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Abstract

Along with the deployment of the Face Recognition Sys-
tems (FRS), concerns were raised related to the vulnerabil-
ity of those systems towards various attacks including mor-
phed attacks. The morphed face attack involves two dif-
ferent face images in order to obtain via a morphing pro-
cess a resulting attack image, which is sufficiently similar
to both contributing data subjects. The obtained morphed
image can successfully be verified against both subjects vi-
sually (by a human expert) and by a commercial FRS. The
face morphing attack poses a severe security risk to the
e-passport issuance process and to applications like bor-
der control, unless such attacks are detected and mitigated.
In this work, we propose a new method to reliably detect
a morphed face attack using a newly designed denoising
framework. To this end, we design and introduce a new
deep Multi-scale Context Aggregation Network (MS-CAN)
to obtain denoised images, which is subsequently used to
determine if an image is morphed or not. Extensive experi-
ments are carried out on three different morphed face image
datasets. The Morphing Attack Detection (MAD) perfor-
mance of the proposed method is also benchmarked against
14 different state-of-the-art techniques using the 1SO-IEC
30107-3 evaluation metrics. Based on the obtained quan-
titative results, the proposed method has indicated the best
performance on all three datasets and also on cross-dataset
experiments.

1. Introduction

An electronic Machine Readable Travel Document (eM-
RTD) is a governmental document (e.g. an electronic Pass-
port) that stores face biometric reference images corre-
sponding to the owner of the document. When a bona
fide citizen makes the application for an eMRTD in his re-

spective country, the applicant provides a passport photo
that is taken by a photographer. Depending upon the type
of the application (online or in-person), the applicant sub-
mits his/her passport photo either in digital or printed form,
where printed passport photos are subsequently scanned for
the digitized eMRTD production process. The submitted
passport photo either in digital or re-digitized through scan-
ning i.e. print-scan) is stored in the eMRTD.

A malicious actor in such a setting can submit a mor-
phed face image and obtain a valid eMRTD leading to ex-
ploitation of intrinsic intra-class variation tolerance of a
Face Recognition Systems (FRS), which was revealed as
a serious vulnerability of FRS [13]. The morphed face im-
age generated using the face image from an attacker and
a accomplice can easily be verified against both contribut-
ing subjects with existing commercial FRS. Also a hu-
man expert such as a trained border guard can be confused
[14, 15, 1, 16, 17, 18, 19, 20]. This scenario becomes crit-
ical, when attackers intentionally morph their face image
with a non-blacklisted subject, in order to gain access to a
protected/secured area. This poses a severe threat to the se-
curity and efficacy of border control or similar applications
(using eMRTD) and thereby, it is crucial to identify such
morphed face images and to prevent the attacks. A sample
of morphed face image and the obtained comparison scores
using a commercial FRS is illustrated in Figure 1.

Motivated by the problem, several Morphing Attack De-
tection (MAD) techniques to flag digital morphed face im-
ages and print-scanned morphed face images have been pro-
posed [15, 1, 18, 19, 20, 21, 7, 10, 8]. In this work, we
focus on detecting digital morphed face images as: (i) they
can be easily generated in the digital domain, (ii) digital im-
ages are used in several countries like New-Zealand, Esto-
nia, Ireland, etc. to issue/renew the documents and (iii) the
constitute a low-cost attack in digital domain. Further, it has
to be noted that the digital morph image is usually uploaded
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Table 1: State-of-the-art digital MAD techniques

Reference Algorithm Type Algorithm

Raghavendra et al. [1] | Texture based method Local binary pattern (SVM),
Binary Statistical Image Features (BSIF),
Image Gradient(IG)

Benford features

Makrushin et al. [2]
Hildebrandt et al. [3]
Neubert [4]

Seibold et al. [5]

Quantized DCT coefficients

Stir trace based scenario Multi-compressed Anomaly detection

Corner feature detector
VGG19, GoogleNet, AlexNet

Image degradation approach

Deep learning based approach

Asaad and Sabah [6] Texture based scenario

Topological data analysis approach

Scherhag et al. [7]

Texture and frequency based method | LBP, LPQ, BSIF, 2DFFT with SVM classifier

Debiasi et al. [8] Image Quality

PRNU using Wavelet denoising

Raghavendra et al. [9] | Deep CNN based method

Feature fusion of fully connected
layers of VGG19 and Alex Net

Damer et al. [10] Deep and texture features

Feature fusion of LBP and Openface Net

Ferrara et al. [11] Deep features

AlexNet, VGG19, VGG16, ResNet50

Venkatesh et al. [12] Deep residual noise

Color residual noise with SRKDA

Bona fide Bona fide

Verification Verification

Score - - Score
0.93

Figure 1: Illustration of successful verification with mor-
phed image in a COTS Face Recognition System (FRS) op-
erating at FAR = 0.1% (a) Subject 1 (b) Morphed face
image (c) Subject 2

to an online passport application portal by the applicant and
there is no human control to verify the authenticity of image
as in a physical passport application procedure.

1.1. Related Works

In this section, we summarize the existing MAD tech-
niques in Table 1 for a quick comprehension of the reader.
As observed from Table 1, the most prevalent MAD tech-
niques can be broadly divided into four algorithm types:
(a) texture-based (b) image quality based (c) deep learning-
based (d) hybrid features (combined/multiple features)
based detection. The first work on detecting the mor-
phed face images based on micro-textures was presented
in [1]. Following this work, several other works are re-
ported [21, 7] using the capability of micro-texture extrac-
tion techniques that can effectively capture the variations
to reflect the process of morphing, which aids the morph
detection task. Lately, the use of pre-trained deep CNNs
with different architectures are widely studied in [5, 9, 11].
Further, the combination of deep features with handcrafted
features is proposed in [10]. Recently, the spectral analysis
of Photo Response Non-Uniformity (PRNU) has been em-

ployed [8][22], to analyse modifications caused by the mor-
phing procedure. For a quick overview of the existing state
of the art based on morph attack detection are presented in
[23]. In the recent past several approaches based on hybrid
features and deep features are presented [24][20][25]. The
combination of deep features with handcrafted features is
proposed in [10]. Recently, the residual noise computed on
the color channels using deep CNN based denoising is pre-
sented for the reliable face morph detection [12].

1.2. Our Contributions

Intrigued by the effectiveness of the photo-response
noise and it’s success in detecting morphed attacks, we in-
vestigate to detect the noise of the morphing process using
a new approach. We assert that the strategy of localizing
such a noise using learning approaches lead to better detec-
tion of morphing attacks. Thus, in this work, we present
a novel method for the face morphing attack detection by
computing the residual noise, which can be attributed to the
morphing process. The intuition behind resorting to such
an approach of determining the noise using a deep learning
paradigm is due to three specific reasons, where the result-
ing noise due to the morphing process can be: (i) random
(i1) non-deterministic and abrupt (iii) sparsely distributed.

Given such properties, we first focus on commonly char-
acterized noise in the image domain and the approaches to
denoise them. The widely employed denoising approaches
include Wavelet Denoising (WD) [26], Block Matching and
3D filtering (BM3D) [27], Multi-resolution Bilateral Filter-
ing (MBF) [28] and Denoising Convolutional Neural Net-
works (DnCNN) [29] which can intuitively cover the possi-
ble noise in morphing process. A combination of all such
denoising approaches can lead to better morphing attack de-
tection, as asserted earlier. However, the complexity in time
and parameterization of each of these approaches can lead
to the cumbersome effort. In the light of the recent ad-
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Figure 2: Block diagram of the proposed method. B denotes batch-normalization, M represents the scale layer that adjusts
the strength of the batch-normalization, L corresponds to strength of the identity branch in batch-normalization.

vancements in deep learning, we propose to aggregate the
denoising approaches [26, 27, 28, 29] using a deep Multi-
scale Context Aggregation Network (MS-CAN) such that
the noise in the morphed image can be easily determined,
i.e., given the face image I, we obtain the denoised face im-
age I; using the MS-CAN. We then compute the residual
noise I", which is employed to determine if the image I is
morphed or not (bona fide). Given the residual noise image,
we adapt the pre-trained off-the-shelf AlexNet to extract
textural features. These features are then classified using
a Collaborative Representative Classifier (CRC) to discrim-
inate between the bona fide and morphed image.

The key contributions of this work can therefore be sum-
marized as:

* We present a novel method for detecting morphed face
images based on the deep textural features of residual
noise from image.

* We introduce a deep Multi-scale Context Aggregation
Network (MS-CAN) for aggregating four denoising
methods to consider various kinds of noise character-
istics.

* We present results and extensive experiments on three
different face morphing datasets, and benchmark the
results for our proposed approach with 14 different
state-of-the-art techniques.

The rest of the paper is organized as follows: Section 2
presents the proposed method, Section 3 discusses the mor-
phed face dataset used in this work, Section 4 discusses the
quantitative performance of the state-of-the-art face Mor-
phing Attack Detection (MAD) together with the proposed
method under different evaluation protocols. Finally, Sec-
tion 5 draws the conclusion.

2. Proposed Method

As noted earlier, the morphing process can involuntarily
introduce noise in the resulting morphed image. The core of
the proposed method is therefore to quantify the morphing

noise effectively given the recent work indicating the ef-
fectiveness of noise characterization in detecting morphing
attacks [8][?]. The motivation of this work is to explore the
image denoising methods to quantify the noise and thereby
detect the face morphing attacks reliably. The residual noise
obtained from the image can enable reliable detection of
no-reference (single image) based morph images. The pro-
posed approach for such motivation is provided in Figure 2,
which characterizes the noise pattern. The proposed method
can be visualized in two main parts: (a) aggregation of mul-
tiple denoising methods realized using MS-CAN (b) feature
extraction and classification, both of which are explained in
the section below.

2.1. Aggregation of multiple denoising methods re-
alized using MS-CAN

Figure 3 shows the block diagram for realizing the ag-
gregation of multiple denoising methods through deep MS-
CAN. Given the RGB color image I, the first step is to
perform the denoising operation. Among several types
of image denoising methods, we choose four complemen-
tary methods by considering their performance and also
the mode of operation (spatial/frequency/sparse). To this
extent, we have used the selected denoising methods that
namely Wavelet Denoising (WD) [26], Block Matching and
3D filtering (BM3D) [27], Multiresolution Bilateral Filter-
ing (MBF) [28] and DeNoising Convolutional Neural Net-
works (DnCNN) [29]. Let Ip1, Ipo, Ips & Ip4 represent
the denoised images corresponding to WD, BM3D, MBF
and DnCNN respectively. In the next step, we perform the
aggregation to obtain a single denoised image that can rep-
resent the best of all four denoising techniques. The aggre-
gation of best-denoised parts within the image is carried out
through the wavelet-based image fusion technique, where
each denoised image is decomposed into sub-bands. As the
pixel values in the sub-bands from different denoising ap-
proaches are multiple. We employ the criteria for selecting
the best sub-band with the highest energy values for recon-
structing the final denoised image (using the inverse wavelet
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Figure 3: Realizing the multiple-denoising approach using a deep Multi-scale Context Aggregation Network (MS-CAN). B
denotes batch-normalization, M represents the scale layer that adjusts the strength of the batch-normalization, L corresponds

to strength of the identity branch in batch-normalization.

transform). We are motivated to use wavelet-based image
fusion as it can handle multi-resolution images. Further, the
image fusion strategy based on the selection of sub-bands
with the highest energy allows us to retain the edge compo-
nents preserved from multiple denoising methods.

Given the denoised image Ip;, Vi = {1,... N} where
N represents the number of denoising methods. The corre-
sponding wavelet decomposition (with level 2) of Ip; re-
sults in four different sub-band images such as approximate
sub-band {a” }, horizontal sub-band {h{',h3}, vertical
sub-band {v{¥,v{"} and diagonal sub-band {d¥,d3 }. In
the next step, we compute the energy corresponding to each
sub-band that can be represented as {E(]lv } {Eﬁ, E,{bvz},
{Eﬁ, f,\é}, {Eé\{, Eé\g} The image fusion is performed
by selecting the sub-band that corresponds to the highest
energy as: Sp1 = hY' "), where k = max?, {E}} is the
index that corresponds to the highest energy. For example,
if the highest energy for the horizontal sub-band A, is noted
with the N** image denoising method, then it is selected.
We follow the same procedure for the remaining sub-bands
to obtain Sy, Sy1, Sy2, Sq1, Sq2 and S,. Finally the fused
denoised image I is obtained by taking the inverse wavelet
transform.

Considering the computational effort and the parameter-
ization of the aggregation of multiple denoising methods,
we simply realize the operation of multiple denoising

using a deep learning approach. It is shown in earlier
works [30] [31] that, approximated image processing
operations using deep MS-CAN can result in a highly
accurate, robust and time-efficient technique. Inspired
by such findings in [30, 31], we design our architec-
ture in a similar fashion for our aggregated denoising
approach. As indicated in Figure 3, the deep MS-CAN
architecture consists of 15 layers of 3 x 3 convolution
layers with exponentially increasing dilation factor. Thus,
the dilation corresponding to the convolution layers are
1,1,2,4,8,16, 32,64, 128,256,512, 1024, 2048, 4096, 1.

Each convolution layer in the network is connected to a
point-wise non-linearity using the leaky rectified linear unit
(leaky-relu). Further, the adaptive normalization [31] is
employed to combine both batch normalization and identity
normalization. As shown in the architecture (see Figure 3),
B, (where x = 1,2,...,15, number of layers) represents
the batch-normalization, M, represents the scale layer that
adjusts the strength of the batch-normalization, L, repre-
sents the scale layer to adjust the strength of the identity
branch. We then use the additional layer to combine both
M, and L,. The network is trained on input-output pairs
that contain images from before and after the proposed
denoising operation. We further employ Mean Squared
Error (MSE) within regression loss function to estimate the
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learnability of the aggregation (approximation) operation.

Ip; — I
L:Z% (1)

where, R is the number of responses, I; is the target output
and I is the network prediction for response .

Training details of MS-CAN

To effectively realize the generalizability of the proposed
deep MS-CAN, we train the network on natural images
(including photos of people, building, natural scenes, etc.)
from IAPR TC-12 !. We further perform the proposed mul-
tiple denoising fusion approach on this dataset to obtain the
denoised image. We then train the deep MS-CAN using
pairs of normal-denoised image. The Adam optimizer is
used with a constant learning rate of 0.0001 and the train-
ing is carried out for 250 epochs resulting in 1.2 million
iterations. We subsequently use the trained deep MS-CAN
to perform the denoising operation and compute the resid-
ual noise that can be used to detect a morphing attack as
shown in the Figure 2.

Figure 4 illustrates qualitative results of the residual
noise computed on bona fide and morphed face images us-
ing deep MS-CAN. The variation in noise intensity between
bona fide and morphed image can be observed and this as-
serts our intuition. These qualitative results further support
our approach of detecting morphing attacks based on resid-
ual noise despite learning from general image datasets.

Bona fide Denoised Bona fide Morph
g’i = ==

F B
LQJ =l k=i

Denoised Morph

— —_

L.

: Residual noise Residual noise 1

Figure 4: Illustration of residual noise computation using
deep MS-CAN

2.2. Feature extraction and detection

Given the residual image, we extract the deep tex-
tural features computed using a pre-trained off-the-shelf
AlexNet. We have used the features from fully connected
layer fc6 to compute the feature from the residual noise
images. These computed features are then classified us-
ing a Probabilistic Collaborative Representation Classifier

Uhttps://www.imageclef.org/photodata

(P-CRC) [32]. The P-CRC used in this work utilizes the
Regularized Least Square Regression (LSR) on the learned
feature vectors versus the probe feature vectors [32] formu-
lated as:

F = argming | Trp — @aH; +A ||O¢H§ +

(2)
LA PO

Where, Trp is the feature vector of the test image, 2 is
the learned collaborative subspace dictionary using Trp, o
is coefficient vector, X is the collection of the training fea-
tures corresponding to K classes and A and v are the regu-
larization parameter.

3. Face Morphing Datasets

The proposed approach is validated empirically using
three different morphed face datasets employing different
approaches for morphing and different composition repre-
senting the wide possible variation in morphing process as
detailed below. The datasets are further used to benchmark
the detection performance with State-Of-The-Art (SOTA)
Morphing Attack Detection (MAD) methods.

3.1. Dataset-1

This database compromises 179 unique subjects that in-
clude both male and female participants from Asian and
Caucasian ethnicity. This dataset is constructed using a pub-
lic dataset (a subset of the FRGC face database) and a pri-
vate face dataset. The whole database is divided into two
partitions where the training set includes 89 disjoint and
unique data subjects with multiple samples. The rest of the
disjoint subjects are used in the testing set comprising 90
unique data subjects. Facial images are morphed using an
open-source tool mentioned in [18]. Ultimately, the training
set is composed of 709 bona fide and 1255 morphed images
and the testing set is composed of 918 bona fide and 1354
morphed images. Figure 5 (a) shows example images from
Dataset-1.

3.2. Dataset-2

This morphing database is a derivative of the publicly
available FRGC database that compromises of 568 subjects.
The entire database is divided into two partitions that in-
clude a training set of 300 unique data subjects resulting in
300 bona fide and 3041 morphed images. The testing set
consists of 268 unique data subjects resulting in 268 bona
fide and 2739 morphed images. Contrary to Dataset-1, the
morphing process used for this dataset is based on the au-
tomatic facial landmark and triangulation, as mentioned in
[21]. It has to be noted that the face morphing is performed
only on the inner part of the face excluding the silhouette of
the face (i.e, hair and ear region). Examples from Dataset-2
can be seen in Figure 5 (b).
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Bona fide

Figure 5: Example images from (a) Dataset-1 (b) Dataset-2 (c) (a) Dataset-3

Table 2: MAD performance on individual image denoising techniques and the proposed method

Dataset-1 Dataset-2 Dataset-3

BPCER@ APCER BPCER@ APCER BPCER@ APCER
Algorithms D-EER(%) =5% =10% D-EER(%) | =5% =10% D-EER(%) | =5% =10%
BM3D [27] 15.03 40.50 22.50 25.04 55.59 42.16 14.37 32 26
WD [26] 27.96 42.83 31.50 31.35 81.34 67.53 18.01 46 34
MBF [28] 8.69 12.16 8.16 8.69 10.44 8.20 9.71 10 8
DnCNN [29] 19.82 42.83 31.50 24.96 54.85 44.711 19.83 54 38
Proposed Method 3.24 3 1.67 2.63 1.11 1.11 7.89 8 4

3.3. Dataset-3

This database is a derivative of the publicly available
PutDB database [35] that compromises 100 subjects. The
entire database is divided into two different partitions con-
sisting of 50 training and 50 testing unique data subjects.
Morphing is performed based on the automatic facial land-
mark and triangulation as described in [21], that results in
50 bona fide and 254 morphed samples in the training set
and 50 bona fide and 244 morph samples in the testing set.

Similar to Dataset-2, only the inner part of the face is mor-
phed. Figure 5 (c) shows example images from Dataset-3.

All three datasets are developed by following the morph
data preparation steps, as discussed in [18, 36]. Since
all three datasets are constructed using source face images
from three different face datasets, this provides an opportu-
nity to evaluate the generalizability of the proposed method
together with the SOTA methods.

Table 3: Quantitative performance of the MAD algorithms on Experiment-1 (individual dataset)

Dataset-1 Dataset-2 Dataset-3

Algorithms D-EER(%) BPCER@ APCER D-EER(%) BPCER@ APCER D-EER(%) BPCER@ APCER

=5% =10% =5% =10% =5% =10%
AlexNet-SVM [11, 33, 34] 5.50 35 2.33 7.08 8.95 4.85 11 22 12
GoogleNet-SVM [33] 9.63 13.66 8.83 11.95 22.38 14.55 4223 100 77.23
InceptionV3-SVM [33] 11.66 18.83 12.33 8.21 11.94 8.20 11.94 26 16
ResNet-SVM [11, 33, 34] 5.51 6.16 4 6.48 6.10 4.74 13.76 32 22
VGG16-SVM [11, 33, 9] 13.31 25 16.83 14.50 28.35 18.28 21.86 100 36
VGG19-SVM [11, 33, 34] 12.49 22.66 15 12.32 22.38 14.17 24.50 52 40
BSIF-SVM [1] [7] 26.70 53 42 12.67 25.74 14.55 20.45 44 32
Steerable pyramid-SVM [33] 26.19 65.50 50 37.97 82.08 71.64 34.00 82 70
HOG-SVM [7] 10.37 19.83 10.50 12.30 23.50 14.92 11.91 26 10
Image Gradient-SVM [1] 17.34 38 26.50 25.24 51.86 39.92 31.98 72 60
LBP-SVM [1, 21, 11, 7] 18.67 39.16 28.16 9.31 14.55 8.20 22.06 62 38
PRNU [8] 26.51 43 55.66 39.89 96.26 9291 35.62 94 94
LPQ-SVM [1] 17.30 43.66 28.66 13.43 26.11 16.41 20.24 56 38
Deep Residual Noise [12] 3.83 1.5 4.85 4.85 3.35 9.71 14
Proposed Method 3.24 3 1.67 2.63 1.11 1.11 7.89 8
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Figure 6: DET curves depicting MAD performance of the individual image denoising methods together with proposed

method on different datasets

4. Experiments and Results

In this section, we present the quantitative results of the
proposed method together with 14 different SOTA tech-
niques for morphed face detection. Experimental results
are presented using the ISO-IEC 30107-3 [37] metrics
such as Bona fide Presentation Classification Error Rate
(BPCER(%)) and Attack Presentation Classification Error
Rate (APCER (%)) along with Detection-Equal Error Rate
(D-EER(%)). BPCER defines the proportion of bona fide
presentations incorrectly classified as morphing attack im-
ages and APCER defines attack images incorrectly classi-
fied as bona fide images [37].

In this work, we have evaluated six deep learning-based
SOTA, seven non-deep learning based techniques and one
hybrid method that use both deep and hand-crafted features.
In case of the deep learning techniques, we have used the
pre-trained network and computed the corresponding fea-
tures that are further classified using a linear Support Vec-
tor Machines (SVM). To this extent, we have considered
pre-trained CNN such as AlexNet [11, 33, 34], GoogleNet
[33], Inception V3 [33], ResNetl101 [11, 33, 34], VGG16
[11, 33, 9] and VGGI19 [11, 33, 9]. The deep-learning tech-
niques are used only as the feature extraction techniques
owing to the availability of the small datasets. In case
of non-deep learning techniques, texture-based techniques
such as LBP [1], LPQ [1], BSIF [7], Steerable Pyramids
[33] together with image distortion based features such
as Image gradients [1], hybrid method [10], HoG [7] and
PRNU [8] with linear SVM (except for PRNU) to com-
pute the detection performance. To effectively evaluate
the performance of the Morphing Attack Detection (MAD)
schemes, we perform three different experiments such as
Experiment-1:- designed to evaluate the performance of

the MAD schemes when training and testing is carried out
on the same dataset. Experiment-2:- designed to evalu-
ate the MAD schemes on the merged dataset in which all
three datasets are merged to one single dataset. This ex-
periment provides an insight into the MAD performance
when the dataset is increased with respect to the number of
bona fide and morphed samples. Experiment-3:- designed
to perform the cross-dataset comparison in which one of
the datasets is used for training and another dataset is used
for testing. This experiment will provide insights on MAD
techniques that are capable to operate on unknown data.

Table 4: Quantitative performance of the MAD algorithms
on Experiment-2 (merged dataset)

BPCER@ APCER
Algorithms D-EER(%) 5% ~10%
AlexNet-SVM [11, 33, 34] 9.70 17.32 9.36
GoogleNet-SVM [33] 10.87 21.35 11.98
InceptionV3-SVM [33] 8.69 14.59 7.51
ResNet-SVM [11, 33, 34] 7.77 9.04 4.68
VGG16-SVM [11, 33, 9] 12.83 25.49 15.03
VGG19-SVM [11, 33, 34] 12.19 24.50 15.03
BSIF-SVM [1, 7] 15.58 33.98 23.09
Steerable Pyramid-SVM [33] 36.78 77.88 68.08
HOG-SVM [7] 11.32 20.69 12.52
Image Gradient-SVM [1] 38.41 79.84 68.84
LBP-SVM [1, 21, 11, 7] 36.58 73.42 63.98
PRNU [8] 36.88 96.84 94.11
LPQ-SVM [1] 15.03 30.28 19.82
Deep Residual Noise [12] 5.35 6.31 2.50
Proposed Method 4.96 5.01 3.05

Table 2 indicates the performance of the proposed
method and individual image denoising methods used to

286



build the proposed method. Figure 6 shows the DET curves
for all three different morphed face datasets. To have a
fair comparison, we have used the same feature extraction
and comparison schemes on individual denoising schemes.
Based on the results, it can be noted that the proposed
method has indicated the best detection performance on all
three datasets demonstrating a good robustness. The supe-
rior performance of the proposed method can be attributed
to (a) the aggregated denoising and fusion scheme based on
the best sub-band selection (b) the robustness of MS-CAN
in obtaining the noise of images trained using natural im-
ages.

Table 3 indicates the performance of the proposed
method together with 14 different state-of-the-art methods
for Experiment-1 on all three datasets. Based on the ob-
tained results, it can be noted that (a) the use of deep-
features indicate a better performance on all three datasets
when compared to non-deep feature based techniques. (2)
Among the deep features, the AlexNet and ResNet101 have
indicated an improved performance over other deep fea-
tures. (3) Among the non-deep features, HoG-SVM has
indicated the best performance. (4) The proposed method
shows overall the best performance when compared to 14
different SOTA techniques on all three different datasets.

Table 4 presents the quantitative results of the proposed
and existing methods for Experiment-2. Based on the ob-
tained results, the deep features indicate better performance
over non-deep techniques. Further, the proposed method
has indicated the best performance with D-EER = 4.96%
with BPCER = 5.01% @APCER = 5% and BPCER =
3.05% @APCER = 10%. These obtained results further jus-
tify the robustness of the proposed method to the increased
number of samples with different image characteristics.

Table 5 indicates the quantitative performance of the
proposed method for Experiment-3 (cross-dataset evalua-
tion). For simplicity, we have presented the results only
for the top four best performing MAD techniques based
on Experiment-1 and Experiment-2. Since we have three
different datasets, we get six different cases in which
one dataset is enrolled and the remaining two datasets
are probed. Based on the obtained results, the proposed
method shows superior performance when compared with
the SOTA methods in all six cases.

Thus, based on the extensive experiments carried out
on three different datasets with three different performance
evaluation experiments, we can conclude a superior perfor-
mance over 14 different state-of-the-art methods. The eval-
uation results demonstrate the robustness of the proposed
method, which is attributed to the proposed deep MS-CAN
architecture. Further, realizing the proposed method using
MS-CAN not only improved the robustness but also signifi-
cantly improved computational cost by a factor of 4, as four
denoising operations learnt as a single coherent operation.

Table 5: Quantitative performance of the MAD algo-
rithms on Experiment-3 (cross Dataset) - D1-Dataset 1, D2-
Dataset 2, D3- Dataset 3

BPCER
Train | Test | Algorithms D-EER(%) @ APCER
=5% | =10%
AlexNet-SVM [11, 33, 34] 50 100 100
Deep Residual Noise [12] 7.12 12.31 5.22
DI b2 HoG-SVM [7] 17.97 38.43 | 28.35
Proposed method 10.44 16.04 10.44
AlexNet-SVM [11, 33, 34] 19.63 32 24
Deep Residual Noise [12] 13.76 32 16
DI D3 HoG-SVM [7] 20.24 50 30
Proposed method 11.94 28 14
AlexNet-SVM [11, 33, 34] 8.14 11.66 7.33
Deep Residual Noise [12] 6.49 8.50 4.16
D2 Pl MaGsvM 7] 6.81 9 | 483
Proposed method 4.66 4.66 2.88
AlexNet-SVM [11, 33, 34] 19.83 38 34
Deep Residual Noise [12] 13.76 30 22
D2 D3 HoG-SVM [7] 12.35 34 20
Proposed method 11.94 18 14
AlexNet-SVM [11, 33, 34] 50 100 100
Deep Residual Noise [12] 14.40 36.16 | 19.50
D3| P MeGsvM 7] 1452 32 | 19.06
Proposed method 8.62 10.83 7.67
AlexNet-SVM [11, 33, 34] 50 100 100
Deep Residual Noise [12] 15.31 33.95 23.50
D3 b2 HoG-SVM [7] 24.28 5820 | 42.53
Proposed method 10.03 17.16 10.07

5. Conclusion

We have presented a novel method to detect face mor-
phing attacks in a reliable manner. The proposed method
is based on quantifying the residual noise resulting from
the effect of the morphing process. The morphing noise is
quantified using a aggregation of multiple denoising meth-
ods approximated using a deep Multi-Scale Context Aggre-
gation Network (MS-CAN). We then process the residual
noise from deep MS-CAN to extract deep features com-
puted using a pre-trained AlexNet. The final decision is
computed using the Probabilistic Collaborative Representa-
tion Classifier (P-CRC) learnt using the extracted features.
Extensive experiments are carried out using three differ-
ent morphed face datasets with three different performance
evaluation protocols. The performance of the proposed
method is benchmarkd with the 14 different existing meth-
ods. The results have shown that the proposed method sig-
nificantly outperforms existing methods on all three datasets
for three different performance evaluation protocols.
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