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Abstract

Dealing properly with different viewing conditions re-
mains a key challenge for computer vision in autonomous
driving. Domain adaptation has opened new possibilities
for data augmentation, translating arbitrary road scene im-
ages into different environmental conditions. Although mul-
timodal concepts have demonstrated the capability to sepa-
rate content and style, we find that existing methods fail to
reproduce scenes in the exact appearance given by a refer-
ence image. In this paper, we address the aforementioned
problem by introducing a style alignment loss between out-
put and reference image. We integrate this concept into a
multimodal unsupervised image-to-image translation model
with a novel dual-mode training process and additional ad-
versarial losses. Focusing on road scene images, we eval-
uate our model in various aspects including visual quality
and feature matching. Our experiments reveal that we are
able to significantly improve both style alignment and im-
age quality in different viewing conditions. Adapting con-
cepts from neural style transfer, our new training approach
allows to control the output of multimodal domain adap-
tation, making it possible to generate arbitrary scenes and
viewing conditions for data augmentation.

1. Introduction

Automated driving functions demand a reliable and pre-
cise representation of the car’s environment, which is ex-
tracted by various kinds of sensors. Camera systems are em-
ployed to detect a wide range of objects being indispensable
for the driving task, e.g., vehicles, pedestrians, lane mark-
ings, and traffic signs. For the development of self-driving
cars, the requirements regarding performance of image pro-
cessing algorithms rise tremendously [32].

Handling images captured under varying and occasion-
ally extreme weather and illumination conditions is one of
the main challenges. This applies not only to algorithms,
but also to training and test data which is rare for those cases

Input image (source domain) Reference image (target domain)
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Figure 1. We introduce the concept of domain adaptation with style
alignment. The output image should combine the content (view-
point, scene structure) of the input image with the style of the
reference image in the target domain. Compared to other state-
of-the-art methods, our proposed method enhances image quality
and style control, adopting the appearance of objects given by the
reference (green arrows) and reducing artifacts (red arrows).

and can only be acquired with enormous effort.

Thus, the possibility of synthesizing authentic data for
those rare conditions is desirable. Simulation engines are a
common way to generate synthetic images [12], but often
fail to reproduce real-looking images for all scenarios due
to the complex interaction of scene content, i.e., the struc-
ture and semantics of the road scene, image sensor proper-
ties (e.g., the behavior in changing viewing conditions), and
environmental conditions such as weather and daytime.

Recently, Generative Adversarial Networks (GANS) [5]
have opened up a new research field for data augmenta-
tion, enabling image-to-image translation from one domain
to another [36, 19, 10], e.g., from sunny to rainy viewing
conditions. Multimodal architectures [8, 37, 16] learn dis-
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entangled representations of the content, which contains the
geometric and semantic structure of the image scene, and
style, which encodes illumination and texture. This makes
it possible to either alter the appearance of a fixed content
by generating diverse images with different style codes or
applying a fixed style to different contents resulting in a
style-aligned set of images. In our application, this con-
cept would allow to transfer the appearance of a reference
image in order to reproduce challenging viewing conditions
for arbitrary road scene contents.

However, as we show in our paper, aligning road images
captured at the same location, but under different viewing
conditions, in one domain and style often results in incon-
sistent scene appearance with a state-of-the-art image-to-
image translation framework [8]. This is a result of implicit
learning of content and style representations which does not
guarantee a meaningful disentanglement [13].

Addressing the aforementioned problem, we extend the
concept of cycle reconstruction [36] and disentangled con-
tent and style representation [8] by introducing Dual-Mode
GAN (DMGAN), a modified network architecture and
training setup which does not only allow multimodal and
cross-domain image-to-image translation, but also explic-
itly enforces style alignment and improves translation qual-
ity (see Fig. 1).

Our contributions are summarized as follows:

* Proposing a style alignment loss between output and
reference image, we integrate the constraint into an
image-to-image translation model through a novel
dual-mode training process which alternately switches
between random and guided optimization steps.

* We extend the multimodal image domain adaptation
model with additional adversarial losses that enhance
image quality and style control.

* In our experiments, we show that our approach leads to
significant improvements in style alignment, but also
image quality and feature recovery in road images.

2. Related Work

Generative Adversarial Networks Recently, GANs [5]
have shown impressive results in generative tasks such as
image generation [20, 33], text-to-image synthesis [35, 27],
video frame prediction [15, 18], and face reenactment [34].
GANSs usually consist of a generator and a discriminator
network. The generator aims to synthesize images that
closely model the distribution of input data while the dis-
criminator learns to distinguish real and fake images. Aim-
ing to minimize their training losses, both networks ideally
improve in their respective tasks [5].

Image-to-image translation Beside the aforementioned
applications, GANs can be used for cross-domain image-
to-image translation [36, 19], which describes the task of
translating an image from one domain into another one. A
domain may represent a collection of images captured un-
der certain viewing conditions or with a specific sensor, e.g.,
photographs taken at different daytimes [19] or thermal im-
ages [10], but also other types of inputs and representations,
e.g., simulated images or semantic labels [36].

The image-to-image translation can be trained with
paired images, employing the concept of conditional
GANSs [24, 10]. Since acquisition of such paired data is
often unfeasible due to scene dynamics, Zhu et al. proposed
CycleGAN [36] for unsupervised learning. By introduc-
ing a cycle consistency constraint which compares input
and cycle-reconstructed images pixel-wisely, the model can
be trained with unpaired image collections. However, the
image-to-image translation is deterministic, neglecting the
multimodality of real-world scenes in which viewing condi-
tions inside a domain can vary heavily [37, 16]. Therefore,
the authors of MUNIT [8] extend the concept by splitting
images into a content feature map and a manipulable style
vector. Combined with cycle reconstruction, this disentan-
gled representation allows synthesis of multimodal target
domain images from a single input image. We extend their
concept by explicitly accounting for style control and en-
hancing image quality with additional adversarial losses.

Domain adaptation for feature-based localization
Image-to-image translation can also be employed for the
task of feature-based localization [29]. Porav et al. [25]
propose a new feature descriptor loss in the cycle recon-
struction step for recovery of features lost due to changes
in viewing conditions. However, the supervised fine-tuning
stage introduces additional effort to collect paired data,
making it unapplicable in many real cases. In the archi-
tecture of ToDayGAN [1], a discriminator architecture
operating separately on blurred-RGB, grayscale, and
gradient images is introduced as a solution for improving
translations and place recognition with night images.
Those results show that feature matching can be used as
an evaluation measure for domain adaptation performance,
which we will also make use of to assess our models.

Neural style transfer Neural style transfer [4, 7, 17] has
become popular in various tasks such as photo editing and
fashion design. Typically, the style of a reference image,
e.g., a painting, is extracted and applied to a normal image
like a photograph. Convolutional Neural Networks (CNN )
such as VGG [30] have very rich internal representations of
what content and style look like. Gatys et al. [4] have shown
that those representations are independent from each other,
allowing to extract style and content from the reference and
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input images, respectively. Thus, applying the style proper-
ties of the reference image to the content of the input image
results in the desired output.

Other than comparing gram matrices of VGG feature
maps as style loss in an iterative, time-consuming op-
timization process [4], adaptive instance normalization
(AdalN) [7] presents a different approach to allow real-time
and arbitrary style transfer. By rescaling the normalized fea-
ture map of the input image with the feature mean and vari-
ance of the style image, the network learns to alter image
style and texture during training.

So far, the concept of style transfer has been mainly
applied to modify style and appearance of photographs.
Kazemi [13] have presented first ideas to combine style
losses with adversarial losses to further improve the disen-
tanglement of content and style for image generation. How-
ever, to the best knowledge of the authors, our work is the
first approach combining cycle and style consistency for
bidirectional, cross-domain image-to-image translation.

3. Dual-Mode GAN for Style Control and
Quality Enhancement (DMGAN)

In this work, we consider the problem of style alignment
for domain adaptation of road scene images. Given a refer-
ence style extracted from an image in the target domain, the
output image should show the scene content of the input im-
age, but resemble the style (weather, illumination, road tex-
ture, shadows, reflections, etc.) of the reference image. This
would allow to translate images from arbitrary domains into
a target domain and style while rendering any content given
in the input image in specific viewing conditions.

The basic architecture of our model is based on MU-
NIT [&], a state-of-the-art method for multimodal unsuper-
vised image-to-image translation. In their method, Huang et
al. disentangle content and style of images from two do-
mains while the content is shared by the domains in a mu-
tual latent space. As a result, MUNIT is able to generate
diverse image-to-image translations from one to another do-
main while obtaining a high visual quality.

Given an input image x 4 from one domain X4, content
ca and style s4 are extracted by the content and style en-
coders, /4 and E%. Combining the content c4 with a style
vector sp of the other domain X'p via a multi-layer per-
ceptron (MLP) and AdalN [7], the decoder G5 outputs an
image x4, p in domain Xp:

rasp = Gplca,sp) = Gp(Ey(Ta),sp). (1)

By changing values of the style vector sp, the appear-
ance of the output image can be changed. It can be ei-
ther an arbitrary vector sampled from a prior distribution
p(sp) ~ N(0,1) or a reference style vector extracted from

a target domain image x g by the style encoder E3.
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Figure 2. The training procedure is composed of two modes.
For simplification, only one forward translation for each mode is
shown, the opposite translation and cycle-reconstruction is similar
to MUNIT [&]. During training, we switch the mode after each
iteration. The images are sampled independently from each other.

In their work, Huang et al. [8] show that, by using a style
extracted from a reference image, the respective style can
be applied to the output image. As we will reveal in the
results section, this does not always lead to consistent re-
sults when applied to weather and illumination conditions in
road images. Our observation can be explained by the fact
that MUNIT does not explicitly account for style alignment,
but learns the representation in the style space implicitly by
combining random sampling from a prior distribution with
an adversarial network, a concept known from adversarial
autoencoders (AAE) [23].

We address this problem by proposing a novel dual-
mode training with alternating optimization steps employ-
ing a style alignment constraint, which is further explained
in the following section. Afterwards, we explain how we
adapt the composition of discriminators to further boost vi-
sual quality with styles taken from a reference image or a
prior distribution.

3.1. Dual-mode training for style alignment

Unlike MUNIT [£], which exclusively samples random
style vectors from a prior distribution during training, we
propose an alternating, dual-mode approach, switching the
sampling of the style vectors after each training iteration as
visualized in Fig. 2. In the first mode, which we call random
mode, we keep the generator concept of MUNIT [8] that
allows to sample and interpolate various styles following a
prior distribution. In the second mode, the guided mode, the
style encoder E'% extracts a style vector sp from a target
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domain image xp which shall guide the translation. This
step explicitly trains the network to adopt reference styles
given by other images instead of using random styles only.
Moreover, with the introduction of the guided mode, we
are able to introduce a style alignment loss L, enforcing
style similarity between the translation output and the ref-
erence image while we still stay in an unsupervised train-
ing setup. Modifying a concept from style transfer with
AdalN [7], a subset of layers from a pretrained VGG16 [30]
network is taken for the style alignment loss (see Fig. 3),
which is computed by comparing mean p and variance o
of the output feature maps ¢ between two images. Our ex-
periments have revealed that putting equal weight to all lay-
ers decreases the visual quality. Instead, we increase the
weights for deeper layers to emphasize semantic, object-
level features [22]. The loss is summed up for all layers:

L

Lot = Z wi( |(@i(za~sp)) — w(¢i(zn))ll

+llo(¢i(zasp)) —o(di(zs))l;),

2)

where ¢; is the corresponding feature map of the ¢th se-
lected layer, x4, p represents the translated output, and
x p the reference style image. The weight for each selected
VGG layer is empirically set to w; = 0.2 - 2071,

Similar to MUNIT [&], our model is trained with four
types of reconstruction losses: The image reconstruction
loss (3) trains the convolutional autoencoder for image re-
covery, the content (4) and style (5) reconstruction losses
enforce the reconstruction of the latent code when encoding
the translated image x 4, p again:

Lidton = |GaA(Eq(za), E4(xa) —all1,  3)
Lideon = IE5(GB(ca, sB)) —cally, “)
’C’I?e'éon - HE%(GB(CA’SB)) - SBHI . (5)

The cycle reconstruction loss ensures that the backward
translation x 4, p_, 4 is consistent with the input image = 4:

28 = [GA(ES(Gp(ES (2a), 58)), Ea(xa)) — 2all, -
(6)
Additionally, a domain-invariant perceptual loss [ 1]
L4k is employed to allow similar high-level convolu-
tional features to be detected in both output x 4, g and input
image x 4. Since the perceptual loss is already used in MU-
NIT and also based on VGG [30], we can reuse the output
of the forward pass so that there is no slowdown in training

due to the newly introduced style alignment loss.
3.2. Discriminator architecture

The original discriminator used in MUNIT [8] consists
of three identical networks operating on different image res-
olutions where each judges if the input image is real or fake:

D(z) = Dpl(x)+Dp2(favg,p2*$)+Dp4(favg,p4*x)v (7

perceptual loss

Dense
Dense
Dense
Output

Input
Conv 32
Conv 42
Conv 4-3
Conv 5-1
Conv 52

weight: 0.2 weight: 0.4 weight: 0.8

weight:1.6

» style alignment loss

Figure 3. For computation of the style alignment loss, the differ-
ences of mean and variance from selected VGG16 [30] feature
maps are compared, weighted, and summed up.
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(a) MUNIT discriminator [8]. (b) ToDayGAN discriminator [1].
Figure 4. Comparison of discriminator architectures operating on
different image transformations. We experiment with both variants
and choose (b) in our final model.

with fave ps being an average pooling filter with stride s.

In our model, we replace the multi-scale architecture
of the discriminator by an approach introduced in ToDay-
GAN [ 1], which transforms the output image into three dif-
ferent representations and sends them to separate copies of
the same sub-network. With an output after each convo-
lutional layer, each network assesses the input at multiple
patch levels (see Fig. 4) with ascending weight.

The first transformation is a blurred version of the trans-
lated output, which helps to distinguish brightness, contrast,
and major illumination differences according to [9]. The
second one — in our application — is the identity transforma-
tion, allowing the discriminator to give a prediction based
on image texture. The third transformation is the concate-
nation of horizontal and vertical gradients, assisting the dis-
criminator to differentiate the appearance of edges.

The final decision is obtained by summing up the outputs
of the three networks:

D(x) = Dy(2)+ Dotur (folur ¥ (7)) +Dgrad ( feraa *x). (8)

The different input types allow the networks to focus on
multiple aspects, making it easier to discriminate between
real and fake images in the respective domains.

So far, our adversarial loss for the generator and discrim-
inator can be formulated as

LSE = (Dp(Gplea,sp)) —1)%, )

adv
LPr = (Dp(Gplca,sp)))” + (Dp(zp) —1)%.  (10)

Moreover, during training, we introduce a style discrimi-
nator D% following the AAE concept [23] to judge whether
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an encoded style vector s4 is close to the prior distribution
N(0,1) the styles are sampled from in the random mode.
The discriminator is comprised of a simple multi-layer per-
ceptron with the following adversarial losses:

LEY = (D3(B(xa)) — 1)%, an
L2 = (D3 (B (@A) + (Dg(sh) — 1%, (12)

where sy is sampled from the prior distribution p(sy4).
Through the additional discriminator, we force our model
to encode styles from real images in the same latent space
as p(sa), expecting a more consistent mapping.

3.3. Training losses

In sum, the total generator loss for the guided mode is:

ﬁG,tOtal — A$£$A

adv recon

+ AcyCEmA + Apel'cep‘cm“‘i_‘B + Asa[':;_}B (13)

cyc percep
B
adv"*

+ALia

recon

+ A L3E

recon

G
+ Aadvﬁad]f, + )\s,adv»c
For the random mode, the style alignment loss L, is omit-
ted. For both modes, the total discriminator loss is:

£D,tota1 = Aadvcgﬁ, + )\s,advﬁij%,- (14)

adv

The loss functions for the opposite translation from X' to
X 4 can be obtained by adapting the above equations.

4. Experimental Setup
4.1. Datasets

The main dataset we use for our experiments consists
of grayscale images which we recorded with an automo-
tive monocular front camera system with 1280 x 960 px res-
olution and a 46° horizontal field of view. The images
were captured on 26 repetitive test drives on a 43 km route
on public roads including highways, rural roads, and ur-
ban areas in changing environmental conditions (daytime,
weather etc.) which we assign to different categories.

For evaluation of our proposed method, we select three
domains, sun, rain, and night (see Table 1), and train our
model with two condition pairs: sun-rain and sun-night.
For validation, we create a test set by defining ten test spots
along the track with a radius of 150 m each and removing all
images within those spots from training data. Therefore, at
each spot, our test set contains images of multiple domains,
which can later be used to assess translated image quality
by taking image pairs at similar viewpoints for experiments
with style alignment and feature matching.

Another reason for choosing our own dataset is that we
can also evaluate the performance on images captured in
non-urban scenes such as rural roads and highways, which
are often neglected in public datasets [29] although chang-
ing viewing conditions often have a higher impact on their

Table 1. For training and evaluation, we select images from three
domains in our dataset: sun, rain, and night.

Domain Viewing Test  Training Test
name conditions drives  images images
sun sunny daytime 6 126799 24689
rain rainy daytime 2 46672 7352
night dry nighttime 5 42512 19414

appearance. Moreover, the image sensor used is very robust
to changing viewing conditions such as weather or illumi-
nation, requiring the network to focus on more details.

In addition, we also conduct experiments for the same
domain pairs with sequences taken from the Oxford Robot-
Car Dataset [21] to assess the impact of our improvements
on an urban dataset captured with a more illumination-
sensitive RGB image sensor.

4.2, Training

Following the approach described in Section 3, our mod-
els are trained by switching between the two modes ran-
dom and guided at each iteration. Adam optimizer [14] is
adopted with g1 = 0.5, 83 = 0.999, and the initial learn-
ing rate is set to 0.0001. For all our models, batch size is
set to one and weights of the losses are chosen as follows:
Aadv = 1, )\s,adv =5 A = )\cyc =10, A; = 1, A, = 2,
Asa = 0.5, and Apereep = 3.

In all experiments, we resize the image height to 256 px
while fixing the aspect ratio. During training, random crop
of 256 x 256 px is applied to each sample. The output size
for inference is 340 x 256 px. We trained our networks on
a Nvidia Titan X GPU for at least 400,000 iterations, and a
well-trained model takes about a week.

4.3. Evaluation Methods and Baselines

Style alignment As explained in Section 3, style align-
ment requires precise extraction of a reference style from a
given image and its application to an input content. To allow
convenient comparison and evaluation, we choose reference
images of the target domain which have been captured at a
nearby viewpoint.

Since style alignment is difficult to measure, we compare
the performance between the state-of-the-art model MU-
NIT [8] and our proposed model with a survey which is
conducted among experts who possess at least three years
of professional experience in the field of image process-
ing. The participants are confronted with 80 pairs of trans-
lated images (20 per translation direction) and are asked to
choose the output which better renders the content of the
source image in the style of the reference image (arrange-
ment similar to Fig. 5). The answer results in 'no prefer-
ence’ if a candidate fails to decide within ten seconds.
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GAN image quality metrics GAN research has put a lot
of effort into the topic of measuring similarity between gen-
erated and real data distributions. Similar to other work on
image synthesis, we calculate the following evaluation met-
rics for image quality assessment:

¢ Inception Score (IS) is a widely adopted metric [28]
based on the Inception network [31] to measure real-
ism for a generated set of images by considering two
criteria, image quality (indicated by low class entropy
for an individual image) and diversity (high entropy for
the overall distribution).

* Mode Score (MS) [2] is an improved version of In-
ception Score which evaluates both visual quality and
variety of generated images in one metric, meanwhile
being able to detect mode collapse.

e Fréchet Inception Distance Score (FID) [6] com-
pares the statistics of synthesized and real images, in-
stead of measuring generated samples solely, and has
shown to be well consistent with human judgement of
visual quality. A lower FID corresponds to a more sim-
ilar distribution between real and generated data.

To better correlate with style alignment and to verify
whether our trained model is capable of generating high-
quality images when taking real image styles, we extract
styles of reference images from all ten spots and apply them
to source domain images for translation. For each domain
pair at each of the ten spots, we pick 100 images per domain
for inference, therefore, each evaluation score is obtained
over 1000 images in total.

Feature matching Inspired by previous work [25, 1], we
further evaluate the quality of domain adaptation and style
alignment with feature matching experiments. An effective
translation model for road scene images is expected to re-
cover keypoints and improve feature matching when images
are aligned in good viewing conditions. We experiment
with different descriptors for feature detection and match-
ing, but only report results for SIFT [20] since the results
for other descriptors are similar. RANSAC [3] is used for
filtering of inlier matches.

We conduct experiments on two-view matching between
images captured in two different domains, but at a nearby
position, comparing the results obtained with original image
pairs that were not preprocessed and pairs where the image
captured under bad conditions (rain/night) has been trans-
lated to sunny conditions. Beside our model, we use the
unimodal UNIT [19] and multimodal MUNIT [&] architec-
ture. For the multimodal models, we experiment with dif-
ferent style vectors: zero (mean of prior distribution), ran-
dom (sampling from prior distribution), and extract (style
given by the sunny reference image).

rain—sun

H
e

| =

sun—rain

---— =

Translation Translation  Reference image
MUNIT DMGAN (target domain)

Input image
(source domain)

Figure 5. Style alignment comparison of MUNIT [8] and our
model DMGAN using image pairs captured at similar (odd rows)
and different (even rows) viewpoints. The reference image from
the target domain is used to guide the appearance of the translated
image. Our model improves the rendering of street and sky tex-
ture, lane markings, vegetation, and objects given by the reference
image while it also reduces artifacts in the output.

5. Results
5.1. Style Alignment

For visual comparison, Fig. 5 contrasts the output of
MUNIT [&] and our model. The strong similarity between
output and reference image shows that our proposed model
deals better with aligning image styles. Specifically, when
translating from poor to good viewing conditions, our pro-
posed approach is capable of recovering objects (e.g., road
texture, lanes, vehicles, and trees) with finer edges and
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Input images
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(a) Village

Input images

Aligned images

(b) Rural road
Figure 6. Domain and style alignment of multimodal, multi-domain image collections. The upper rows depict images captured on the same
street section, but at different viewing conditions. The rows below show the same images aligned in domain sun by our image-to-image
translation models rain—sun and night—sun using the style extracted from a reference image (marked by red frame).

rain—sun
]

Reference image
(target domain)

Translation
DMGAN

Translation
MUNIT

Input imag
(source domain)
Figure 7. Domain adaptation with style alignment for images taken
from the Oxford RobotCar Dataset [21]. Instead of using images
captured at a similar viewpoint, the reference images are randomly
selected. The outputs of MUNIT [8] and our proposed model are
compared in the second and third column. Our method improves
rendering of shadows, buildings, and vegetation, among others.

clearer image contents, rendering the scene in the appear-
ance (illumination, weather, road texture, etc.) of the tar-

Table 2. Results of style alignment survey. Scores denote the per-
centage of generated images preferred by the human experts.

Expert Preference
Translation | MUNIT [8] DMGAN None
sun—rain 35.36 % 59.64 % 5.00 %
rain—sun 41.43 % 54.57 % 5.00 %
sun—night 18.93 % 73.57 % 7.50 %
night—sun 13.20 % 80.75 % 6.05 %

get image while preserving source image content as much
as possible. In the survey, whose results are depicted in
Table 2, our model outperforms MUNIT [8] by more than
14 % for both sun-rain translations, and by more than 54 %
for the more challenging sun—night dataset. In experiments
with the Oxford RobotCar Dataset, we observe similar im-
provements for RGB images as visualized in Fig. 7.

Furthermore, our model shows the capability to align im-
ages from multiple domains, thus bringing the potential to
create a visually homogeneous sequence from a collection
of images captured under completely different viewing con-
ditions (see Fig. 6). The overall appearance — including il-
lumination and weather — is well-aligned, only details such
as shadows or reflections are not completely consistent.

5.2. Image Quality

Table 3 shows the GAN metrics obtained for the chal-
lenging translations from poor to sunny conditions, reveal-
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Table 3. Ablation study comparing GAN metrics (explained in
Section 4.3) for different model configurations. Only challenging
translations from poor to good conditions are displayed here.

rain—sun night—sun
Method IS MS FID| IS MS FID
MUNIT [8] 3.492 3.277 0.190|2.707 2.793 0.274
DMGAN w/o D* |3.663 3.296 0.218|3.301 2.943 0.266
DMGAN w/o SA®|3.042 3.387 0.175|2.770 3.231 0.201
DMGAN (ours) |3.749 3.405 0.183(3.277 3.285 0.198

2discriminator taken from [1] dual-mode training + style alignment

Table 4. Results of two-view matching before and after prepro-
cessing with different image-to-image translation methods. Values
represent average results for all ten test spots. For better compara-
bility of multimodal models, different style types are provided.

Preprocessing rain—sun night—sun
Method  (Style) [matches? inliers® | matches? inliers®
None — 31629 3792 | 286.73 22.39
UNIT [19] — 461.55 41.26 | 457.78 29.36
zero | 470.76 42.19 | 43191 28.53
MUNIT [8] extract | 488.46 42.97 | 465.60 29.04
random| 462.95 42.60 | 470.41 28.96
zero | 501.22 43.27 | 383.49 27.40
D?ggf)N extract | 483.40 4321 | 519.57 31.51
random| 480.19 40091 | 477.27 29.71

3SIFT feature correspondences Pverified by RANSAC

ing that our proposed model outperforms MUNIT [8] in all
quality assessment criteria. The ablation study with dif-
ferent model configurations shows that both the dual mode
training with style alignment loss and the modified discrim-
inator architecture contribute to the improved quality.

The example provided in Fig. 8 visualizes the effect of
the two main contributions proposed in Section 3. The mod-
ified discriminator leads to sharper, clearer objects, while
the style alignment enhances texture of the road surface,
objects, and background. The best results with increased
visibility of objects and background structures and less ar-
tifacts are obtained by the combination of both methods.

5.3. Image Feature Matching

Table 4 summarizes the results of feature matching for
both rain—sun and night—sun translations. By compar-
ing results with the deterministic image translation model
UNIT [19] as an additional baseline other than original im-
ages, we observe that multimodal architectures can be su-
perior in recovering features if we control and utilize the
disentangled representation. To better assess the influence
of style selection on feature matching, different style types
(zero style, extracted style and random style) are provided.

Our proposed model achieves the best matching results
in both datasets. Moreover, we see a clear improvement
between random and extracted styles with our method,

(a) Input image (b) DMGAN output

(c) DMGAN without modified
discriminator

(d) DMGAN without style
alignment

Figure 8. Comparison of image quality for different model config-
urations. For all night—sun translations, the same style was used.

(c) Matching with first image translated to sun using extracted style
Figure 9. Visualization of cross-domain feature matching (see Ta-
ble 4) comparing results before and after translation with our
model. In (b) and (c), the first images (left: rain — right: night)
are translated to the domain with better viewing conditions (sun).
Extracting the style for the translation from the reference image
(c) results in the best and most inlier matches (green lines).

demonstrating the effect of the dual-mode training for style
alignment. Some examples of enhanced feature matching
are visualized in Fig. 9.

6. Conclusion

In this paper, we have introduced DMGAN, a method for
multimodal domain adaptation integrating a style alignment
loss inspired by neural style transfer into a novel dual-mode
training concept for bidirectional image-to-image transla-
tion. The improvements in style control and visual quality
are verified in various experiments with road scene images
including an expert survey, GAN quality metrics, and fea-
ture matching, among others. Our new approach allows to
generate images of arbitrary scenes in specific viewing con-
ditions, which is essential for data augmentation in com-
puter vision development for autonomous driving.
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