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Abstract

Along with the deployment of the Face Recognition Sys-

tems (FRS), concerns were raised related to the vulnerabil-

ity of those systems towards various attacks including mor-

phed attacks. The morphed face attack involves two dif-

ferent face images in order to obtain via a morphing pro-

cess a resulting attack image, which is sufficiently similar

to both contributing data subjects. The obtained morphed

image can successfully be verified against both subjects vi-

sually (by a human expert) and by a commercial FRS. The

face morphing attack poses a severe security risk to the

e-passport issuance process and to applications like bor-

der control, unless such attacks are detected and mitigated.

In this work, we propose a new method to reliably detect

a morphed face attack using a newly designed denoising

framework. To this end, we design and introduce a new

deep Multi-scale Context Aggregation Network (MS-CAN)

to obtain denoised images, which is subsequently used to

determine if an image is morphed or not. Extensive experi-

ments are carried out on three different morphed face image

datasets. The Morphing Attack Detection (MAD) perfor-

mance of the proposed method is also benchmarked against

14 different state-of-the-art techniques using the ISO-IEC

30107-3 evaluation metrics. Based on the obtained quan-

titative results, the proposed method has indicated the best

performance on all three datasets and also on cross-dataset

experiments.

1. Introduction

An electronic Machine Readable Travel Document (eM-

RTD) is a governmental document (e.g. an electronic Pass-

port) that stores face biometric reference images corre-

sponding to the owner of the document. When a bona

fide citizen makes the application for an eMRTD in his re-

spective country, the applicant provides a passport photo

that is taken by a photographer. Depending upon the type

of the application (online or in-person), the applicant sub-

mits his/her passport photo either in digital or printed form,

where printed passport photos are subsequently scanned for

the digitized eMRTD production process. The submitted

passport photo either in digital or re-digitized through scan-

ning i.e. print-scan) is stored in the eMRTD.

A malicious actor in such a setting can submit a mor-

phed face image and obtain a valid eMRTD leading to ex-

ploitation of intrinsic intra-class variation tolerance of a

Face Recognition Systems (FRS), which was revealed as

a serious vulnerability of FRS [13]. The morphed face im-

age generated using the face image from an attacker and

a accomplice can easily be verified against both contribut-

ing subjects with existing commercial FRS. Also a hu-

man expert such as a trained border guard can be confused

[14, 15, 1, 16, 17, 18, 19, 20]. This scenario becomes crit-

ical, when attackers intentionally morph their face image

with a non-blacklisted subject, in order to gain access to a

protected/secured area. This poses a severe threat to the se-

curity and efficacy of border control or similar applications

(using eMRTD) and thereby, it is crucial to identify such

morphed face images and to prevent the attacks. A sample

of morphed face image and the obtained comparison scores

using a commercial FRS is illustrated in Figure 1.

Motivated by the problem, several Morphing Attack De-

tection (MAD) techniques to flag digital morphed face im-

ages and print-scanned morphed face images have been pro-

posed [15, 1, 18, 19, 20, 21, 7, 10, 8]. In this work, we

focus on detecting digital morphed face images as: (i) they

can be easily generated in the digital domain, (ii) digital im-

ages are used in several countries like New-Zealand, Esto-

nia, Ireland, etc. to issue/renew the documents and (iii) the

constitute a low-cost attack in digital domain. Further, it has

to be noted that the digital morph image is usually uploaded
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Table 1: State-of-the-art digital MAD techniques

Reference Algorithm Type Algorithm

Raghavendra et al. [1] Texture based method Local binary pattern (SVM),

Binary Statistical Image Features (BSIF),

Image Gradient(IG)

Makrushin et al. [2] Quantized DCT coefficients Benford features

Hildebrandt et al. [3] Stir trace based scenario Multi-compressed Anomaly detection

Neubert [4] Image degradation approach Corner feature detector

Seibold et al. [5] Deep learning based approach VGG19, GoogleNet, AlexNet

Asaad and Sabah [6] Texture based scenario Topological data analysis approach

Scherhag et al. [7] Texture and frequency based method LBP, LPQ, BSIF, 2DFFT with SVM classifier

Debiasi et al. [8] Image Quality PRNU using Wavelet denoising

Raghavendra et al. [9] Deep CNN based method Feature fusion of fully connected

layers of VGG19 and Alex Net

Damer et al. [10] Deep and texture features Feature fusion of LBP and Openface Net

Ferrara et al. [11] Deep features AlexNet, VGG19, VGG16, ResNet50

Venkatesh et al. [12] Deep residual noise Color residual noise with SRKDA

Verification

Score

0.93

Verification

Score

0.94

Bona fide Bona fideMorph

Figure 1: Illustration of successful verification with mor-

phed image in a COTS Face Recognition System (FRS) op-

erating at FAR = 0.1% (a) Subject 1 (b) Morphed face

image (c) Subject 2

to an online passport application portal by the applicant and

there is no human control to verify the authenticity of image

as in a physical passport application procedure.

1.1. Related Works

In this section, we summarize the existing MAD tech-

niques in Table 1 for a quick comprehension of the reader.

As observed from Table 1, the most prevalent MAD tech-

niques can be broadly divided into four algorithm types:

(a) texture-based (b) image quality based (c) deep learning-

based (d) hybrid features (combined/multiple features)

based detection. The first work on detecting the mor-

phed face images based on micro-textures was presented

in [1]. Following this work, several other works are re-

ported [21, 7] using the capability of micro-texture extrac-

tion techniques that can effectively capture the variations

to reflect the process of morphing, which aids the morph

detection task. Lately, the use of pre-trained deep CNNs

with different architectures are widely studied in [5, 9, 11].

Further, the combination of deep features with handcrafted

features is proposed in [10]. Recently, the spectral analysis

of Photo Response Non-Uniformity (PRNU) has been em-

ployed [8][22], to analyse modifications caused by the mor-

phing procedure. For a quick overview of the existing state

of the art based on morph attack detection are presented in

[23]. In the recent past several approaches based on hybrid

features and deep features are presented [24][20][25]. The

combination of deep features with handcrafted features is

proposed in [10]. Recently, the residual noise computed on

the color channels using deep CNN based denoising is pre-

sented for the reliable face morph detection [12].

1.2. Our Contributions

Intrigued by the effectiveness of the photo-response

noise and it’s success in detecting morphed attacks, we in-

vestigate to detect the noise of the morphing process using

a new approach. We assert that the strategy of localizing

such a noise using learning approaches lead to better detec-

tion of morphing attacks. Thus, in this work, we present

a novel method for the face morphing attack detection by

computing the residual noise, which can be attributed to the

morphing process. The intuition behind resorting to such

an approach of determining the noise using a deep learning

paradigm is due to three specific reasons, where the result-

ing noise due to the morphing process can be: (i) random

(ii) non-deterministic and abrupt (iii) sparsely distributed.

Given such properties, we first focus on commonly char-

acterized noise in the image domain and the approaches to

denoise them. The widely employed denoising approaches

include Wavelet Denoising (WD) [26], Block Matching and

3D filtering (BM3D) [27], Multi-resolution Bilateral Filter-

ing (MBF) [28] and Denoising Convolutional Neural Net-

works (DnCNN) [29] which can intuitively cover the possi-

ble noise in morphing process. A combination of all such

denoising approaches can lead to better morphing attack de-

tection, as asserted earlier. However, the complexity in time

and parameterization of each of these approaches can lead

to the cumbersome effort. In the light of the recent ad-
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Figure 2: Block diagram of the proposed method. B denotes batch-normalization, M represents the scale layer that adjusts

the strength of the batch-normalization, L corresponds to strength of the identity branch in batch-normalization.

vancements in deep learning, we propose to aggregate the

denoising approaches [26, 27, 28, 29] using a deep Multi-

scale Context Aggregation Network (MS-CAN) such that

the noise in the morphed image can be easily determined,

i.e., given the face image I , we obtain the denoised face im-

age Id using the MS-CAN. We then compute the residual

noise Ir, which is employed to determine if the image I is

morphed or not (bona fide). Given the residual noise image,

we adapt the pre-trained off-the-shelf AlexNet to extract

textural features. These features are then classified using

a Collaborative Representative Classifier (CRC) to discrim-

inate between the bona fide and morphed image.

The key contributions of this work can therefore be sum-

marized as:

• We present a novel method for detecting morphed face

images based on the deep textural features of residual

noise from image.

• We introduce a deep Multi-scale Context Aggregation

Network (MS-CAN) for aggregating four denoising

methods to consider various kinds of noise character-

istics.

• We present results and extensive experiments on three

different face morphing datasets, and benchmark the

results for our proposed approach with 14 different

state-of-the-art techniques.

The rest of the paper is organized as follows: Section 2

presents the proposed method, Section 3 discusses the mor-

phed face dataset used in this work, Section 4 discusses the

quantitative performance of the state-of-the-art face Mor-

phing Attack Detection (MAD) together with the proposed

method under different evaluation protocols. Finally, Sec-

tion 5 draws the conclusion.

2. Proposed Method

As noted earlier, the morphing process can involuntarily

introduce noise in the resulting morphed image. The core of

the proposed method is therefore to quantify the morphing

noise effectively given the recent work indicating the ef-

fectiveness of noise characterization in detecting morphing

attacks [8][?]. The motivation of this work is to explore the

image denoising methods to quantify the noise and thereby

detect the face morphing attacks reliably. The residual noise

obtained from the image can enable reliable detection of

no-reference (single image) based morph images. The pro-

posed approach for such motivation is provided in Figure 2,

which characterizes the noise pattern. The proposed method

can be visualized in two main parts: (a) aggregation of mul-

tiple denoising methods realized using MS-CAN (b) feature

extraction and classification, both of which are explained in

the section below.

2.1. Aggregation of multiple denoising methods re­
alized using MS­CAN

Figure 3 shows the block diagram for realizing the ag-

gregation of multiple denoising methods through deep MS-

CAN. Given the RGB color image I , the first step is to

perform the denoising operation. Among several types

of image denoising methods, we choose four complemen-

tary methods by considering their performance and also

the mode of operation (spatial/frequency/sparse). To this

extent, we have used the selected denoising methods that

namely Wavelet Denoising (WD) [26], Block Matching and

3D filtering (BM3D) [27], Multiresolution Bilateral Filter-

ing (MBF) [28] and DeNoising Convolutional Neural Net-

works (DnCNN) [29]. Let ID1, ID2, ID3 & ID4 represent

the denoised images corresponding to WD, BM3D, MBF

and DnCNN respectively. In the next step, we perform the

aggregation to obtain a single denoised image that can rep-

resent the best of all four denoising techniques. The aggre-

gation of best-denoised parts within the image is carried out

through the wavelet-based image fusion technique, where

each denoised image is decomposed into sub-bands. As the

pixel values in the sub-bands from different denoising ap-

proaches are multiple. We employ the criteria for selecting

the best sub-band with the highest energy values for recon-

structing the final denoised image (using the inverse wavelet
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Figure 3: Realizing the multiple-denoising approach using a deep Multi-scale Context Aggregation Network (MS-CAN). B

denotes batch-normalization, M represents the scale layer that adjusts the strength of the batch-normalization, L corresponds

to strength of the identity branch in batch-normalization.

transform). We are motivated to use wavelet-based image

fusion as it can handle multi-resolution images. Further, the

image fusion strategy based on the selection of sub-bands

with the highest energy allows us to retain the edge compo-

nents preserved from multiple denoising methods.

Given the denoised image IDi, ∀i = {1, . . . N} where

N represents the number of denoising methods. The corre-

sponding wavelet decomposition (with level 2) of IDi re-

sults in four different sub-band images such as approximate

sub-band
{
aN

}
, horizontal sub-band

{
hN1 , h

N
2

}
, vertical

sub-band
{
vN1 , v

N
2

}
and diagonal sub-band

{
dN1 , d

N
2

}
. In

the next step, we compute the energy corresponding to each

sub-band that can be represented as
{
EN

a

}
,
{
EN

h1, E
N

h2

}
,{

EN
v1, E

N
v2

}
,
{
EN

d1, E
N

d2

}
. The image fusion is performed

by selecting the sub-band that corresponds to the highest

energy as: Sh1 = h
N(k)
1 , where k = maxN

i=1

{
EN

h1

}
is the

index that corresponds to the highest energy. For example,

if the highest energy for the horizontal sub-band h1 is noted

with the N th image denoising method, then it is selected.

We follow the same procedure for the remaining sub-bands

to obtain Sh2, Sv1, Sv2, Sd1, Sd2 and Sa. Finally the fused

denoised image IF is obtained by taking the inverse wavelet

transform.

Considering the computational effort and the parameter-

ization of the aggregation of multiple denoising methods,

we simply realize the operation of multiple denoising

using a deep learning approach. It is shown in earlier

works [30] [31] that, approximated image processing

operations using deep MS-CAN can result in a highly

accurate, robust and time-efficient technique. Inspired

by such findings in [30, 31], we design our architec-

ture in a similar fashion for our aggregated denoising

approach. As indicated in Figure 3, the deep MS-CAN

architecture consists of 15 layers of 3 × 3 convolution

layers with exponentially increasing dilation factor. Thus,

the dilation corresponding to the convolution layers are

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 1.

Each convolution layer in the network is connected to a

point-wise non-linearity using the leaky rectified linear unit

(leaky-relu). Further, the adaptive normalization [31] is

employed to combine both batch normalization and identity

normalization. As shown in the architecture (see Figure 3),

Bx (where x = 1, 2, . . . , 15, number of layers) represents

the batch-normalization, Mx represents the scale layer that

adjusts the strength of the batch-normalization, Lx repre-

sents the scale layer to adjust the strength of the identity

branch. We then use the additional layer to combine both

Mx and Lx. The network is trained on input-output pairs

that contain images from before and after the proposed

denoising operation. We further employ Mean Squared

Error (MSE) within regression loss function to estimate the
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learnability of the aggregation (approximation) operation.

L =
∑

i

IFi − ÎF

R
(1)

where,R is the number of responses, IFi is the target output

and ÎF is the network prediction for response i.

Training details of MS­CAN

To effectively realize the generalizability of the proposed

deep MS-CAN, we train the network on natural images

(including photos of people, building, natural scenes, etc.)

from IAPR TC-12 1. We further perform the proposed mul-

tiple denoising fusion approach on this dataset to obtain the

denoised image. We then train the deep MS-CAN using

pairs of normal-denoised image. The Adam optimizer is

used with a constant learning rate of 0.0001 and the train-

ing is carried out for 250 epochs resulting in 1.2 million

iterations. We subsequently use the trained deep MS-CAN

to perform the denoising operation and compute the resid-

ual noise that can be used to detect a morphing attack as

shown in the Figure 2.

Figure 4 illustrates qualitative results of the residual

noise computed on bona fide and morphed face images us-

ing deep MS-CAN. The variation in noise intensity between

bona fide and morphed image can be observed and this as-

serts our intuition. These qualitative results further support

our approach of detecting morphing attacks based on resid-

ual noise despite learning from general image datasets.

Residual noise

Bona fide Denoised Bona fide

−

Residual noise

Morph Denoised Morph

−

Figure 4: Illustration of residual noise computation using

deep MS-CAN

2.2. Feature extraction and detection

Given the residual image, we extract the deep tex-

tural features computed using a pre-trained off-the-shelf

AlexNet. We have used the features from fully connected

layer fc6 to compute the feature from the residual noise

images. These computed features are then classified us-

ing a Probabilistic Collaborative Representation Classifier

1https://www.imageclef.org/photodata

(P-CRC) [32]. The P-CRC used in this work utilizes the

Regularized Least Square Regression (LSR) on the learned

feature vectors versus the probe feature vectors [32] formu-

lated as:

F̂ = argminα ‖TrF − Dα‖
2
2 + λ ‖α‖

2
2 +

ψ

K
‖Xα−XKαK‖

2
2

(2)

Where, TrF is the feature vector of the test image, D is

the learned collaborative subspace dictionary using TrF , α

is coefficient vector, X is the collection of the training fea-

tures corresponding to K classes and λ and ψ are the regu-

larization parameter.

3. Face Morphing Datasets

The proposed approach is validated empirically using

three different morphed face datasets employing different

approaches for morphing and different composition repre-

senting the wide possible variation in morphing process as

detailed below. The datasets are further used to benchmark

the detection performance with State-Of-The-Art (SOTA)

Morphing Attack Detection (MAD) methods.

3.1. Dataset­1

This database compromises 179 unique subjects that in-

clude both male and female participants from Asian and

Caucasian ethnicity. This dataset is constructed using a pub-

lic dataset (a subset of the FRGC face database) and a pri-

vate face dataset. The whole database is divided into two

partitions where the training set includes 89 disjoint and

unique data subjects with multiple samples. The rest of the

disjoint subjects are used in the testing set comprising 90

unique data subjects. Facial images are morphed using an

open-source tool mentioned in [18]. Ultimately, the training

set is composed of 709 bona fide and 1255 morphed images

and the testing set is composed of 918 bona fide and 1354

morphed images. Figure 5 (a) shows example images from

Dataset-1.

3.2. Dataset­2

This morphing database is a derivative of the publicly

available FRGC database that compromises of 568 subjects.

The entire database is divided into two partitions that in-

clude a training set of 300 unique data subjects resulting in

300 bona fide and 3041 morphed images. The testing set

consists of 268 unique data subjects resulting in 268 bona

fide and 2739 morphed images. Contrary to Dataset-1, the

morphing process used for this dataset is based on the au-

tomatic facial landmark and triangulation, as mentioned in

[21]. It has to be noted that the face morphing is performed

only on the inner part of the face excluding the silhouette of

the face (i.e, hair and ear region). Examples from Dataset-2

can be seen in Figure 5 (b).
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Figure 5: Example images from (a) Dataset-1 (b) Dataset-2 (c) (a) Dataset-3

Table 2: MAD performance on individual image denoising techniques and the proposed method

Dataset-1 Dataset-2 Dataset-3

BPCER@ APCER BPCER@ APCER BPCER@ APCER

Algorithms D-EER(%) =5% =10% D-EER(%) =5% =10% D-EER(%) =5% =10%

BM3D [27] 15.03 40.50 22.50 25.04 55.59 42.16 14.37 32 26

WD [26] 27.96 42.83 31.50 31.35 81.34 67.53 18.01 46 34

MBF [28] 8.69 12.16 8.16 8.69 10.44 8.20 9.71 10 8

DnCNN [29] 19.82 42.83 31.50 24.96 54.85 44.77 19.83 54 38

Proposed Method 3.24 3 1.67 2.63 1.11 1.11 7.89 8 4

3.3. Dataset­3

This database is a derivative of the publicly available

PutDB database [35] that compromises 100 subjects. The

entire database is divided into two different partitions con-

sisting of 50 training and 50 testing unique data subjects.

Morphing is performed based on the automatic facial land-

mark and triangulation as described in [21], that results in

50 bona fide and 254 morphed samples in the training set

and 50 bona fide and 244 morph samples in the testing set.

Similar to Dataset-2, only the inner part of the face is mor-

phed. Figure 5 (c) shows example images from Dataset-3.

All three datasets are developed by following the morph

data preparation steps, as discussed in [18, 36]. Since

all three datasets are constructed using source face images

from three different face datasets, this provides an opportu-

nity to evaluate the generalizability of the proposed method

together with the SOTA methods.

Table 3: Quantitative performance of the MAD algorithms on Experiment-1 (individual dataset)

Algorithms

Dataset-1 Dataset-2 Dataset-3

D-EER(%)
BPCER@ APCER

D-EER(%)
BPCER@ APCER

D-EER(%)
BPCER@ APCER

=5% =10% =5% =10% =5% =10%

AlexNet-SVM [11, 33, 34] 5.50 3.5 2.33 7.08 8.95 4.85 11 22 12

GoogleNet-SVM [33] 9.63 13.66 8.83 11.95 22.38 14.55 42.23 100 77.23

InceptionV3-SVM [33] 11.66 18.83 12.33 8.21 11.94 8.20 11.94 26 16

ResNet-SVM [11, 33, 34] 5.51 6.16 4 6.48 6.10 4.74 13.76 32 22

VGG16-SVM [11, 33, 9] 13.31 25 16.83 14.50 28.35 18.28 21.86 100 36

VGG19-SVM [11, 33, 34] 12.49 22.66 15 12.32 22.38 14.17 24.50 52 40

BSIF-SVM [1] [7] 26.70 53 42 12.67 25.74 14.55 20.45 44 32

Steerable pyramid-SVM [33] 26.19 65.50 50 37.97 82.08 71.64 34.00 82 70

HOG-SVM [7] 10.37 19.83 10.50 12.30 23.50 14.92 11.91 26 10

Image Gradient-SVM [1] 17.34 38 26.50 25.24 51.86 39.92 31.98 72 60

LBP-SVM [1, 21, 11, 7] 18.67 39.16 28.16 9.31 14.55 8.20 22.06 62 38

PRNU [8] 26.51 43 55.66 39.89 96.26 92.91 35.62 94 94

LPQ-SVM [1] 17.30 43.66 28.66 13.43 26.11 16.41 20.24 56 38

Deep Residual Noise [12] 3.83 3 1.5 4.85 4.85 3.35 9.71 14 8

Proposed Method 3.24 3 1.67 2.63 1.11 1.11 7.89 8 4
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Figure 6: DET curves depicting MAD performance of the individual image denoising methods together with proposed

method on different datasets

4. Experiments and Results

In this section, we present the quantitative results of the

proposed method together with 14 different SOTA tech-

niques for morphed face detection. Experimental results

are presented using the ISO-IEC 30107-3 [37] metrics

such as Bona fide Presentation Classification Error Rate

(BPCER(%)) and Attack Presentation Classification Error

Rate (APCER (%)) along with Detection-Equal Error Rate

(D-EER(%)). BPCER defines the proportion of bona fide

presentations incorrectly classified as morphing attack im-

ages and APCER defines attack images incorrectly classi-

fied as bona fide images [37].

In this work, we have evaluated six deep learning-based

SOTA, seven non-deep learning based techniques and one

hybrid method that use both deep and hand-crafted features.

In case of the deep learning techniques, we have used the

pre-trained network and computed the corresponding fea-

tures that are further classified using a linear Support Vec-

tor Machines (SVM). To this extent, we have considered

pre-trained CNN such as AlexNet [11, 33, 34], GoogleNet

[33], Inception V3 [33], ResNet101 [11, 33, 34], VGG16

[11, 33, 9] and VGG19 [11, 33, 9]. The deep-learning tech-

niques are used only as the feature extraction techniques

owing to the availability of the small datasets. In case

of non-deep learning techniques, texture-based techniques

such as LBP [1], LPQ [1], BSIF [7], Steerable Pyramids

[33] together with image distortion based features such

as Image gradients [1], hybrid method [10], HoG [7] and

PRNU [8] with linear SVM (except for PRNU) to com-

pute the detection performance. To effectively evaluate

the performance of the Morphing Attack Detection (MAD)

schemes, we perform three different experiments such as

Experiment-1:- designed to evaluate the performance of

the MAD schemes when training and testing is carried out

on the same dataset. Experiment-2:- designed to evalu-

ate the MAD schemes on the merged dataset in which all

three datasets are merged to one single dataset. This ex-

periment provides an insight into the MAD performance

when the dataset is increased with respect to the number of

bona fide and morphed samples. Experiment-3:- designed

to perform the cross-dataset comparison in which one of

the datasets is used for training and another dataset is used

for testing. This experiment will provide insights on MAD

techniques that are capable to operate on unknown data.

Table 4: Quantitative performance of the MAD algorithms

on Experiment-2 (merged dataset)

Algorithms D-EER(%)
BPCER@ APCER

=5% =10%

AlexNet-SVM [11, 33, 34] 9.70 17.32 9.36

GoogleNet-SVM [33] 10.87 21.35 11.98

InceptionV3-SVM [33] 8.69 14.59 7.51

ResNet-SVM [11, 33, 34] 7.77 9.04 4.68

VGG16-SVM [11, 33, 9] 12.83 25.49 15.03

VGG19-SVM [11, 33, 34] 12.19 24.50 15.03

BSIF-SVM [1, 7] 15.58 33.98 23.09

Steerable Pyramid-SVM [33] 36.78 77.88 68.08

HOG-SVM [7] 11.32 20.69 12.52

Image Gradient-SVM [1] 38.41 79.84 68.84

LBP-SVM [1, 21, 11, 7] 36.58 73.42 63.98

PRNU [8] 36.88 96.84 94.11

LPQ-SVM [1] 15.03 30.28 19.82

Deep Residual Noise [12] 5.35 6.31 2.50

Proposed Method 4.96 5.01 3.05

Table 2 indicates the performance of the proposed

method and individual image denoising methods used to
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build the proposed method. Figure 6 shows the DET curves

for all three different morphed face datasets. To have a

fair comparison, we have used the same feature extraction

and comparison schemes on individual denoising schemes.

Based on the results, it can be noted that the proposed

method has indicated the best detection performance on all

three datasets demonstrating a good robustness. The supe-

rior performance of the proposed method can be attributed

to (a) the aggregated denoising and fusion scheme based on

the best sub-band selection (b) the robustness of MS-CAN

in obtaining the noise of images trained using natural im-

ages.

Table 3 indicates the performance of the proposed

method together with 14 different state-of-the-art methods

for Experiment-1 on all three datasets. Based on the ob-

tained results, it can be noted that (a) the use of deep-

features indicate a better performance on all three datasets

when compared to non-deep feature based techniques. (2)

Among the deep features, the AlexNet and ResNet101 have

indicated an improved performance over other deep fea-

tures. (3) Among the non-deep features, HoG-SVM has

indicated the best performance. (4) The proposed method

shows overall the best performance when compared to 14

different SOTA techniques on all three different datasets.

Table 4 presents the quantitative results of the proposed

and existing methods for Experiment-2. Based on the ob-

tained results, the deep features indicate better performance

over non-deep techniques. Further, the proposed method

has indicated the best performance with D-EER = 4.96%

with BPCER = 5.01% @APCER = 5% and BPCER =

3.05% @APCER = 10%. These obtained results further jus-

tify the robustness of the proposed method to the increased

number of samples with different image characteristics.

Table 5 indicates the quantitative performance of the

proposed method for Experiment-3 (cross-dataset evalua-

tion). For simplicity, we have presented the results only

for the top four best performing MAD techniques based

on Experiment-1 and Experiment-2. Since we have three

different datasets, we get six different cases in which

one dataset is enrolled and the remaining two datasets

are probed. Based on the obtained results, the proposed

method shows superior performance when compared with

the SOTA methods in all six cases.

Thus, based on the extensive experiments carried out

on three different datasets with three different performance

evaluation experiments, we can conclude a superior perfor-

mance over 14 different state-of-the-art methods. The eval-

uation results demonstrate the robustness of the proposed

method, which is attributed to the proposed deep MS-CAN

architecture. Further, realizing the proposed method using

MS-CAN not only improved the robustness but also signifi-

cantly improved computational cost by a factor of 4, as four

denoising operations learnt as a single coherent operation.

Table 5: Quantitative performance of the MAD algo-

rithms on Experiment-3 (cross Dataset) - D1-Dataset 1, D2-

Dataset 2, D3- Dataset 3

Train Test Algorithms D-EER(%)
BPCER

@ APCER

=5% =10%

D1 D2

AlexNet-SVM [11, 33, 34] 50 100 100

Deep Residual Noise [12] 7.12 12.31 5.22

HoG-SVM [7] 17.97 38.43 28.35

Proposed method 10.44 16.04 10.44

D1 D3

AlexNet-SVM [11, 33, 34] 19.63 32 24

Deep Residual Noise [12] 13.76 32 16

HoG-SVM [7] 20.24 50 30

Proposed method 11.94 28 14

D2 D1

AlexNet-SVM [11, 33, 34] 8.14 11.66 7.33

Deep Residual Noise [12] 6.49 8.50 4.16

HoG-SVM [7] 6.81 9 4.83

Proposed method 4.66 4.66 2.88

D2 D3

AlexNet-SVM [11, 33, 34] 19.83 38 34

Deep Residual Noise [12] 13.76 30 22

HoG-SVM [7] 12.35 34 20

Proposed method 11.94 18 14

D3 D1

AlexNet-SVM [11, 33, 34] 50 100 100

Deep Residual Noise [12] 14.40 36.16 19.50

HoG-SVM [7] 14.52 32 19.16

Proposed method 8.62 10.83 7.67

D3 D2

AlexNet-SVM [11, 33, 34] 50 100 100

Deep Residual Noise [12] 15.31 33.95 23.50

HoG-SVM [7] 24.28 58.20 42.53

Proposed method 10.03 17.16 10.07

5. Conclusion

We have presented a novel method to detect face mor-

phing attacks in a reliable manner. The proposed method

is based on quantifying the residual noise resulting from

the effect of the morphing process. The morphing noise is

quantified using a aggregation of multiple denoising meth-

ods approximated using a deep Multi-Scale Context Aggre-

gation Network (MS-CAN). We then process the residual

noise from deep MS-CAN to extract deep features com-

puted using a pre-trained AlexNet. The final decision is

computed using the Probabilistic Collaborative Representa-

tion Classifier (P-CRC) learnt using the extracted features.

Extensive experiments are carried out using three differ-

ent morphed face datasets with three different performance

evaluation protocols. The performance of the proposed

method is benchmarkd with the 14 different existing meth-

ods. The results have shown that the proposed method sig-

nificantly outperforms existing methods on all three datasets

for three different performance evaluation protocols.
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