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Abstract

Convolutional neural networks (CNNs) have demon-

strated great success in vision tasks. However, most existing

architectures still suffer from low feature reuse efficiency.

In this paper, we present a layer attention based Adap-

tively Dense Network (ADNet) by adaptively determining

the reuse status of hierarchical preceding features. Specifi-

cally, a dense residual aggregation strategy is developed to

fuse multi-level internal representations in an effective man-

ner. Furthermore, a novel layer attention mechanism is pro-

posed to explicitly model the interrelationship among lay-

ers to automatically adjust the density of the network. It is

worth noting that existing ResNets and DenseNets are both

special cases of our ADNet. Extensive experiments demon-

strate that the proposed architecture consistently and indu-

bitably achieves competitive results in accuracy on bench-

mark datasets (CIFAR10, CIFAR100, and SVHN), while at

the same time remarkably reduces computational costs and

memory space. Visualization and analysis on layer-wise at-

tention further provide better understanding on the density

of feature reuse in Deep Networks.

1. Introduction

Recently, Convolutional Neural Networks (CNNs) have

led a significant success in a wide range of vision tasks [37,

22]. Exploiting highly representative features of net-

works has given rise to a variety of highly capable deep

architectures, starting from AlexNet [20], VGG [28],

GoogLeNet [32], Highway Network [30], ResNet [8],

DenseNet [14], SENet [11] to Adaptively Connected Net-

work [36] and their variants [22, 44, 34, 35]. The sustain-

ing improvements are mainly attributed to three important

factors of CNNs: scale, feature fusion and attention mecha-

nism.

Most of advances in deep learning focus on training

very large-scale networks with great depth, width and car-

dinality. From AlexNet [20] and VGG [28], to ResNet

and DenseNet [8, 14], the networks with hundreds of lay-
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Figure 1. ADNet can be regarded as a generalization of sparse

ResNet and dense DenseNet in terms of feature reuse. The density

of feature reuse is automatically learned and adaptive to the data.

ers have been built. To facilitate the training of deep net-

works and tackle the issue of feature degradation and gra-

dient vanishing problem, Xavier [4] and He [7] Initializa-

tions, Dropout [29], Batch Normalization [17], Stochas-

tic Depth [15] and Group Normalization [38] have been

proposed. Additionally, Inception series and Wide Resid-

ual Networks (WRN) [44] show that increasing network

width helps improve performances since more features can

be reused, whereas ResNeXt [39] and Xception [2] demon-

strate that the cardinality of the network is also an essential

factor.

Apart from the scale of networks, features fusion and

attention mechanism also become important aspects in ar-

chitecture design to efficiently make use of internal rep-

resentations. Approaches that focus on feature aggrega-

tion [8, 14, 43, 23, 46], in particular the ResNet [8] and

DenseNet [14], have achieved great success due to the resid-

ual and dense connection patterns. ResNet first presents

identity mapping to ease the difficulty of training deep net-

work with less parameters, but the representation of each

layer in ResNet is only reused by one subsequent layer

and lots of layers are redundant [15], significantly reduc-

ing the efficiency of learning. To overcome this limitation,
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dense feature reuse is proposed in DenseNet [14]. Although

DenseNet yields excellent performance, the density of skip

connections is extremely large, leading to higher overhead

and slower convergence.

Meanwhile, the significance of visual attention has also

been studied extensively in recent works like Residual At-

tention Network [35], SENet [11] and [24, 18, 37, 26]. At-

tention not only serves to capture the salient objects, loca-

tions and channels, but also improves the representation of

interests [37]. Nevertheless, existing attention models are

generally spatial-wise [18, 35], channel-wise [11], or com-

bination of these two dimensions [37, 1].

This paper presents a novel end-to-end Adaptively Dense

Network, dubbed ADNet. It provides a generalization

among sparse ResNet [8], dense DenseNet [14] and their

variants with handcrafted refinements. With the density of

feature reuse being automatically learned, ADNet possesses

both advantages of effective residual learning and sufficient

feature reuse with less redundancy; see Figure 1. Although

the learned weights for multi-level reused features are of-

ten non-zero and the explicit short connections remain to

be nearly dense, the ADNet aims to adaptively search the

optimal density (i.e., “connection bandwidths”) for reusing

features from previous layers [36].

To the best of our knowledge, ADNet is the first at-

tempt to investigate layer interrelationship in structure de-

sign and offer a much more compact model. ADNet reuses

the preceding feature maps with less redundancy and boosts

the learning efficiency by using layer attention mecha-

nism as well as dense residual aggregation for each layer.

Our model is built with multiple adaptively dense blocks

(ADBs). Each ADB contains a stack of composite lay-

ers comprised of dense residual aggregation, layer attention

network, ReLU [5], 3×3 convolution and Batch Normal-

ization [17]; see Figure 2. By explicitly modeling the in-

terdependencies among the preceding layers in the layer at-

tention module, skip connections are automatically selected

and features are discriminatively reused [35] to emphasize

informative layers and suppress less useful ones [11], lead-

ing to an adaptive density of feature reuse.

We validate the efficacy of the proposed ADNet on

three basic widely-used benchmarks: CIFAR10 [19], CI-

FAR100 [19] and SVHN [25]. The results show that ADNet

outperforms existing architectures (e.g., DenseNet, ResNet

and WRN) by a large margin while requiring much fewer

parameters. To offer insights, we also visualize and ana-

lyze the relationships among multi-level layers in different

ADBs and propose a quantitative measure for network den-

sity, which indicates the effectiveness of feature reuse.

2. Related Work

Efficient Architectures. The increasing width, depth

and cardinality in modern deep networks have shown
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Figure 2. The structure of Composite Layer in ADNet. It is com-

posed of three parts: Layer Attention Network, Dense Residual

Aggregation and Convolution operation.

remarkable improvements in performance. VGG [28],

GoogLeNets [32], WRN [44] and group convolution-based

models [33, 31, 39, 16] illustrate the benefits of increasing

depth, width and cardinality. Nevertheless, the extensive re-

dundancy (e.g. filter weights or feature reuse) in large-scale

networks usually result in wasting computational costs. To

tackle this issue, a range of previous studies have explored

efficient end-to-end networks, such as MobileNet [10] and

ShuffleNet [45]. Recently, the network compression and

pruning have attracted growing attention as efforts to re-

duce the computational cost and memory requirement of

CNN models. Consequently, exploring efficient architec-

tures with superior performance and low overhead is of

great importance.

Feature Fusion. To ease the difficulty of training large-

scale networks and improve the performance, it has been

proved that feature aggregation via skip-connection is ef-

fective for a series of vision tasks [23, 43, 22]. Highway

Network [30] first provides bypassing paths along with gat-

ing units. ResNet [8] achieves record-breaking performance

on various tasks by introducing identity mapping. However,

its feature reuse rate is low and many layers are redundant.

To tackle this issue, the pattern of dense connection is pro-

posed as a way to encourage feature reuse and reduce the

model complexity in DenseNet [14]. Despite the stunning

results in DenseNets, some feature reuses contribute very

little to the final performance [44]. Huang et al. [13, 12]

further propose to address this issue by removing superflu-

ous reuses in a hard way, sharing the goal of finding an ef-

fective connections strategy for CNNs [36]. Meanwhile, a

flexible yet efficient selection mechanism is put forward in

DelugeNets [21], which utilizes cross-layer depthwise con-

volutions. SparseNet [47] introduces a new internal connec-

tion pattern which aggregates a greatly sparse set of previ-

ous feature maps at any given depth. Unlike these works,
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our ADNet facilitates efficient feature reuse by adaptively

filtering or recalibrating reused features to determine skip

connections.

Attention Mechanism. Attention mechanism has be-

come an emerging trend of research in various tasks [1, 27],

with the assumption that human vision does not process

an entire input image at once and only focuses on salient

parts [3]. The goal of attention is to bias the allocation of

available resources towards the most interesting informa-

tion [24]. Several approaches [35, 40, 41] explore spatial

attention in CNNs to select the most informative regions.

Hu et al. [11] propose a generic Squeeze-and-Excitation

block to rescale channels in convolution layers. In addition,

[26, 37, 1] exploit the combination of spatial and channel-

wise attentions. Yang et al. [42] develop a hierarchical at-

tention model which has two levels of attention applied at

the word and sentence levels. Motivated by this, we propose

a useful layer attention module in our ADNet to explic-

itly model the interdependencies among preceding layers

for each convolution layer and adaptively determine which

groups of representations should be passed and reused.

3. Adaptively Dense Network

As depicted in Figure 3, ADNet is constructed by a se-

quence of adaptively dense blocks, denoted as ADBs. Sim-

ilar to [14, 37, 46], we introduce a transition layer between

adjacent blocks, which comprises 1× 1 convolution opera-

tion and average pooling layer with stride 2. In our exper-

iments, we fix the number of ADBs to 3 and represent the

input color image of size H ×W as X0. For simplicity, we

also define the number of filters in each composite layer as

growth rate n. As we intend to study the impacts of our new

aggregation pattern and layer attention strategy, the bottle-

neck layer introduced in DenseNet-BC [14] is not adopted.

3.1. Dense Residual Aggregation

ResNets. The conventional residual networks [8] em-

ploy the identity mapping to connect the outputs of

(l − 1)
th

layer and lth transformation function Fl(Xl−1):

xl = xl−1 + Fl(xl−1), (1)

where xl represents the feature maps extracted by the lth

layer. ResNets allow to pass representations and gradi-

ents between the earlier and later layers via identity map-

ping. Although this type of connection effectively eases the

difficulty of training deep networks and helps the ResNets

achieve huge success, training deep ResNet has a severe is-

sue of diminishing feature reuse [44], which gives rise to

superfluous layers.

DenseNets. To cope with the limitation of deep

ResNets, DenseNet [14] is proposed and the key idea is

to densely connect each layer with all the subsequent lay-

ers. Formally, the input of lth layer is denoted as xl =
Fl([x1, x2, ..., xl−1]), where [x1, x2, ..., xl−1] refers to the

concatenation of the feature maps generated by 1, 2...l − 1
layers. Although the DenseNet has enhanced feature reuse

and reduced the model complexity, this dense connection

pattern has several limitations, e.g. 1) the excessive con-

nections not only decrease the parameter-efficiency, but also

make the network prone to overfitting [47]; 2) the pattern of

dense feature reuse may introduce redundancies when pre-

ceding features are not reused by later layers [13].

To tackle these issues and further address the problem

of feature degradation, we introduce a novel strategy of

features aggregation named as dense residual aggregation,

which is motivated by the residual and dense connections.

Hence, this fusion approach not only takes advantage of the

power of residual learning in ResNets, but also preserves

the merits of feature reuse in DenseNets.

Specifically, to match dimensions and separately aggre-

gate local representations of each preceding layer, a set of

1 × 1 convolutions Φl
n(x) is employed, where n and l are

the indexes of the preceding and current layers, respectively.

Each 1×1 conv has k0n filters, where k0 is a reduction fac-

tor that controls the communication channel width between

the input and the current composite layer. The summation

is then used to build the layer of dense residual aggregation.

Assuming that [x1, x2, ..., xl−1] is the input of lth compos-

ite layer, the output can be formulated as:

xl = Fl[Φ
l
1(x1) + Φl

2(x2) + ...+Φl
l−1(xl−1)] (2)

We can also transform Equ. (2) to the form of identity

mapping:

xl =
(

Φl+1

1 (x1) + ...+Φl+1

l−1
(xl−1)

)

+ Fl(xl−1) (3)

where Fl(xl−1) represents the residual mapping to be

learned. Therefore, our fusion strategy can be interpreted as

an ensemble of a series of nested residual units with differ-

ent widths and lengths, which allows our model to inherit

the merits of ResNets – it is easier and faster to optimize

residual mapping [8] during the training phase.

3.2. Layer Attention Network

ADNet switches among different densities of feature

reuse through an adaptive layer attention module. Follow-

ing the previous channel-wise and spatial attention mecha-

nisms in SENet [11] and Residual Attention Network [35],

our attention module is constructed by alternatively stack-

ing 1 × 1 conv layer and average pooling, finally followed

by global average pooling and sigmoid function. Figure 4

illustrates the layout of the layer attention subnetwork in

ADNet.

Dual Dense Connections. Along with the dense skip-

connection in dense residual aggregation, we introduce
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Figure 3. The overall schema for ADNet architecture.

the additional dense skip-connection for layer attention.

The input of attention model is formulated as Il =
[x1, x2, ..., xl−1], where xl refers to lth preceding feature

and [, ] denotes concatenation operation. The connection

pattern in our attention module differs greatly from exist-

ing attention algorithms. The goal of this design is to ef-

fectively mitigate the problems of features degradation and

gradient vanishing, to make each attention module work

independently, and to break co-adaptation of layers. Intu-

itively, stacking attention layer always leads to performance

drop as dot product with mask metrics from 0 to 1 repeat-

edly will seriously degrade the values of features and gra-

dients [35] in deep layers. This connection pattern helps

avoid this problem resulted from attention mechanism by

enabling the forward features and backward gradients to be

directly propagated among different layers.

Hierarchical Features

1×1	Conv, ReLU

ℎ×𝑤×𝑙×𝑛

ℎ×𝑤×𝑘)𝑙

Average Pooling
ℎ

2
×
𝑤

2
×𝑘)𝑙

1×1	Conv, ReLU

1×1×𝑘+𝑙

FC 1×1×𝑙

Sigmoid

𝐼- = [𝑥) ,𝑥+…𝑥-2)]

ℎ

2
×
𝑤

2
×𝑘+𝑙

Global Avg Pooling

1×1×𝑙

Figure 4. Layer Attention SubNetwork.

Layer Attention. Although dense residual aggregation

is capable of implicitly extracting the layers interdependen-

cies via 1× 1 convolution and summation operations, these

relationships are entangled with the spatial and channel cor-

relation. We propose a transformation to explicitly model

layers interrelationships and determine features reused by

the current composite layer. Rather than directly apply-

ing global average pooling to capture global information in

SENet [11], we set up three layers before global average

pooling to fuse cross-channel features and extract spatial in-

formation; see Figure 4. This design aims to facilitate more

discriminative representations for layer relationship mod-

elling.

As presented in Figure 4, from the input Il, the first

1 × 1 operation Φ1(x) is applied to aggregate the cross-

channel information and reduce the dimension to k1l, where

l indexes the current layer. In order to increase the non-

linearity of representations, activation function ReLU is em-

ployed and represented as δ1(x). Average pooling function

P2×2(x) is then performed to increase the receptive field

of features, followed by two consecutive operations: the

secondary 1 × 1 conv Φ2(x) and ReLU δ2(x). Finally, a

global average pooling Pglobal(x) encodes the global struc-

ture information and its output is fed into a fully-connected

layer f(x) with k2l channels. Then the sigmoid function

normalizes the output range to [0,1]. We refer to the hyper-

parameters k1 and k2 as the reduction factors in attention

subnetwork. The weight vector is generated to filter multi-

branch reused representations Φi(xi), i∈ (1, 2, ..., l − 1) in

Dense Residual Aggregation. Consequently, the output of

lth dense residual aggregation is refomulated as:

sl = wlXl =

l−1
∑

i=1

wl
i × Φl

i(xi), sl ∈ R
Hl

×W l
×Cl

, (4)

where Xl = (Φl
1(x1),Φ

l
2(x2), ...,Φ

l
l−1

(xl−1)) and × de-

notes layer-wise multiplication. Thus, we can modify out-

put of xl composite layer Equ. 2 as follows:

xl = Fl(w
lXl) = Fl[w

l
1Φ

l
1(x1)

+ wl
2Φ

l
2(x2) + ...+ wl

l−1Φ
l
l−1(xl−1)],

(5)

where weight vector wl represents the interdependencies of

1004



preceding layers and ranges from 0 to 1 to softly control the

status of feature reuse. The layer attention helps generate

a new density pattern during each mini-batch and finally an

adaptively dense network is automatically learned.

4. Experiments

We evaluate ADNet on three standard benchmarks (CI-

FAR10, CIFAR100 and SVHN) for image classification

task. The results suggest that our ADNet is more efficient

and compact than several state-of-the-art architectures. In

particular, we reproduce the results of DenseNets and use

them as our comparison baseline, because DenseNet out-

performs WRN, ResNet, and ResNet’s variants in both ac-

curacy and parameters effectiveness.

Datasets. The CIFAR10 and CIFAR100 [19] datasets

consist of 60,000 (50,000 for training and 10,000 for test-

ing) 32×32 color images with 10 and 100 classes respec-

tively. SVHN dataset is another widely-used one and con-

sists of 32×32 color digits images, from 0 to 9, with 73,257

training samples, 26,032 for testing and 531,131 additional

training images accordingly. We adopt a standard data aug-

mentation of random cropping with 4-pixel padding and

horizontal flipping for CIFAR and normalize them by us-

ing mean and standard deviation values, whereas for SVHN

images, the pixels values are divided by 255.

Implementation. In our experiments, an initial 3 × 3
convolution layer is set up before the first block to gain the

basic image transformations. There are three reduction fac-

tors in our model: k0 is set to 4 in multi-branch aggregation

and k1 = 8, k2 = 4 for layer attention module. Our net-

work is trained in an end-to-end manner using SGD opti-

mizer with momentum 0.9 and a mini-batch size of 64. We

train 300 epochs for CIFAR and 40 for SVHN from scratch

using the He initialization [7]. Initial learning rate is set

to 0.1 and progressively divided by 10 at epochs 150, 225

for CIFAR and epochs 20, 30 for SVHN. Batch Normaliza-

tion [17] and dropout [29] with drop rate of 0.2 are applied

in ADNet. We report test error from the epoch with the

lowest validation error.

4.1. Classification Results

First we compare ADNet with different architectures

and parameter settings. The test errors on three datasets

are listed in Table 1. The results show that, compared

with DenseNets, our model obtains performance gains un-

der various hyper-parameter settings. ADNet produces er-

ror rates 3.84% on C10+ (n=40, L=28) and 20.20% on

C100+ (n=40, L=36). They are lower than the counter-

parts achieved by DenseNets (4.50% on C10+ and 22.05%
on C100+), while reducing the amounts of parameters by

12.96% and 15.85% respectively. Figure 5 shows the

training (top) and testing (bottom) curves of ADNet and

DenseNet on C10+. Figure 6 further compares the two ap-

proaches in terms of both accuracy and computational cost.

It shows that ADNet achieves better accuracy with only re-

quiring 1/3 or fewer number of FLOPs than DenseNet.

Furthermore, compared with Stochastic Depth-1002

(10.2M), ResNet-1001 (10.2M), FractalNet (38.6M), and

WRN-28 (36.5M), our ADNet (6.9M) with n = 40, L = 36
yields a consistent reduction in test errors on all CIFAR

and SVHN datasets. Impressively, we observe that the im-

provements of our ADNet are particularly pronounced on

the original C10 and C100 datasets without any data aug-

mentations. Under the setting of n = 40 and L = 36,

our accuracy improvement over those produced by ResNet-

1001, Fractal Net, and DenseNet (n = 24, L = 100) is

51.4%, 30%, and 12%, respectively, on C10 and 38.60%,

27.23%, and 12.38%, respectively on C100. Additionally,

our ADNet (n = 40, L = 36) achieves the best result of

1.54% on SVHN. Although it is equal to the error reported

by WRN, our model is more light-weight (6.9M vs. 11.0M),

resulting in lower computational overhead.

With increasing depths and growth rates, error drops

from 5.34%, over 4.40% to 3.84% on C10+, from 24.10%,

over 22.59% to 20.20% on C100+, and from 1.68%, over

1.59% to 1.54% on SVHN. This indicates that the proposed

ADNet is not prone to overfitting except for the case that

the increasing the depth 28 to 36 leads to a modest increase

in test error on C10+ from 3.84% to 3.96%.
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Figure 5. Training and testing curves of ADNet and DenseNet with

the configuration of (n = 40, L = 28).

Model Complexity. ADNet provides a better trade-off

between the complexity and performance, leading to re-

ductions in both error rates and the amount of parameters.

Figure 6 shows that our model is highly cost-effective. In

order to compare the computational costs of ADNet and

DenseNet, the numbers of parameters introduced by each
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Model Depth Params C10 C10+ C100 C100+ SVHN

Fractal Network [22] 21 38.6M 7.33 4.60 28.20 23.73 1.87

ResNet [8] 110 1.7M 13.63 6.41 44.74 27.22 2.01

Stochastic Depth [15] 1002 10.2M - 4.91 - - -

ResNet(pre-act.) [9] 1001 10.2M 10.56 4.62 33.47 22.71 -

WRN-16 [44] 16 11.0M - 4.81 - 22.07 1.54

WRN-28 [44] 28 36.5M - 4.17 - 20.50 -

ResNeXt [39] 29 0.8M - 6.74 - 26.48 -

SparseNet(n = 12) [47] 40 0.8M - 5.13 - 24.65 -

SparseNet(n = 24) [47] 100 2.5M - 4.64 - 22.41 -

SparseNet(n = 36) [47] 100 5.7M - 4.34 - 20.50 -

DenseNet(n = 12) [14] 40 1.0M 7.00 5.24 27.55 24.42 1.79

DenseNet(n = 12) [14] 100 7.0M 5.77 4.10 23.79 20.20 1.67

DenseNet(n = 12) [14] 28 0.5M 7.36∗ 6.09∗ 29.17∗ 27.67∗ 1.82∗

Our ADNet(n = 12) 28 0.6M 5.99 5.34 25.57 24.10 1.68

DenseNet(n = 24) [14] 28 2.0M 6.58∗ 4.83∗ 26.16∗ 24.56∗ 1.79∗

Our ADNet(n = 24) 28 1.9M 5.23 4.40 23.20 22.59 1.59

DenseNet(n = 40) [14] 28 5.4M 5.99∗ 4.50∗ 25.78∗ 22.20∗ 1.71∗

Our ADNet(n = 40) 28 4.7M 5.20 3.84 21.86 20.51 1.59

DenseNet(n = 40) [14] 36 8.2M 6.15∗ 4.30∗ 24.88∗ 22.05∗ 1.63∗

Our ADNet(n = 40) 36 6.9M 5.13 3.96 20.52 20.20 1.54

Table 1. Test error (%) on CIFAR and SVHN datasets. Contents in boldface indicate the best results under similar parameter settings.

“C10+” and “C100+” indicate the datasets with standard data augmentations used in [14] and n denotes the growth rate [14]. Error rates

of existing approaches are reported by the respective papers, except the data with “ ∗ ” are measured using our reimplementation. ADNet

indubitably outperforms DenseNet, ResNet, and its variants under compatible parameters, especially on the datasets without augmentation.
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Adaptively Dense Block (NADB) and conventional Dense

Block (NDB) can be formulated as bellow:

NADB(L) = 9nL+ (k0n
2 + k1n+ k1k2 + k2)

L(L+ 1)

2

NDB(L) = 9n2[L+ (L− 1) + ...+ 1] =
9n2L(L+ 1)

2
, (6)

where n and L denote the growth rate and block depth, re-

spectively. k0, k1, k2 are reduction factors in ADNet. Given

n = 40, k0 = 4, k1 = 8 and k2 = 4, we obtain the final pa-

rameter numbers as follows:

NADB(L) = 3378L2 + 3738L

NDB(L) = 7200L2 + 7200L, (7)

according to Equ. (7), analytically, the number of parame-

ters in ADNet is less than half of those in DenseNet under

arbitrary values of depth L.

We also compare the computational complexity of our

ADNet with several existing popular methods using the

scheme introduced in SparseNets [47], see Table 2. The

computational complexity is analyzed from three important

aspects: Parameters, Shortest Gradient Path (SGP) and Ag-

gregated Features (AF). Although our ADNet has smaller

computational burden than that of original DenseNets, its

parameter scale (O( 1
2
L2)) is higher than that of ResNets

and SparseNets (O(L)) as the patterns of feature reuse in

these two models are sparse. Note that our ADNet is con-

sistent with ResNets and DenseNets in terms of SGP and

AF, which shows that our designed layer attention module

does not degrade back propagation of gradients and feature-

reuse capability.

Ablation Study. In order to demonstrate the impact of

proposed attention mechanism, we also evaluate the perfor-

mances of our root network with and without layer attention

modules. Table 3 provides the comparison results on the
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Models Parameters SGP AF

ResNets O(L) O(1) O(l)
SparseNets(sum) O(L) O(log(L)) O(log(l))

DenseNets O(L2) O(1) O(l)
ADNet O( 1

2
L2) O(1) O(l)

Table 2. Comparison of computational complexity in terms of Pa-

rameters, Shortest Gradient Path (SGP) and Aggregated Features

(AF)). L denotes the depth of networks and the Aggregated Fea-

tures (AF) represents the reused features gathered by current lth

layer.

Dataset Growth rate DenseNet w.o. LA w. LA

n=12 7.36 6.30 5.99

C10 n=24 6.58 5.52 5.23

n=40 5.99 5.42 5.20

n=12 29.17 26.12 25.57

C100 n=24 26.16 23.89 23.20

n=40 25.78 22.01 21.86

n=12 1.82 1.75 1.68

SVHN n=24 1.79 1.65 1.59

n=40 1.71 1.64 1.59

Table 3. Test Error (%) of our 28-layer ADNet with and without

layer attention (LA) on C10, C100, and SVHN.

datasets C10, C100, and SVHN. It shows that the layer-wise

attention subnetwork leads to performance gains of ADNet.

Therefore, the appropriate density of feature reuse or skip

connections contributes to boost the performance of CNNs

while the pattern of fully dense connections is prone to com-

putational inefficiency and overfitting.

4.2. Model Analysis

Reduction Factors. In ADNet, we introduce three fac-

tors, k0, k1 and k2. Specifically, k0 plays two roles in multi-

branch aggregation: reducing the width of input layer and

scaling the dimension of internal layer, whereas k1 and k2
are used in layer attention module to reduce the number of

filters. For simplicity, we uniformly refer to them as reduc-

tion factors which control the representative capacity and

the model complexity. The proper setting of factors not only

provides trade-offs between performance and cost, but also

prevents overfitting. After various experiments with differ-

ent factors, we fix the values: k0 = 4, k1 = 8 and k2 = 4.

Dense Residual Aggregation. To fuse and align hier-

archical features for reusing, 1×1 conv layers are utilized

to process all branches of reused features individually. In-

put layer with very large width of each block is narrowed

to remove the superfluous channels, while the critical 3×3

conv layers are widened to increase the flexibility of fusion.

Summation operation is employed to aggregate hierarchi-

cal feature maps, which increases our network’s invariance

against scale/shift and is the primary reason that our net-

work has better performance gains on datasets without aug-

mentation. Our finding contradicts the previous belief that

summation may impede the information flow [14]. Addi-

tionally, the summation helps the ADNet possess the ad-

vantages of residual learning, leading to a fast convergence

speed.

Layer Attention Behavior. While the layer attention

network has been empirically illustrated to improve the per-

formance, it is also necessary to understand how the atten-

tion mechanism operates practically. We set up additional

1×1 convolution and average pooling layers at top of the

module to further extract spatial features while SENet di-

rectly utilizes global average pooling to disentangle the im-

pacts of spatial information. Empirical observation demon-

strates that the local spatial features are crucial for modeling

layer dependencies. The goal of two 1×1 convolutions is

to capture the cross-channel information under two scales.

Due to the sufficient spatial and cross-channel information,

the attention mechanism can learn weight vectors more pre-

cisely for each composite layer. The set of learned layer

weights in ADNet determines the status of connections and

helps generate an adaptive density of feature reuse.

Attention Visualization. To further provide a clear pic-

ture on the distributions of layer weighs produced by layer

attention and practically understand the status of feature

reuse in ADNet, we select four real color images from four

classes (aircraft, bird, dog and truck) as inputs of the ADNet

and obtain the corresponding layer weights at three blocks.

The frameworks (n = 40, L = 28) trained on C10+ and

C100+ are used to test these examples respectively, and con-

sequently the generated distributions are shown in Figure 7.

On the simpler task C10+, we observe that the weights ob-

tained for different classes are almost identical in lower

blocks but show differences in higher blocks. This suggests

that low-level features, such as edge and corner, are likely

to be shared by all classes, whereas higher-level features are

more class-specific. This observation is similar to the one

previously made in SENet [11].

The trend differs on the more complicated C100+ dataset

that has lower classification accuracy. Similar distributions

only occur in a few top layers in each block. This shows

that the basic representations are not sufficiently extracted,

which consequently leads to a bad accuracy. Besides, the

variances of layers weights are much higher than counter-

parts on C10+. Possible explanations are: 1) the network

is too shallow to represent adequate low-level features; 2)

The trained model is not compact enough and there are re-

dundant reuses in shallow blocks which are prone to noise.

This seems to explain why the same network architecture

has different behaviors on datasets with various complexi-

ties.

Feature Reuse Density. We also carry out an experi-
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Figure 7. Attention weight distributions produced by layer attention modules of ADNet in different blocks. Vertical axis shows the learned

weight values and horizontal axis denotes all preceding layers. On simpler dataset C10+, the weights values obtained for different classes

are similar, especially in lower blocks. This suggests that basic features shared by different classes are extracted. On more difficult C100+

dataset, the variations on learned weights are much higher.
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Figure 8. The average layer weights in ADNet based on test im-

ages in SVHN, C10+, and C100+ datasets, respectively. On sim-

pler dataset (SVHN), the average weights have relatively high val-

ues (red colors) while on more complex C100+, the weights show

strong variations, indicating that ADNet is capable of automati-

cally determining the status of feature reuse. Based on datasets

with different complexities, our method enables to generate corre-

sponding adaptively dense connections.

ment to evaluate the densities of feature reuse in ADNet

trained on different datasets. Three groups of test samples

in C10 , C100 (10,000 images), and SVHN (26,032 images)

are individually fed into the corresponding trained ADNets

(n = 40, L = 28) and then the mean values of layer weights

for all datasets are computed. To better understand the adap-

tive densities on different datasets, we take advantage of

heatmaps to show the layers weights during each block, see

Figure 8. Interestingly, we observe that, on simpler datasets

(C10 and SVHN), the average layer weights are consistently

higher than those on complex C100, which indicates that the

densities of feature reuse in our ADNet are automatically

learned and adaptive to different datasets instead of fixed or

handcrafted reuse pattern.

5. Conclusion

In this paper, we propose a novel adaptively dense neural

network, ADNet, to improve the representative power and

feature reuse efficiency. This is achieved through adaptively

attenuating the hierarchical representations from preceding

layers and dense residual aggregation after layer-wise recal-

ibration. Extensive experiments illustrate the effectiveness

of ADNet on multiple datasets. More importantly, the novel

layer attention mode provides means for modeling and vi-

sualizing the interdependencies of multi-level layers, which

may contribute to other tasks reusing multi-scale features.

Additionally, the density study based on layer attention may

be used to understand the behaviour of deep networks and

design targeted network pruning [6]. In the future, it is

worth to explore the methods of optimizing network archi-

tectures from the viewpoint of Feature Reuse Density. For

example, the reuse density can be added into the loss func-

tion to favor networks with higher reuse redundancy.
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