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Abstract

In this paper, we tackle a valuable yet very challenging

visual recognition task, where the instances are within a sub-

ordinate category, and the target domain undergoes a shift

with the source domain. This task, termed as cross-domain

fine-grained recognition, relates closely to many real-life sce-

narios, e.g., recognizing retail products in storage racks by

models trained with images collected in controlled environ-

ments. To deal with this problem, we design a new algorithm

and propose a corresponding fine-grained domain adapta-

tion dataset. Firstly, we propose a novel end-to-end CNN

architecture that integrates two specialized modules: an ad-

versarial module for domain alignment and a self-attention

module for fine-grained recognition. The adversarial module

is used to handle domain shift by gradually aligning the dif-

ferent domains with domain-level and class-level alignments,

and strive to help the classifier learn with domain-invariant

features generated by nets. The self-attention module is de-

signed to capture discriminative image regions which are

crucial for fine-grained visual recognition. Secondly, we col-

lect a large-scale fine-grained domain adaptation dataset of

retail products, which contains 52,011 images of 263 classes

from 3 domains. Thirdly, we validate the effectiveness of

our method on three datasets, showing that the proposed

method can yield significant improvements over baseline

methods on fine-grained datasets. Besides, we also evaluate

the effectiveness of the self-attention module by performing

visualization, which can capture the discriminative image

regions in both source and target domains.

1. Introduction

As a fundamental and challenging problem in computer

vision, fine-grained image analysis (FGIA) [32] has attracted

extensive research attention for several decades, especially

in fine-grained image recognition [18, 33, 34], which aims

to distinguish categories that are similar to each other, while

different categories can only be distinguished by slight and

subtle differences. In many real-life tasks, e.g., instance

retrieval [11, 31], vehicle identification [7], and retail pro-

duction recognition [30], fine-grained image recognition is

widely applied.

In the literature, to push the accuracy of fine-grained im-

age recognition, some works focus on designing effective

networks to learn more discriminative fine-grained represen-

tations [1, 3, 4, 5, 18, 31]. However, these methods ignore

the challenge that there exists domain shift between the

source domain and the target domain. As shown in Fig. 1,

in the retail industrial scenario, a retail product recognition

system is trained on the images taken in a controlled envi-

ronment, where an ideal background and different views of

products can be collected. However, the test environment

(a.k.a. target domain) is usually the realistic storage racks

scenario, where the background is noisy, and random orien-

tations, different lightings, and complex clutters of products

are also common.

In this paper, we study the problem of fine-grained image

recognition with domain shift and propose a domain adapta-

tion fine-grained network. Specifically, our network consists

of two main components: a adversarial domain adaptation

(DA) module and a self-attention (SA) module. The ad-

versarial module is designed to progressively align source

and target domains by domain-level alignment with adver-

sarial discriminators and category-level alignment with the

cosine metric (cf. Sec. 3.2). The adversarial discriminator in

domain-level alignment first globally aligns the different do-

mains in course-grained. Then, employing the cosine metric

in category-level alignment locally aligns clusters of differ-

ent domains category by category which is feasible for the

fine-grained task. The second component is self-attention,

which is tailed for the fine-grained task. It focuses on the

subtle discriminative parts of fine-grained objects, and thus

can further boost the accuracy.

Furthermore, considering the significant practical and re-

search value of cross-domain fine-grained recognition, we

collect, label images and construct a dataset named DA-

Retail. It contains 52,011 images of 263 classes, enabling re-

searchers to further study on domain adaptation fine-grained
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Figure 1. This task is to recognize fine-grained retail products in real-life shelves, while training data is not from the same/similar environment.

This is an example where a domain shift exists between the source domain and the target domain. Features may be falsely aligned across

domains, making classification wrong, as shown with a red cross in the left part. The domain shift plus the fine-grained nature of objects will

bring extra challenges to the problem. Images from the source and target domains are classified through the same network.

recognition task. Also, it benefits the robust training with

huge discrepancies among 3 different domains.

In empirical studies, we conduct comprehensive exper-

iments on two different fine-grained datasets, i.e., GSV

Cars [7] and our DA-Retail (cf. Sec. 4) and evaluate the

methods in both unsupervised and semi-supervised settings.

The results of GSV Cars demonstrate that our model can

greatly improve accuracy by 3.56% and 1.02% in both two

settings. Besides, our model performs better than the state-

of-the-art [6] of fine-grained domain adaptation, improving

by 4.57% and 4.74% on the proposed dataset DA-Retail.

To show the priority of our method, we also evaluate the

performances of state-of-the-art [6] and our method on the

generic dataset, i.e., Office [25]. Our model outperforms

state-of-the-art [6] by 2.1% in the unsupervised setting and

0.8% in the semi-supervised setting, respectively.

We summarize the main contributions below:

• We propose a novel domain adaptation fine-grained

network consisting of two main components: an adver-

sarial module designed for deriving domain-invariant

features and a self-attention module for capturing the

subtle discriminative parts of fine-grained objects.

• We collect, label and propose a domain adaptation fine-

grained dataset, named DA-Retail. Our dataset contains

52,011 images of 263 classes in 3 different domains for

domain adaptation performance evaluation.

• We conduct comprehensive experiments on three do-

main adaptation datasets (including our DA-Retail).

Empirical results show that our proposed network out-

performs state-of-the-art methods [6, 27] of the domain

adaptation fine-grained task on three datasets.

2. Related work

In this section, we briefly review related work on fine-

grained image recognition and domain adaptation and com-

pare the difference among existing methods.

2.1. Fine­grained image recognition

Research on fine-grained recognition has been working

in two ways recently. The first is leveraging features to get

the high-order information. A symmetric two-stream net-

work is proposed as Bilinear [18] by leveraging the second-

order information. Then, the idea is quickly extended to

bilinear pooling [4], which can achieve equal performance

compared with Bilinear only using one-stream. The other

way is bringing or predicted extra information into training,

as text [24, 38], attribute [6] and part annotation [2, 8, 35].

In the literature, a recent work Multi-Task [6] also focuses

on cross-domain fine-grained recognition, which is related

to ours. Compared with this study, the major differences

are: (i) they build the model in a multi-task framework,

while we solve the cross-domain problem directly; (ii) their

model requires fine-grained attributes for recognition, which

is more expensive than image-level labels, while we only use

image-level supervisions; and (iii) our model achieve better

results than Multi-Task [6].

2.2. Domain adaptation

The research on domain adaptation has been working on

reducing the discrepancy between different domains. Maxi-

mum Mean Discrepancy (MMD) [20] and Coral [26] design

two different metrics to measure and minimize the distance.

Batch Normalization (BN) [17] is also capable of this task

by forcing the distributions of different domains to be closer.

Nevertheless, recently, some researches strive to learn a clas-

sifier with domain-invariant features. Simultaneous Deep
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Figure 2. The structure of our proposed model. Two symmetric streams take the images from source domain and target domain as the input.

Here we illustrate only one stream for clear presentations. The weights of the feature extractor F(·), classifier C(·) and discriminator D(·)
are shared. The adversarial module for domain alignment contains domain-level and class-level alignments. The self-attention module for

fine-grained recognition is presented in the gray background in this figure. The network can be trained with only image-level supervisions.

Transfer Nets (DC) [27] employs a fully-connected layer to

indicate which domain the input is and adds a soft label con-

straint to further force the model outputting domain-invariant

features. Also, [16] proposes to minimize the intra-class

dispersion for solving the misalignments. [12] utilizes the

feature map to align the different domains. Further, with

Generative Adversarial Nets (GAN), the researchers enhance

the accuracy through extracting more domain-invariant fea-

tures, i.e., CoGAN [19].

Our method is related to existing methods [16, 19, 22,

27] in some aspects. However, there are some differences

between our method and others. First, our model sequentially

aligns the different domains by domain-level and category-

level alignments which are lighter than [16] as we employ

a simple but powerful metric. Second, our model can be

simply extended by adding more domain-discriminators to

handle the multi-domain scenario. Third, the attention map

in our model is utilized to find the discriminative parts for

the fine-grained task, while [12] used the attention map to

align the different domains.

3. Our method for cross-domain fine-grained

recognition

In this section, we present our cross-domain fine-grained

recognition model. We use S and T to denote the do-

main of training data and testing data as the source do-

main and the target domain. Also, we denote the num-

ber of classes by Nclass. The input image and its corre-

sponding class label are presented by x and a one-hot vector

y = (y1, y2, . . . , yNclass
)⊤, respectively.

A real-world domain adaptation solution should utilize

labeled source or target images which are easy to collect

and improve the classification performance on target images

whose label are hard to obtain. In the following, we investi-

gate both unsupervised and semi-supervised settings. In the

unsupervised setting, all the source images are labeled while

all the target images are unlabeled. In the semi-supervised

setting, the source images and a subset of target images are

labeled and available in the training procedure.

3.1. Overview structure

Fig. 2 shows the framework of our end-to-end cross-

domain fine-grained recognition model. Following Multi-

Task [6], we employ CaffeNet [10] as the base model, while

further employ ResNet [9] for generalizing our methods

to more base model. For clear presentations, we separate

it into two parts, i.e., the feature extractor F(·) and the

category classifier C(·). Concretely, F(·) and C(·) corre-

spond to the convolution component and the fully-connected

layers of CaffeNet. For an input image x, the convo-

lution representation and the classification prediction are

calculated by F(x) ∈ R
h×w×d and ŷ = C(F(x)) =

(ŷ1, ŷ2, . . . , ŷNclass
)⊤, respectively.

As shown in Fig. 2, we develop two modules to conquer

the challenges in this task. Firstly, to reduce the performance

drop caused by domain shift, we propose a module for do-

main alignment, i.e., domain alignment module (DA). This

module is employed to derive the domain-invariant features

F(x). Details of this module will be elaborated shortly. Sec-

ondly, as objects in fine-grained recognition usually differ

in subtle image regions, we propose a self-attention mod-

ule (SA) to generate a corresponding self-attention map by

compressing F(x) using channel-wise average pooling. Be-
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Figure 3. Comparing with most of the previous work (only domain-

level alignment) and our work (domain-level and category-level

alignments). Employing only Domain-level alignment may mis-

align features of the different classes from different domains while

employing category-level alignment can fix this problem.

cause the model is trained for recognition, the intensity of

each pixel in the self-attention map is proportional to the

discriminative power. In this way, we can approximate the

spatial distribution of the most discriminative part efficiently

by our proposed mask mechanism. SA has a similar struc-

ture with the mainstream, including a mask producer M(·),
a part-level feature extractor Fp(·) and a classifier C(·).

3.2. Domain Alignment (DA) module

We continuously align different domains in two levels

essential for domain alignment, i.e., domain-level and class-

level. Specifically, we first globally reduce the discrepancy

between different domains, and further align the same class

of different domains in the following fully-connected layers

C(·). Most of the previous work focuses on global align-

ment (domain-level alignment) ignoring the class-level align-

ment, which is the problem shown in Fig. 3.

3.2.1 Domain-level alignment

The features F(x) have domain shift between the source

domain and the target domain. We here leverage the adver-

sarial learning to align different domains in the domain-level

alignment. Concretely, we employ discriminators D(·) to

output the probabilities of images belonging to the source

domain. The domain-level alignment loss is defined as:

Ldomain = Ex∼T [D(F(x))] + Ex∼S [1−D(F(x))] .
(1)

In domain-level alignment, the feature extractor F(·) is

treated as a generator. The task of discriminator D(·) is

to distinguish the representation generated from images in

the source domain or the target domain, while the generator

(a.k.a. the feature extractor F(·)) tries to fool the discrimi-

nator D(·) by deriving domain-invariant features. They are

playing a zero-sum game and can be modeled by a min-max

optimization. The feature extractor F(·) tries to minimize

Eq. (1), while the domain discriminator D(·) leans to maxi-

mize it. Ideally, after convergence, domain-invariant image

representations can be obtained. To ease the training proce-

dure, we employ multiple discriminators and each discrim-

inator treats one specific domain as the source domain. In

the scenario with two domains, we have two discriminators,

where one takes the source as the source and another takes

the target as the source. Basically, our method can be eas-

ily extended to multiple domains by simply equipping with

multiple domain discriminators.

3.2.2 Category-level Alignment

Category-level alignment is employed to ensure that features

of the same class from different domains are close in the

semi-supervised setting. Specifically, we employ the class-

level loss at the second fully-connected layer of the base

model (denoted as C2(·)), which is defined as follows:

Lcategory =Exm,xn∼S∪Tl
[I(ym = yn) · dmn

+ I(ym 6= yn) ·max(δ − dmn, 0)] ,

dmn =sim(C2(xm), C2(xn)) ,

I(cond) =

{

1 , cond is true ,

0 , otherwise .

(2)

where Tl is the labeled target domain subset available in

training, sim(·, ·) is the cosine similarity function, ym and

yn are labels of xm and xn, and δ is the target margin.

3.3. Self­Attention (SA) module for capturing fine­
grained parts

Tailed for fine-grained recognition, we further propose

a self-attention (SA) module for capturing the discrimina-

tive fine-grained parts. Specifically, we choose the parts of

images, whose activation values are bigger than the average

values of the features, as the most informative parts. After

choosing the most important parts of images, we use them as

the input of our part-level feature extractor Fp(·) to capture

the representation of crucial parts in images. Then, the part-

level features will go through the classifier C(·) outputting a

part-level classification result.

Concretely, after the features F(x) ∈ R
h×w×d are re-

turned, we employ channel-wise average pooling to obtain

A(x) = avg(F(x)) ∈ R
h×w×1. Consequently, we calcu-

late the mean value ā of all the positions of the h×w matrix

in A(x) as the adaptive threshold to decide which positions

localize key parts. If the activation response of a position is

higher than ā, we set the element corresponding to the same

position in the mask map M ∈ R
h×w×1 as 1; otherwise, we

set it as 0. Therefore, we can locate the most informative

fine-grained object parts based on the positive values (i.e.,

1) of the mask. Later, the mask is resized using the bicubic

interpolation, such that its size is the same as the input im-

age. Then, by applying the Hadamard product with resized

masks and images, we can locate the key parts of images
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Figure 4. Examples of our dataset. We have 263 fine-grained classes

in 3 different domains.

xp = resize(M) ⊙ x in such a self-attention way. Based

on these parts xp, the part-level representation learner Fp(·)
will take it as the inputs, and return the part-level features

Fp(xp). Finally, the classifier will give the partial classifi-

cation results by ŷp = C(Fp(xp)). The final prediction is a

weighted average of ŷ and ŷp as

ŷ = γ · C(F(x)) + (1− γ) · C(Fp(xp)) , (3)

where we set γ = 0.5 in our experiments.

3.4. Objective loss function

Classification Loss: The classification results with SA

are a weighted average of y and ŷ as Eq. (3). Thus, we

minimize the classification loss by

Lcls = Ex∼U CE(yx, ŷx) , (4)

where U = S in the unsupervised setting and U = S ∪ Tl in

the semi-supervised setting, yx and ŷx are the ground-truth

and the prediction of x, and CE(·, ·) is the cross-entropy

loss.

Therefore, our final objective loss is as follows:

min
F,Fp,C

max
D

L = Lcls + α · Ldomain + β · Lcategory , (5)

where α and β are trade-off parameters. In the unsupervised

setting, we set β = 0 as the target images are unlabeled.

4. DA-Retail dataset

In the past, there are several benchmark datasets for tra-

ditional fine-grained recognition, to name a few: CUB [29],

Dog [13] and Aircraft [21], etc. The traditional fine-grained

setting does not consider domain shift between source and

target domains. Also, some excellent generic benchmarks for

the domain adaptation task are proposed, i.e., OpenMic [14]

and DomainNet [23]. OpenMic contains photos taken in

10 distinct exhibition spaces of several museums which is

more likely to be a generic dataset as the differences among

the 866 identities are huge. DomainNet is a generic dataset

with 6 different domains as the categories are different, e.g.,

airplane, axe, and clock. Recently, GSV Cars [7] is proposed

for fine-grained domain adaptation. It contains 1,095,021

images of 2,657 categories of cars in two domains, while

only a small subset of GSV Cars is available in experiments

when following the protocol proposed in [6].

In order to further facilitate the research of cross-domain

fine-grained recognition, we collect, label images and con-

struct a dataset under the retail application, termed DA-Retail.

DA-Retail consists of 52,011 images of 263 fine-grained

classes from 3 domains. Abundant images from multiple

sources make our dataset more challenging. The collected

fine-grained products are from the retail scenario, e.g., in-

stant noodles, fruit juice, mineral water, yogurt, and milk.

The data were collected under different domains/conditions:

SKU: All the images taken under standard studio lights

are shot under a stable condition and in an ideal environment

with ideal resolutions and qualities. SKU has 1,870 images

taken in the same environment. Each object is shot from 8

different angles.

Shelf: The second is taken on the supermarket shelves.

The images are hard to be classified with low resolution

and complex backgrounds, while the instances on the super-

market shelves may block with each other. Shelf has 1,631

images from different shelves. Obviously, the resolutions of

these images are low compared with images from SKU.

Web: Web is the biggest domain consisting of 23,024

images crawled from the Internet with different resolutions

and qualities. Each image may contain several instances

if different products are set in a picture. The features of

this domain make it a perfect multi-scale dataset, which is

harder to train and evaluate on comparing with SKU and

Shelf. Nevertheless, due to the rapidly updated package of

per SKU, we found that the instances of most sub-categories

in instant noodles are noisy, while the instances of most sub-

categories in fruit juice, mineral water, yogurt, and milk are

not.

The dataset corresponds to the real-life application in re-

tail, which is equipped with fine-grained and cross-domain

natures. It has different domains, enabling us to accomplish

several tasks. First, it allows us to research on adaptive mod-

els learned on the different domains, which also improves the

generalization of models. Second, we can test multi-scale

recognition accuracy on the Web domain, since it contains

images of different resolutions. Also, DA-Retail has more
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Figure 5. The distribution of DA-Retail images for each class (Fig. 5 (1)) used in our evaluation. The subset used in training is balanced.

Histogram of DA-Retail bounding box sizes is presented in (Fig. 5 (2)). Histogram of bounding box sizes in SKU, Shelf and Web are

presented in Fig. 5 (3), (4) and (5). While instances in Web and Shelf images are typically small (with an average size of 60,383 and 76,212

pixels), those in SKU images are larger, occupying an average of 626,622 pixels.

Table 1. Comparisons of datasets used in experiments. We evaluate datasets on different perspectives. BBox represents that the dataset

has element-wise labels. Multi-label refers that each image may contain instances from different categories. We only report the number of

classes, images, and domains available in training and the evaluation.

Datasets BBox Multi-label Fine-grained ♯ classes ♯ images ♯ domains

Office 31 4,110 3

GSV Cars X X 170 22,344 2

DA-Retail (Ours) X X X 200 24,395 3

domains than the other fine-grained datasets.

Here we present some statistics of out proposed dataset.

As shown in Fig. 5, instances of SKU are large and typically

un-occluded whereas those of Shelf are small, blurry and

occluded. The number of images per class is presented in

Fig. 5 implying that the images in evaluations are balanced.

Also, the difference of image size in Fig. 5 shows a histogram

of bounding box sizes of SKU , Shelf and Web images.

These large variations in pose, viewpoint, occlusion, and

resolution make this dataset ideal for a study of domain

adaptation, especially in the fine-grained setting.

Following the protocols proposed in [6, 25], we choose a

subset consisting of the most 200 common classes in the

dataset, which enables us to conduct evaluations of our

model with enough images.

In unsupervised evaluations, only the labeled images of

200 classes from the source domain are available in training.

The test dataset is composed of the labeled images of 200

classes from the target domain.

In semi-supervised evaluations, we split the target data

into labeled and unlabeled subsets. The fine-grained classes

are sorted in descending order by the number of target images

they have. Then, the images of top 50% classes (100 classes)

from the target domain, and all the images from the source

domain are labeled and used as training data. Evaluation is

conducted on the images of the rest classes from the target

domain with the least number of labels. Briefly, the labeled

images in the semi-supervised training procedure are the top

100 classes containing most of the images from the target

domain, and all the images from the source domain.

5. Experiments

In this section, we evaluate the performance of our pro-

posed method with two specific modules on cross-domain

fine-grained recognition. We conduct experiments on two

fine-grained datasets, i.e., GSV Cars [7] and our DA-Retail

dataset proposed in Sec. 4. Also, we evaluate the perfor-

mance on the generic image dataset Office [25]. The differ-

ences among these datasets are presented in Tab. 1.

As aforementioned, the feature extractor and the classi-
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Table 2. Results on our DA-Retail in unsupervised adaptation: “S”, “R” and “W” refer the SKU, Shelf and Web domain in DA-Retail.

“Adapt” and “Attention” mean domain adaptation and self-attention. All the labeled source domain images are used in training.

Method Adapt Attention
Acc (%)

S→R S→W R→S R→W W→S W→R Average

Baseline (CaffeNet) [10] 40.43 13.45 30.30 13.30 28.91 32.26 26.44

DC (CaffeNet) [27] X 41.98 14.86 33.33 15.31 33.33 36.76 29.26

Multi-Task (CaffeNet) [6] X 46.84 15.38 37.54 15.66 32.64 38.13 31.03

DDC (AlexNet) [28] X 43.26 15.43 36.48 15.08 34.22 42.81 31.21

DeepCoral (AlexNet) [26] X 47.57 16.77 30.43 16.99 29.43 34.93 29.35

Ours (DA) (CaffeNet) X 48.85 16.38 39.27 15.27 34.22 46.56 33.56

Ours (DA+SA) (CaffeNet) X X 53.44 17.37 42.69 17.20 35.07 47.83 35.60

CoGAN [19] X 45.72 13.66 45.40 14.21 36.45 39.64 30.61

CMD (VGG16) [36] X 47.66 16.59 45.18 16.43 35.06 45.65 34.43

MADA (ResNet) [22] X 49.65 19.25 52.91 21.26 41.34 52.93 39.56

iCAN (ResNet) [37] X 52.00 20.18 53.38 17.69 41.60 47.81 38.78

CADA (ResNet) [15] X 51.28 21.41 51.77 18.05 41.55 52.81 39.48

Ours (DA) (ResNet) X 50.33 20.59 50.39 17.43 40.06 51.65 38.41

Ours (DA+SA) (ResNet) X X 56.10 23.69 55.18 23.69 41.60 53.16 42.24

Table 3. Results on our DA-Retail in semi-supervised adaptation: The images from the source domain and the most popular 100 classes

in the target domain are available in training.

Method Adapt Attention
Acc (%)

S→R S→W R→S R→W W→S W→R Average

Baseline [10] 24.14 4.65 20.50 4.92 15.38 26.85 16.07

DC [27] X 28.83 5.13 23.46 4.47 20.69 29.01 18.60

Multi-Task [6] X 37.21 9.84 28.41 8.06 24.05 37.16 24.12

Ours (DA) (CaffeNet) X 40.72 9.55 33.75 8.97 28.75 36.94 26.45

Ours (DA+SA) (CaffeNet) X X 47.39 10.88 35.12 9.74 30.75 40.72 28.86

Table 4. Results on GSV Cars in unsupervised and semi-

supervised settings: “DA” and “SA” represent our proposed mod-

ules, i.e., domain alignment, and self-attention modules. The best

accuracies are presented in bold. The data with “*” refer to the

accuracies in the original papers.

Method Attention
Acc (%)

Unsupervised Semi-supervised

Baseline (CaffeNet) [10] 9.28* 4.72*

DC (CaffeNet) [27] 14.98* 12.34*

Multi-Task (CaffeNet) [6] 19.05* 19.11*

DDC (AlexNet) [28] 15.86 –

DeepCoral (AlexNet) [26] 16.62 –

Ours (DA) (CaffeNet) 20.99 17.36

Ours (DA+SA) (CaffeNet) X 22.61 20.13

CoGAN [19] 19.19 –

CMD (VGG16) [36] 21.81 –

MADA (ResNet) [22] 27.34 –

iCAN (ResNet) [37] 26.61 –

CADA (ResNet) [15] 26.43 –

Ours (DA) (ResNet) 25.55 –

Ours (DA+SA) (ResNet) X 29.71 –

fier used in all of our experiments are parts of and initial-

ized by CaffeNet and ResNet. We compare our work with

Baseline [10], eight domain adaptation methods (DC [27],

MADA [22], iCAN [37], CADA [15], DeepCoral [26],

CMD [36], DDC [28] and CoGAN [19]) and a fine-grained

domain adaptation method (Multi-Task [6]). Among them,

Multi-Task [6] is a state-of-the-art of fine-grained domain

adaptation method. We set α = 1.0 and β = 0 in the

unsupervised setting and α = 1.0 and β = 0.1 in the semi-

supervised setting.

5.1. Performance on fine­grained datasets

DA-Retail: The results of unsupervised and semi-

supervised evaluations are presented in Tab. 2 and Tab. 3.

We can observe similar dramatical improvements in both

settings as our model outperforms other methods. Our

method increases the average accuracy by 4.57% and 2.58%

compared with Multi-task [6] and MADA [22] in the un-

supervised setting with CaffeNet [10] and ResNet [9]. In

the semi-supervised setting, our model outperforms Base-

line [10] and Multi-Task [6] by 12.79% and 4.74%. Some

methods [6, 10, 27] have overfitted in the source domain,

which aggravates the domain shift and decreases the accu-

racy, while other domain adaptation methods [15, 22, 37]

basically can not capture the key parts essential for the fine-

grained task. Our model without SA (Ours(DA)) is only

compatible with some domain adaptation methods, which is

reasonable as they have more complex training strategies for

domain adaptation.

GSV Cars: GSV Cars is proposed by [7], consisting of

two different domains, Cars and GSV. We follow the proto-

cols in Multi-Task [6] to conduct experiments. The results of

unsupervised and semi-supervised experiments on GSV Cars

are presented in Tab. 4. In the unsupervised setting, DA can

increase the accuracy by 1.94%, while SA further boosts the

accuracy by 1.62%. Our proposed method improves the ac-

curacy by 3.56% in total compared with Multi-Task [6]. We

also conduct semi-supervised experiments. As mentioned in

Multi-Task [6], we only use the labeled images of the source

domain and half of the target domain (top 85 classes sorted

by the number of image). The evaluation is conducted on

the rest images of the target domain. Similarly, DA and SA

can make progress on the evaluation of GSV Cars, with an

improvement of 1.02% compared with Multi-Task [6].
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Table 5. Results on the generic image dataset, i.e., Office in un-

supervised and semi-supervised settings: “Attention” refers to

self-attention. “DA” and “SA” represent our proposed modules,

i.e., domain alignment, and self-attention. The best accuracies are

presented in bold. The data with “*” refer to the accuracies in the

papers.

Method Attention
Acc (%)

Unsupervised Semi-supervised

Baseline (CaffeNet) [10] 60.9* 45.5*

DC (CaffeNet) [27] 61.1* 47.0*

Multi-Task (CaffeNet) [6] 62.4* 51.8*

DDC (AlexNet) [28] 59.4* –

DeepCoral (AlexNet) [26] 66.8* –

Ours (DA) (CaffeNet) 63.2 51.7

Ours (DA+SA) (CaffeNet) X 64.5 52.6

CoGAN [19] 74.5 –

CMD (VGG16) [36] 77.0* –

MADA (ResNet) [22] 90.0* –

iCAN (ResNet) [37] 92.5* –

CADA (ResNet) [15] 97.0* –

Ours (DA) (ResNet) 84.3 74.0

Ours (DA+SA) (ResNet) X 85.0 74.2

5.2. Performance on generic datasets

While our adversarial approach is most suitable in the

fine-grained setting, we also conduct the experiments on the

generic dataset to show compatible performance. Office [25]

is a typical generic dataset consisting of 4,110 images from

3 domains, i.e., Amazon, Dslr and Webcam. We investi-

gate unsupervised and semi-supervised settings and follow

protocols proposed with the Office dataset [25]. The results

are presented in Tab. 5. In the unsupervised setting, our

method improves performance by 2.1% comparing with the

fine-grained domain adaptation state of the art [6]. In the

semi-supervised setting, only a subset of source domain are

available. As for the images of the target domain, each class

from the top 15 of 31 classes has 10 labeled images available

in training, while the rest 16 classes are used for evalua-

tion. Our methods still can improve the performance by

0.8% compared with Multi-task [6]. While our methods may

not achieve better performances than some domain adapta-

tion methods, our method still outperforms the fine-grained

domain adaptation state-of-the-art in all the tasks.

5.3. Evaluating self­attention module

In this section, we use the model trained in three different

semi-supervised settings on DA-Retail to visualize the masks

M related to the image x for showing the superiority of our

method.

In the cross-domain fine-grained recognition scenario, it

requires us to not only capture the slight subtle features to dis-

tinguish the instances, but also capture it in both source and

target domains, which makes this problem more challeng-

ing. Self-attention (SA) perfectly cooperates with domain

alignment (DA) and focuses on similar subtle features of the

specific category across domains, while it can not work well

individually to capture discriminative parts across domains,
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Figure 6. Visualization of the self-attention module. Each column

is the images with masks of the same category in different domains.

The images surrounded by red, blue and black lines refer to the

images in SKU, Shelf and Web. Self-attention module can per-

fectly capture the same feature across domains cooperating with

the domain alignment module.

as shown in Fig. 6. The key slight subtle differences of each

categories are activated the most, e.g., the bands, graphs and

texts. Also, empirical experiments in Tab. 2 and Tab. 3 imply

that SA is essential for the fine-grained recognition task.

6. Conclusions

In this paper, we presented a novel model for cross-

domain fine-grained recognition, outperforming existing

methods [6, 27] on three different datasets. Our model mini-

mized the discrepancy between different domains, making it

more robust under different application views. Furthermore,

we proposed a novel dataset for the research on fine-grained

domain adaptation. The proposed dataset has 52,011 im-

ages of 263 classes from 3 different domains. The huge

discrepancy among domains makes it a suitable dataset for

this challenge cross-domain fine-grained recognition task.

In the future, it is promising to exploit multiple dis-

criminative fine-grained parts in cross-domain scenarios to

further boost the recognition performance. Besides, our

DA-Retail dataset, source codes and pre-trained models

are available at https://yimuwang96.github.io/

DA-Retail/index.html.
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