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Abstract

Single image super-resolution (SISR) reconstruc-

tion for magnetic resonance imaging (MRI) has gen-

erated significant interest because of its potential to not

only speed up imaging but to improve quantitative pro-

cessing and analysis of available image data. Genera-

tive Adversarial Networks (GAN) have proven to per-

form well in image recovery tasks. In this work, we

followed the GAN framework and developed a gener-

ator coupled with discriminator to tackle the task of

3D SISR on T1 brain MRI images. We developed a

novel 3D memory-efficient residual-dense block gen-

erator (MRDG) that achieves state-of-the-art perfor-

mance in terms of SSIM (Structural Similarity), PSNR

(Peak Signal to Noise Ratio) and NRMSE (Normalized

Root Mean Squared Error) metrics. We also designed a

pyramid pooling discriminator (PPD) to recover details

on different size scales simultaneously. Finally, we in-

troduced model blending, a simple and computational

efficient method to balance between image and texture

∗equal contribution.

quality in the final output, to the task of SISR on 3D

images.

1. Introduction

High spatial resolution (HR) structural MRI provides

fine-grain anatomical information and makes accurate

quantitative image analysis feasible. However, it requires

long scan time. Long scan time introduces acquisition

challenges [26] like motion artifacts and coil interference.

It also potentially limits clinical accessibility in situations

where only short scans are feasible. For example, patients

in critical condition relying on external life maintenance

machines could not stay for a prolong period in the MRI

machine. Single image super-resolution (SISR) reconstruc-

tion for MRI has generated interest because superresolution

images (SR) resembling the actual HR images may poten-

tially be derived from k-space sub-sampling low resolution

images (LR), which requires only a fraction of of the scan

time of HR.

Deep convolutional neural (CNN) network has achieved
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great success in image superresolution task on 2D natural

images [7, 8, 19, 29, 32–34]. The CNN SISR pipeline usu-

ally consists of a single generator network that takes in the

degraded/down-sampled LR images as input and directly

outputs the SR images. A photo-metric loss is calculated

between the SR images and the ground truth HR images

and drives the network to recover image details.

[16] has shown that deeper generator networks achieve

better superresolution. However, CT and MRI, two typi-

cal medical image modalities, come in 3D volume. Given

memory limit on modern GPU, it is usually infeasible to

feed the full 3D volume in full resolution into the generator

but to feed patch by patch. Hence one major challenge in

medical image SISR is to design a memory efficient gener-

ator that can take into a patch including enough spatial con-

text while maintaining reasonable depth. Another challenge

that few articles has explored, is the design of the discrim-

inator. We have observed that the patch-GAN discrimina-

tor [15] commonly used in image generation/ image style

transfer tasks has limitations on recovering details on dif-

ferent scales. Last but not least, unlike 2D natural images

which is usually consumed only by human readers, medical

images are read by clinical practitioners but also may need

to go through downstream automatic pipeline for quantita-

tive measurement, which may prefer different tuning than

human reader e.g. high PSNR versus realistic looking tex-

ture. Being able to trade-off freely between high PSNR and

texture-realism with a single model is of great practicality.

In this work, we follow the GAN framework for 3D im-

age superresolution. We developed and tested our algorithm

on k-space sub-sampled low resolution T1 MRI images of

the brain, as in [3], and the same network structure is ap-

plicable to other 3D image modalities. Our major contri-

butions are follows: 1) we developed a new 3D genera-

tor based on memory efficient implementation of residual-

dense connections, termed memory-efficient residual-dense

generator (MRDG), that significantly outperforms previ-

ous state-of-the-art in terms of both traditional metrics and

a clinical-related measurement; 2) we developed a fully-

convolutional pyramid pooling discriminator (PPD) that

is capable of capturing details on various scales simulta-

neously and outperforms individual patch-GAN discrimi-

nators; 3) we first introduced a computationally efficient

blending approach to trade off between PSNR and GAN

oriented models for 3D medical images.

2. Related work

2.1. 2D natural image SISR by CNN approach

In CNN approaches for SISR, the network architecture

of generator has been an active area of research. As a pio-

neer work, Dong et al. propose SRCNN [6, 7] and variant

FSRCNN [8] to learn the mapping from LR to HR images

in an end-to-end fashion, proving that a multi-layer convo-

lutional neural network (CNN) is capable of achieving supe-

rior performance against previous works. Various network

architectures for SISR have been proposed. Ledig et al. [19]

introduced a residual network [12] for SISR and Zhang et

al. [38] extends the idea with the residual in residual con-

nection. Kim et al. [16] proposed a very deep network

with residual learning. Lai et al. [18] proposed a Lapla-

cian pyramid structure. [17, 22, 29] separately introduced

recursive structure. [30] adapted the densely connected

network. First and second order channel wise re-scaling

[5, 37], deep back projection [11] and residual dense net-

work [38] have also been explored. Recently, combining

the residual-in-residual connection and dense connection,

Wang et al. [34] proposed a hybrid of residual and dense

connections, termed residual-in-residual dense block, to re-

place the basic residual block in [19]. Anwar et al. [1]

proposed a dense residual Laplacian module and achieved

state-of-the-art performance on multiple 2D natural image

data sets. However, the networks in [34] and [1] are mem-

ory intensive and not suitable for 3D medical image SISR.

We designed and implemented a memory efficient 3D gen-

erator following the inspiration from [34] and [38]. Our

proposed model outperformed 3D variants of [37] and [1].

Parallel to the active development of generators, ef-

forts have also been put into adversarial training. [9] in-

vented generative adversarial network (GAN) and shown

that fine grain texture and structure realism can be gener-

ated/recovered with supervision from a discriminator. [19]

introduced GAN in SISR task and GAN training has be-

come popular in SISR task [33, 34, 34, 37, 38]. Since there

is no convergence guarantee for GAN, stability of GAN has

been an issue. Arjovsky et al. [2] pointed out the popu-

lar KL divergence and cross entropy loss are not suitable

for GAN training and proposed a training procedure to ap-

proximate the Wasserstein distance. The training procedure

was further improved by Gulrajani et al. [10] and variant

has been proposed by [35]. Meanwhile, Isola et al. [15]

proposed patch-GAN, a fully convolutional discriminator.

In this work, our discriminator adopts a fully convolutional

design and we used the WGAN-GP [10] training procedure

to stabilize GAN training.

2.2. 3D medical image SISR

Many solutions using 3D CNN have been proposed for

the medical imaging SISR problem [3, 4, 24, 39]. Sanchez

et al. [27] adapted the standard super-resolution GAN (SR-

GAN) [19] framework for brain image super-resolution.

Zhao et al. [39] developed an 3D super-resolution resid-

ual network (EDSR) [23] for axial slice super-resolution on

T2 brain image. Chen et al. [31] used a reversible GAN

for chest-CT superresolution. Chen et al. [3] proposed a

multi-layer DenseNet [13] based network for fast and ef-
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ficient inference and WGAN-GP training [10] for realistic

texture recovery and achieved state-of-the-art result on T1

MRI brain superresolution. We showed that our proposed

model outperformed [3, 4].

3. Methods

The overall pipeline is illustrated in Fig.2. The gener-

ator is trained with L1 loss to obtain our PSNR oriented

model, and is fine-tuned using a pyramid pooling discrim-

inator to be our GAN oriented model. The former model

is optimized with respect to conventional similarity metrics

but ignores textural fidelity, while the latter GAN model re-

covers the realistic texture details but at the expense of po-

tentially introducing artifact. A model blending parameter

α permits free trade off between the two models in the final

generated image.

We do not add the GAN loss right at the beginning of

training because it produce images with unwanted artifacts

and worse image quality for our use case. We have con-

ducted both types of training using the same discriminator

and same GAN loss weight, and show a comparison in the

Fig.2 in supplemental material and provide an intuitive ex-

planation within the figure caption.

3.1. Memory efficient residual dense generator
(MRDG)

For the generator, inspired by [34] and [38], we devel-

oped a 3D memory-efficient residual-in-residual-dense gen-

erator(MRDG). MRDG consists of 3D convolutions and re-

ceives 3D patches as input and directly output 3D patches.

The overall architecture design are shown in Fig. 3.a),

resembling a 3D SRResNet [19]. Instead of residual

blocks, the MRDG features a memory-efficient residual-

in-residual-dense blocks (MRDB). The proposed MRDG

block is shown in Figs. 3.b. It adopts a residual-in-residual

structure, where residual learning is used in two levels, sim-

ilar to [36]. In the low level residual connection, residual

scaling [23, 28] is applied with scaling factor β between

0 and 1. Similar to [3, 34, 38], we used 3D dense block

within the bottom level residual connection. Dense blocks

[13] effectively increases the network capacity while being

computationally efficient by reusing previous features.

The MRDB is memory-efficient in two aspects. First, we

implemented the dense accumulation within each MRDB

with gradient check-pointing [25] for memory efficiency

(shown by the ”Check” block in Figs. 3.b). Namely, for

computationally cheap operations like concatenation, in-

stead of storing the intermediate results, the intermediates

are discarded during forward propagation and re-calculated

during back-propagation when needed. During our experi-

ment, we found that gradient check-pointing reduces mem-

ory consumption by roughly 30% with negligible increase

in training time. Second, within each MRDB the feature

Models nf k nc

MRDG16 16 12 4

MRDG32 32 12 4

MRDG48 48 12 4

MRDG64 64 12 6

Table 1: Structures of the 4 MRDG models.

is residual summed; therefore, the number of features is

unchanged throughout all blocks. Compared to mDCSRN

proposed in [3,4], which densely accumulates features glob-

ally and grows wider as the network gets deeper, the MRDG

remains narrow through out the whole depth. We could

therefore feed patches to large enough to ensure spatial con-

text while keeping the network deep. To be specific, our

largest and best-performing model MRDG64 could fit into a

GTX 1080 Ti during training only with the aforementioned

memory optimization. Therefore memory-efficiency indeed

translates to better performance in the 3D case.

The MRDG is completely determined by the number of

residual features nf , the dense block growth rate k, and the

number of MRDB blocks nc. We have experimented with

4 model configurations: MRDG 16/32/48/64 and the exact

configuration nf , k, nc of the model are shown in Table.1.

Across all 4 configurations, we did not use batch norm, as

we found that the removal of the batch norm layer, simi-

lar to the practice in [34], leads to improvement of gener-

ated image quality in terms of PSNR, SSIM and NRMSE

by roughly 0.5 %. We used a scaling factor β = 0.2 and

activation as leaky rectified linear unit.

For completeness of discussion, we have also exper-

imented further architectures changes and training tech-

niques, which do not further improve performance. A sum-

marizing table of those attempts can be found in the supple-

mental material.

3.2. Pyramid pooling discriminator

During our experiment, we tested the popular patch

GAN discriminator [15] and we observed that the scale of

recovered details is related to the depth of patch GAN dis-

criminator. A shallower discriminator with less receptive

field, smaller spatial context and higher spatial resolution is

better in recovering local texture (1-3 voxels in size), e.g.

texture pattern in white matter, whereas a deeper discrimi-

nator with larger receptive field, bigger spatial context and

lower spatial resolution is better in recovering large edges

(4-10 voxels in size), e.g. edges between cerebral spinal

fluid (CSF) and gray matter (the dark groove on the image).

Such observation is shown in Fig. 7.

To allow the discriminator to capture features at different

scales, we designed a pyramid pooling discriminator (PPD)

for GAN training. As shown in Fig. 4, the discriminator
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Figure 2: Model training and blending pipeline. α is an user input linear blending weight from 0 to 1. θ refers to the collection of

parameter in the generator.
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Figure 3: Architecture of the proposed MRDB and the full MRDG network. Like SRResNet [15], MRDG consists of a global residual

connection and consecutive basic blocks, except residual blocks are replaced by MRDB. Within each MRDB, three consecutive memory

efficient dense blocks (M-Dense Block) are chained by a scaled residual connection and a block level residual connection. Each concate-

nation within the M-Dense block is gradient-checkpointed and this saves roughly 30% of the graphic memory and allows us to deepen the

network correspondingly, without introducing severe training time penalty. We also reported that the removal of batch norm layer improves

the SSIM/PSNR/NRMSE metrics by roughly 0.5%.

consists of a pyramid feature extraction path (upper path)

which subsequently down-samples the input images by a

factor of 2 with striated convolutions. Instead of outputting

only the feature at the final coarsest scale like [15], inter-

mediate features at different scale are up-sampled by trilin-

ear interpolation to the original input size and concatenated

together (lower path) after passing though additional con-

volutions. The concatenated feature passes through a final

convolution and results in a cost volume. We found that

the PPD is able to simultaneously capture details on dif-

ferent scales. On 2D natural images, an alternative could

be training multiple independent patch-GAN discriminators

with various depths, as in [14,20], which however, is inten-

sive in graphic memory consumption and not suitable for

3D images.

For completeness of discussion, we have also tried a dis-

criminator ending with two dense layers, similar to one in

[3, 19]. We found that the large number of parameters in

two dense layers results in numerical instability and slow

convergence. We therefore stick to fully-convolutional dis-

criminators.

WGAN-GP training [10] was used in our implementa-

tion for added stability. Specifically, the discriminator ends

with plain convolution rather than sigmoid layer; it has

instance norm rather than batch norm; a gradient penalty

is added to the discriminator for randomly interpolated

{Ihr, Isr} (high resolution ground truth, super-resolution)

inputs, and the discriminator is scheduled to always run

ahead of the generator.

The loss functions LG and LD for the generator and dis-

criminator, respectively, are defined as follows:

LG = L1(Isr, Ihr) + λDD(Isr), (1)

where L1 is the element-wise L1 loss, D is the discrimi-

nator and λD being the weighting factor between the two
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Figure 4: Architecture of the proposed pyramid pooling discriminator. It consists of a pyramid path with subsequent down sampling like

[15]. To allow the discriminator capture difference between SR and HR images at different scales, we adopted a pyramid pooling structure

similar to [40]. Intermediate features on different resolutions are upsampled to the size of input by trilinear interpolation, concatenated

and then passed through a final 1x1x1 convolution.

terms;

LD = D(Ihr)−D(Isr)+λg||Ḋ(γIsr+(1−γ)Ihr)||2, (2)

where Ḋ is the derivative of the discriminator, λg is the

weighting factor added on the gradient penalty, and γ is a

random number drawn from a uniform distribution, γ ∼
(0, 1).

3.3. Linear blending of PSNR oriented model and
GAN model

One may train multiple models separately to fulfill needs

for high PSNR versus realistic texture. The alternative we

develop here, following the work in [33, 34], is to blend

model through linear interpolation of model parameters for

our PSNR and GAN models, as shown in Fig.2. Let θG rep-

resent parameters of the generator incorporating both PSNR

and GAN models, and α, a user defined linear blending

weight. We define the blended model as:

θαG = αθPSNR
G + (1− α)θGAN

G . (3)

Compared to blending model output images, mixing

model parameters yields smoother results [34], and, equally

important, is also more computational efficient. Blending

model parameters requires minor computations compared

to actually running the model, and only runs the genera-

tor once regardless of the number of model blended, while

blending model outputs among different models requires

the generator to be run multiple times.

4. Experiment and results

4.1. Data, preprocessing and metrics

Ground truth images were obtained from the Human

Connectome Project (HCP). Specifically, it includes 1,113

3D T1 MR images from 1,200 healthy young subjects on

Siemens 3T platform. HCP images were downsampled to

1 mm3 resolution using spline interpolation for our SISR

experiments. Low resolution versions of these images were

created by further downsampling the resolution in coronal

and sagittal planes by one half in k-space following exactly

the procedure in [3]. In details, the HR image was trans-

formed into k-space by FFT, downgraded in resolution by

truncating the outer portion of 3D k-space with a factor of

2x2, and converted back to image space by inverse FFT,

then linearly interpolated to the original image size. This

mimics the actual imaging and reconstruction process in

Siemens MRI machine.

The same number of splits was used as in [3, 4]; specif-

ically, 780 for training, 111 for validation, 111 for evalua-

tion, and 111 for testing. Results are reported on the test

set, which was not used in model training or parameter op-

timization. We used a patch size of 64×40×64 as input due

to GPU memory constraints, and cropped 3 voxels around

the boundary of the output to avoid discontinuity around

edges, resulting in 58×32×58 output patches. The com-

plete output image is assembled by stitching together non-

overlapping output patches to avoid blurring caused by av-

eraging patches. We implemented our model in PyTorch 1.0

and trained the model on a workstation with 4 GTX 1080 Ti

GPUs.

4.2. Ablation study on model architecture

Quantitatively, we calculate SSIM, PSNR, NRMSE met-

rics between superresolution output and ground truth HR

images and reported the number in Table.2. We also re-

ported the number of parameters and run time for superres-

olution on single images with a single GTX 1080Ti. Among

all 4 configurations, the MRDB48 has performance closed

to the largest 64 configuration and has marginally longer
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Models SSIM ↑ PSNR ↑ NRMSE ↓ #param Time (s)

3D FSRCNN [8] 0.9282 ± 0.0068 33.83 ± 1.0376 0.1138 ± 0.0046 64,893 7.4

3D SRResNet [19] 0.9399 ± 0.0068 34.06 ± 0.9775 0.1104 ± 0.0055 2,004,620 80.3

3D RCAN [37] 0.9542 ± 0.0063 36.35 ± 1.0068 0.08509 ± 0.0042 15,200,513 129.4

3D DRLN [1] 0.9563 ± 0.0067 36.76 ± 0.9870 0.08112 ± 0.0047 30,315,401 139.8

mDCSRN(b8u4) [3, 4] 0.9485 ± 0.0059 35.38 ± 1.0634 0.0954 ± 0.0042 625,969 23.0

MRDG16 (ours) 0.9573 ± 0.0057 36.73 ± 1.0434 0.08151 ± 0.0041 876,049 13.5

MRDG32 (ours) 0.9601 ± 0.0052 37.20 ± 1.0513 0.07727 ± 0.0041 1,665,121 18.9

MRDG48 (ours) 0.9610 ± 0.0051 37.33 ± 1.0459 0.07622 ± 0.0041 2,647,729 26.6

MRDG64 (ours) 0.9623 ± 0.0050 37.38 ± 1.0645 0.07554 ± 0.0042 6,945,601 53.4

Table 2: SSIM/PSNR/NRMSE (mean and standard deviation), number of parameters and test time on single image for state-of-the-art

networks and the 4 MRDG configurations on the test set are reported.

Figure 5: Left to right: SR output from FSRCNN, SRResNet, mDCSRN, RCAN, DRLN, MRDB48 and ground truth HR.

run time than the 32 configurations. We used MRDG48 in

the following comparison with state-of-the-art models and

the GAN experiment.

4.3. Comparison of MRDG to state­of­art models
on brain MRI super resolution

Our proposed MRDG were evaluated against state-of-

the-art FSRCNN, SRResNet, mDCSRN, RCAN and DRLN

models for SISR reconstruction. The FSRCNN and SRRes-

Net are adapted to 3D directly. For the RCAN and DRLN,

we adopted from the official implementations from their au-

thors available on github ∗ and adapted from 2D to 3D by

changing the convolution/norm layers to 3D version. We

kept the number of feature, the kernel size, the reduction ra-

∗https://github.com/yulunzhang/RCAN, https://github.com/saeed-

anwar/DRLN

tio in the squeeze and excitation layer on both RCAN and

DRLN completely unchanged. Due to memory limit, we

reduces the number of residual block to 8 and number of

residual group to 8 (default 10/20 in the 2D cases) in the

RCAN, the number of DRLM module to 2 in the DRLN

to 2 (default 6 in the 2D cases). The resulting 3D RCAN

and 3D DRLN are both largest variants we could fit on a

single GTX 1080 Ti GPU. For the mDCSRN, we used the

largest and best-performing ever reported b8u4 configura-

tion, 8 dense blocks with 4 dense layers within each block.

Qualitatively, examples are illustrated in Fig. 5. More ex-

amples are available in the supplemental material. Visually

the output from MRDG is sharpest and closest to HR im-

ages. Quantitatively, we calculate SSIM, PSNR, NRMSE

between SR and HR images and reported them in Table 2.

MRDG achieves the best performance. We performed two-
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LR FSRCNN SRResNet mDCSRN RCAN DRLN MRDG48 HR

Figure 6: Brain segmentation from HighRes3DNet [21] on LR, SR from different models and ground truth HR image. The brain

segmentation on SR image is much closer to the one on HR images than on the LR images.

No GAN Patch GAN-6 Patch GAN-8 PPD Reference

Figure 7: Left to right: MRDG without GAN training, with a 6-layer/ 8-layer patch GAN discriminators, with the proposed pyramid

pooling discriminator and the HR images. The second row zooms in on the white matter (the white matter texture is pointed by yellow

arrow). The third row zooms in on the CSF-gray matter boundary (the dark grove pointed by the red arrow).

tailed pair-wise t-test and for all metrics, p < 1.1e−53. We

also reported the total number of parameters and run time

on single image. The MRDG is slower than mDCSRN or

FSRCNN but quicker than the SRResNet, 3D RCAN and

3D DRLN.

4.4. Benefit to subsequent brain segmentation

Similarity metrics like SSIM/PSNR/NRMSE are not do-

main specific for brain MRI image superresolution. For a

more clinical-related evaluation, we conducted segmenta-

tion of different anatomical regions of the brain with a pre-

trained brain segmentation network HighRes3DNet [21],

on the LR, the HR image and SR outputs from all networks.
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α=0.0 α=0.25 α=0.5 α=0.75 α=1.0 Reference

Figure 8: Sample image appearance as a function of blending between GAN oriented model (α = 1) and PSNR oriented model (α = 0),

compared with ground truth.

Models IoU

3D FSRCNN [8] 0.8677 ± 0.0068

3D SRResNet [19] 0.9048 ± 0.0067

3D RCAN [37] 0.9269 ± 0.0063

3D DRLN [1] 0.9318 ± 0.0066

mDCSRN(b8u4) [3, 4] 0.9153 ± 0.0063

MRDG16 (ours) 0.9268 ± 0.0065

MRDG32 (ours) 0.9335 ± 0.0061

MRDG48 (ours) 0.9351 ± 0.0062

MRDG64 (ours) 0.9380 ± 0.0063

Table 3: Intersection over Union (IoU) (mean and std) of seg-

mentations on HR images and segmentations on SR images by

HighRes3DNet [21].

Qualitatively, we show the brain segmentation result from

LR, HR and SR on Fig. 6. It is clear that the brain seg-

mentation on the superresolution output is much closer to

the segmentation on ground truth than the segmentation on

low-resolution image.

Quantitatively, we calculated the intersection over union

(IoU) between the segmentation on the HR and the SR from

all networks and showed the IoU in Table. 3. Our MRDG

models perform all other models.

4.5. Comparison of PPD with patch­GAN style dis­
criminators

We have qualitatively compared the performance the

pyramid pooling discriminator against the patch GAN style

discriminators at two different depths. Patch GAN-6 is a

patch GAN discriminator with 6 convolutions, 3 of them

being striated convolutions for down-sampling, before the

final convolution block, and vice versa for Patch GAN-8.

Detailed illustration of patch-GAN 6/8 structures are avail-

able in supplemental material. Fig. 7 shows the superreso-

lution output from MRDG without GAN training, with the

patch GAN-6/8 discriminator and with the proposed pyra-

mid pooling discriminator. The second row zooms in on the

white matter. The third row zooms in on the CSF-gray mat-

ter boundary. The shallower patch GAN-6 leads to aggres-

sive recovery of white matter texture (1-3 voxel in size) but

also introduces artifacts. The deeper patch GAN-8 sharpens

the CSF-gray matter boundary (4-10 voxels in size). The

PPD is able to capture both of the white matter texture and

CSF/gray-matter boundary simultaneously and introduces

much less artifacts than patch GAN-6. More examples are

available in the supplemental material.

4.6. Effect of model blending

Fig. 8 illustrates the effect of model blending on the gen-

erated output image. The output varies smoothly with the

interpolation factor α, allowing controllable trade off be-

tween PSNR model and GAN model. More examples are

available in supplemental material.

5. Discussion

In this work, we significantly improved upon the current

state-of-the-art of 3D brain MRI super-resolution. First,

the 3D memory efficient residual dense generator exhibits

superior performance against the state-of-the-art counter-

parts. Second, the proposed fully convolutional pyramid

pooling discriminator recovers brain image details on dif-

ferent size scales simultaneously while a single patch-GAN

discriminator fails. Third, we proposed model blending

for computationally efficient and smooth trade off between
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PSNR/GAN based model.

There are many directions for future work. Model archi-

tectures search remains a major focus of our current work.

Another open challenge is artifacts in patch GAN recon-

structions, and new solution possibilities include improved

generator architectures and the incorporation of domain in-

formation such as brain image segmentations [32].
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