introduced DMGAN, a method for

multimodal domain adaptation integrating a style alignment

loss inspired by neural style transfer into a novel dual-mode

training concept for bidirectional image-to-image transla-

tion. The improvements in style control and visual quality

are verified in various experiments with road scene images

including an expert survey, GAN quality metrics, and fea-

ture matching, among others. Our new approach allows to

generate images of arbitrary scenes in specific viewing con-

ditions, which is essential for data augmentation in com-

puter vision development for autonomous driving.
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