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Abstract

We present FlowNet3D++, a deep scene flow estimation
network. Inspired by classical methods, FlowNet3D++ in-
corporates geometric constraints in the form of point-to-
plane distance and angular alignment between individual
vectors in the flow field, into FlowNet3D [2]]. We demon-
strate that the addition of these geometric loss terms im-
proves the previous state-of-art FlowNet3D accuracy from
57.85% to 63.43%. To further demonstrate the effective-
ness of our geometric constraints, we propose a benchmark
for flow estimation on the task of dynamic 3D reconstruc-
tion, thus providing a more holistic and practical measure
of performance than the breakdown of individual metrics
previously used to evaluate scene flow. This is made possi-
ble through the contribution of a novel pipeline to integrate
point-based scene flow predictions into a global dense vol-
ume. FlowNet3D++ achieves up to a 15.0% reduction in
reconstruction error over FlowNet3D, and up to a 35.2%
improvement over KillingFusion [32 ] alone. We will release
our scene flow estimation code later.

1. Introduction

Scene flow is defined as a 3D vector field that provides
a low level representation of 3D motion. It is analogous to
optical flow, which describes the pixel movements on a 2D
image plane. Optical flow can be considered the projection
of scene flow into 2D. Applications such as object detection,
object tracking, point cloud registration, correspondence es-
timation and motion capture can benefit from this low-level
information for better performance.

Although the vector field representation is simple, scene
flow estimation is far from an easy task. This is due to the
requirement of accurate depth estimation and also the need
to deal with occlusion. Traditionally, scene flow estima-
tion is computed by optimising photometric error [21], or
through matching hand-crafted features [3], each applied
over multiple view geometry or RGB-D images. With the
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fast development of deep learning, some works bring CNN
to scene flow estimation. This allows for the scene flow es-
timation to benefit from the semantic information and pow-
erful deep feature extraction. Recently, PointNet [5] and
PointNet++ [29] enabled the direct point cloud processing
for deep learning. These works are particularly interesting
since they are point cloud-based networks that can directly
process the rich 3D geometric information, rather than im-
plicitly learning 3D geometry from 2D images. Built on
top of PointNet++, FlowNet3D [21] tackles the scene flow
estimation problem on point cloud directly, achieving the
state-of-art scene flow estimation results. Despite the im-
pressive results of FlowNet3D, point cloud based scene flow
estimation is still at the very beginning of its development.
FlowNet3D trains the network with a naive supervision sig-
nal, which is the L, loss between predicted flow and ground
truth vectors.

In this work, we apply geometric principles from clas-
sical point cloud registration algorithms in order to mature
deep scene flow estimation beyond the simple L2 norm be-
tween prediction and ground truth. In particular, we in-
vestigate two geometric constraints including: 1) point-to-
plane distance and 2) the cosine distance between predicted
flow vector and ground truth vector. The point-to-plane dis-
tance is a common loss term in Iterative Closest Point (ICP)
[2, 26] algorithm, which is known for fast convergence. Co-
sine distance can penalise the angle between two vectors di-
rectly. As aresult of this, cosine distance encourages correct
alignment of our predicted scene flow vectors, not only that
they lie on the Ly norm surface. The application of these
geometrically principled constraints not only demonstrates
improved accuracy over the state-of-art, but also improved
convergence speed and stability of training.

Further, we introduce a novel benchmark for investi-
gating the practical performance of scene flow estimators,
through the proxy task of dynamic 3D reconstruction. Ap-
plication of scene flow to dynamic reconstruction provides
a holistic combination of the individual metrics previously
used to evaluate 3D flow estimation. We contribute a novel
pipeline for integrating point-based scene flow into a global
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dense volume.
To summarise, our main contributions are:

1. We improved the state-of-art point cloud-based scene
flow estimation accuracy from 57.85% to 63.43% by
combining point-to-plane loss, cosine distance loss
with Lo loss.

2. We propose an average angle error metric to evaluate
the flow direction deviation to supplement End Point
Error (EPE), which is not sufficient alone to evaluate
the angle difference between two vectors.

3. We propose dynamic 3D reconstruction, alongside
a novel dynamic integration pipeline, as a bench-
marking task for scene flow estimation. 3D re-
construction provides a holistic and inherently ge-
ometric measure of flow estimation performance.
Within our deformable scene flow benchmark task, our
FlowNet3D++ achieves up to 15.0% less reconstruc-
tion error than FlowNet3D, and up to a 35.2% im-
provement over KillingFusion.

The remainder of the paper is organised as follows: in
Section 2, we briefly describe related work. Section 3 de-
scribes our modifications to FlowNet3D, as well as our
method to integrate the sparse scene flow vector field in
dense dynamic reconstruction. In the experiment section,
we evaluate the effect of adding different geometric con-
straints to scene flow estimation and our dynamic recon-
struction results with several public datasets. Section 6 con-
cludes our work and describes potential future work.

2. Related Work
2.1. Tradition Scene Flow Estimation

Scene flow is a low-level representation of 3D motion of
points within a scene. It is a 3D extension from the 2D opti-
cal flow [3], which itself describes the pixel movements on
a 2D image plane. Many works have focused on estimating
scene flow using multi-view geometry [35] by associating
salient image key points. Later works [27, 11, 37, 36]
tackle this problem with joint variational optimisation of
image registration and motion estimation. [37] compute
dense scene flow from stereo cameras and achieved 5fps
on a CPU. SphereFlow [10, 15] is the first real-time scene
flow estimation system using RGB-D input. [16] proposed
to process rigid and non-rigid segments differently.

2.2. Deep Flow Estimation

The recent development in deep neural networks pro-
vides an alternative to address the problem of associating
points over deformed depth maps. One group of deep meth-
ods can be viewed as the successors of the classic 2D opti-
cal flow methods. For example, FlowNet [7] and its vari-
ants [12]. Instead of using hand-crafted feature for tracking

pixel locations, these methods rely on learned deep features
for tracking and then back-project into depth maps to fetch
the 3D scene flow. For better training and evaluation, Mayer
et al [24] created three synthetic scene flow datasets. They
also proposed a network for disparity and scene flow esti-
mation. [30] assume a dynamic scene contains foreground
objects and background and apply instance segmentation
masks over foreground to treat foreground and background
differently.

Similarly, [31] developed a neural network that jointly
estimates object segmentation, trajectories of objects, and
the object scene flow from two consecutive RGB-D frames.
Ilg et al. [13] proposed a network based on FlowNet [7] to
estimate occlusions and disparity together. [23] integrates
three vision cues to estimate scene flow for rigid objects
in self-driving tasks. The three vision cues are segmenta-
tion masks, disparity map, and optical flow and they are ex-
tracted by existing networks, i.e. Mask R-CNN [9], PSM-
Net [4], and PWC-Net [34].

All the above approaches are mostly image-based so
that appearance features can be conveniently extracted us-
ing 2D convolution. However, some sensory data such
as laser scanners is unstructured and therefore conven-
tional convolution is not applicable. To address the prob-
lem, Behl et al [I] evaluated the performance of scene
flow estimation when integrating bounding box and inte-
grating pixel-wise segmentation to scene flow estimation
pipeline. [, 22, 8] are designed for scene flow estimation
on the point cloud. PointFlowNet [1] proposed to estimate
scene flow, ego-motion and rigid object motion at the same
time. In comparison to the PointFlowNet, FlowNet3D [22]
and HPLFlowNet [8] are more general scene flow estima-
tion frameworks that do not rely on rigid object assump-
tion. More specifically, FlowNet3D extracts features with
PointNet++ [29], mixes features and computes a coarse
scene flow using a flow embedding layer, and propagates
coarse scene flow to finer level using a set-upconv layer.
HPLFlowNet, instead of using PointNet++, states that us-
ing permutohedral lattice[20] and Bilateral Convolutional
Layer (BCL) [17] can improve global information extrac-
tion and faster performance.

3. Method

FlowNet3D is a neural network for estimating 3D scene
flow V;, given two point clouds, namely the source point
cloud X, and the target point cloud A}, where X, and X}
are two sets of unordered 3D points. For generality, the
numbers of both point clouds do not have to be identical,
ie. |Xs| # |X:|, but the predicted vector field always has
the same dimension as the source point cloud. FlowNet3D
adopts the Siamese architecture that first extracts down-
sampled point features for each point cloud using the Point-
Net++, and then mixes the features in the flow embedding
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Figure 1. We adapt FlowNet3D structure and highlight the loss terms we added with blue boxes.

layer. In the end, the output features of the flow embed-
ding are imposed with the regularisation and up-sampled
into the same dimensionality as the X;. The network is
trained using the loss function of the Lo norm between pre-
dicted ||Vis — Vgt |2 where V,, is the groundtruth scene flow
field.

FlowNet3D has been successfully applied in rigid
scenes. In this paper, we further explore the potential of
it when applied to non-static scenes, even the scenes dom-
inated by deformable objects. More importantly, we in-
troduce two loss terms that improves the accuracy of the
prediction in both dynamic scenes while maintains the per-
formance in rigid scene (measured using KITTI dataset).
The new loss term also speeds up and stabilises the training
procedure. Fig 1 illustrates the general idea of FlowNet3D
and loss terms we applied. More details on the original
FlowNet3D structure can be found in its paper.

3.1. Geometric Constraints

Point-to-Plane Loss is inspired by the popular point-to-
plane distance metric for point cloud registration, such as
the Iterative Closest Point (ICP) algorithm. Specifically, we
can use the set X7* and X} to represent two 3D point clouds
at the nt" frame, where the labels [ and w represent the live
camera and the world coordinate system, respectively. Each
point xc & is a 3D homogeneous coordinate. The point
x7 can be transformed from the world coordinate into the
camera coordinate using x}* = T7;x7, where T}, € SE(3)
is a 3D rigid transformation.

Given A}* and X, T7,, can be estimated by minimis-
ing the following error function from a typical ICP algo-
rithm [26]:

T2, = srgmin > [0 (T —x)I% ()

cw rw

Cw X7, EX]

where n(x[) is the function to calculate the surface normal

at x7'. x[ is the closet point to T7,x7.. The dot product be-
tween the surface normal and the closet distance measures
the distance from T x7; to the plane defined by x7; and its
normal, hence it is known as the point-to-plane metric.
Inspired by the point-to-plane metric, we introduce a
new loss for training the FlowNet3D, which is defined as

follows:

Lpp = Z In(x) " (xs — x|, ()

Xs€Xs

where x; is the closest point in the target set X; to the source
point x, € X;. The scene flow may encode any rigid trans-
formation or simply the non-static motion field, which is
ultimately determined by the the samples provided during
training. During training on FlyingThings, both X; and X}
are in the same coordinate system and therefore, the trained
model naturally learns to represent segments of rigid mo-
tion fields. Interestingly, we found that the same model can
generalise to the point clouds extracted from consecutive
frames of a deforming object so well that it outperforms the
state-of-the-art dynamic fusion algorithm.

Cosine Distance Loss aims at constraining the angle be-
tween predicted flow field and the ground truth. From the
scene flow predictions of FlowNet3D, we noticed that some
of the predicted motion vectors differ greatly in direction
from the groundtruth. As a result, we introduce the co-
sine distance loss which aims to minimise the angle be-
tween prediction and ground truth. We compute the co-
sine distance directly between a predicted vector and its
groundtruth. This provides extra penalisation to vectors
with directions with deviate from the groundtruth, even if
they have the same £, loss. Fig 2 illustrates the effect of
applying L5 loss and cosine distance together.

Combined Loss includes all three different loss terms
using a weighted summation:

,C = EQ + )\pﬁpp + >\COS£COS (3)
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Figure 2. The red circle denotes the energy contour that Lo loss
penalises equally. The blue circle denotes the energy contour af-
ter combining Lo and Lcos. Lcos explicitly punishes vectors with
large angle deviations. In this figure, v; is penalised more than vg
after adding Los.

where )\, and A, are the weight to balance among the
1
loss terms, the Lo = ™ Zvevés lv — vgill2 and Leos =
1 V:Vgi A 3

Al Zx{evt’s ol The Vi, is the predicted vector ﬁleld
and v is an individual ground truth vector corresponding
to v. It is worth noting that the cosine loss and Lo loss
weigh over the angles and lengths of the predicted vector
field, respectively.

3.2. Scene Flow for Dynamic 3D Reconstruction

The performance of flow field estimation on a dynamic
scene is normally evaluated through the counting of inliers,
which are determined through a set threshold. However, this
evaluation scheme depends heavily on the threshold, which
must be set heuristically. We propose to benchmark scene
flow framework based on a state-of-the-art dynamic 3D re-
construction system, so that the scene flow can be evaluated
by viewing a 3D model. This provides a more holistic per-
formance measure, as well as a practical application for 3D
flow estimation.

Dynamic 3D reconstruction is recently introduced for re-
covering non-static objects, including deformable objects
such as moving animals or human beings [25, 14, 32,33, 18,

]. KillingFusion [32] and its variant SobolevFusion [33]
represent the state-of-the-art dynamic fusion method di-
rectly estimating a dense vector field between two TSDF
volumes. However, this variational optimisation process is
easily trapped in local minimum when the search space is
large. Our benchmark framework, which can also be con-
sidered as a dynamic reconstruction system, significantly
outperforms KillingFusion in terms of quality by a 35.2%
reduction in mean error.

Particularly, our benchmark framework takes in a se-
quence of point clouds with corresponding scene flow pre-
dictions to recover a 3D model. The reconstruction er-
ror can be visualised comparing with the ground truth
model. In experiments, the FlowNet3D++ reduces up to
15.0% error in the dynamic reconstruction task compare to

FlowNet3D.
Overview of the whole pipeline is illustrated in Fig.1 and
we show the essential steps below:

1. Compute the rigid SE(3) transformation between the
live point cloud and the canonical model using point-
to-plane ICP algorithm [2] as shown in Eq. (1). It com-
pensates the overall movement of the target object by
absorbing it into the current camera pose.

2. Predict the scene flow between the live and the canon-
ical point cloud. In this paper we experimented the
FlowNet3D[21] and our FlowNet3D++.

3. Warp the live point cloud using the scene flow com-
puted in the last step and create the synthetic depth
map by projecting the warped live point cloud into the
compensated camera pose.

4. Construct a live TSDF volume ¢,, from the synthetic
depth map using the widely used depth to volume inte-
gration method, which is first introduced in KinectFu-
sion [26].

5. Refine the vector field Wy between the live volume
and canonical volume using a simple variational voxel
based scene flow refinement.

6. Update the ¢gi0pq1 by taking the voxel-wise weighted
average between ¢, and ¢gope; for the TSDF values
live and accumulate the weight [6].

Step 2 introduces the deep scene flow to warp the live point
cloud so that a virtual TSDF volume that is much eas-
ier for the KillingFusion to optimise and therefore reduces
the computation complexity and quality of the recovered
model. Step 3, 4 and 5 formulate our novel scene flow inte-
grator that integrates a scene flow in point cloud resolution
to the full TSDF volume resolution with very little artefacts.

Scene Flow Integrator merges multiple point cloud into
a single 3D volumetric representation from which the 3D
model can be extracted. Specifically, assuming X;* repre-
sents point cloud of live frame in camera coordinate and
A represents the ray-casted point cloud from the canoni-
cal model, the scene flow predictor computes a scene flow
field W that associate X" with X', The warping from X7}
to X' can be formulated as follows:

XV = {x[x :=v(x]") + x['}, 4)

where x;' € AT'. Note that ¥'g and A7" share the same
resolution and Xg"’ and X; are different. Therefore, our
target is to integrate X’ ;“ into the canonical volume ¢gi0pa1
smoothly.

Naively integrating X;“ into the global TSDF volume
seems a reasonable solution, however, in our experiments
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we discover this causes significant artefacts. This is because
scene flow computed on point clouds is only capable of in-
ferring the motion on the object surface or the zero level
set. To deform a volumetric TSDF, the vector field has to
cover the entire 3D region within the truncated area while
maintaining the property of TSDF to be a precise level set
function so that the artefacts are minimised.

Therefore, we tackle the problem by: 1) creating a syn-
thetic depth map D" = {d(u, v)|(u,v) € Q}, where Qis a
set of pixel locations on the depth map, by projecting Xg"’
onto the depth map D". 2) creating a synthetic live volume
¢y, from D™. This is equivalent to integrating a depth map
to an empty TSDF volume.

By converting the deformed point cloud X g” into a TSDF
volume ¢,,, we have acquired a coarse alignment between
the ¢, and ¢giopq;. The next step is to refine this coarse
alignment with a simple variational vector field refinement.

Voxel Based Vector Field Refinement: The concept of
running variational optimisation directly on TSDF volume
was first introduced in the KillingFusion [32] and simpli-
fied in SobolevFusion [33]. It solves the vector field by
evolving the source TSDF into target TSDF iteratively. This
approach enjoys the advantage of being capable of dealing
with topological changes but a drawback of this variational
SDF evolution lies in that it can easily get trapped in some
local minima. This is because it lacks explicit correspon-
dences associating level set functions. By providing a good
initial solution from our deep scene flow estimator, only
a few iterations of voxel based vector field refinement is
needed. Specifically, for a voxel at position x € V and a
3D vector v = v(x) associates with this voxel, our energy
is simply defined as:

B0y) = 3 3 (6nlx+v) — b)) )

xeV

where ¢(x) represent TSDF value at voxel centre x and the
energy can be optimised using gradient descent easily:

v — () _ o B! (v(R)) (6)

where v(*) ¢ \Ilgt ) represents the vector field WY, at its Eth
iteration and E’(v) is the gradient with respect to the v and
can be computed efficiently using the following calculus of
variations:

E/(V) = (¢n (X + V) - ¢global(x))v¢n(x + V), @)

where the V¢, (x + v) is the spatial gradient at the voxel
position (x + v) in the live volume ¢,,.

It is worth noting that the vector field computed from
above optimisation is only meaningful in local regions and
the purpose is two-fold: (i) to register a roughly aligned
live volume to canonical model; (ii) to remove artefacts in-
troduced in the coarse non-rigid point cloud registration.

Thanks to the quality of the deep scene flow estimator, we
no longer require a regularisation term, such as those in
KillingFusion and SobolevFusion.

The above energy will produce a scene flow vector for
each SDF voxel. In general, the magnitude of this vector
field should be small because the main evolution has already
been compensated when warping the live point cloud to the
canonical point cloud. As a result, with a small number of
iterations, typically ranging from 3 to 70, we can mediate
the artefacts and noise introduced in from scene flow pre-
dictor.

We are aware that having variational refinement may af-
fect the deep scene flow benchmarking result. However, this
variational refinement is necessary for complex tasks like
dynamic reconstruction. If not present, the tracking can fail
after a few frames due to the large accumulated error. To
eliminate the effect of this variational refinement in bench-
marking, we explicitly set a fixed iteration number for all
experiments. For the Snoopy and Duck dataset, we use 30
iterations for all deep scene flow benchmarking.

4. Experiments

In this section, we evaluate our modifications to
FlowNet3D and validate their effectiveness quantitatively in
two subsections. In the first subsection, we benchmark our
FlowNet3D++ result using the existing scene flow datasets
FlyingThings and KITTI, which are pre-processed and pro-
vided by FlowNet3D. For pre-processing details, we refer
reader to the FlowNet3D supplementary material. We also
provide a graph to analyse the time taken for our training to
converge. In the second subsection, we quantitatively evalu-
ate the performance of FlowNet3D++ in our novel dynamic
reconstruction benchmark. This is performed on two recon-
struction datasets (Snoopy and Duck), both of which are
provided by KillingFusion[32]. Further qualitative results
can be found in our supplementary material.

To enable the point-to-plane loss term in Eq. 2, we also
pre-compute per-point surface normal for the FlyingThings
dataset but we do not use surface normals as input features.

Our model is trained from scratch using the training split
of FlyingThings dataset and testing is performed on the test
split. We directly transfer our model that was trained on
FlyingThings to KITTI without any fine-tuning. For the dy-
namic reconstruction benchmark, we also directly deploy
the model that was trained on FlyingThings dataset to the
pipeline, again without fine-tuning. For hyper-parameters,
in most experiments we use exactly same hyper-parameters
the FlowNet3D used to show the effectiveness of our loss
terms. For the best result we show in Table 4.2, we trained
200 epochs.
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Input ACC ACC ADE
channels | Model | 505 (0.10) EPE | (fegree)
vz F3D 23.71% | 56.05% | 0.1705 | 22.83
y F3D++ | 28.50% | 60.39% | 0.1553 | 20.78
rob F3D 2537% | 57.85% | 0.1694 | 22.58
& F3D++ | 30.33% | 63.43% | 0.1369 | 21.14

Table 1. F3D is a shorthand for FlowNet3D. We evaluate our
FlowNet3D++ in two input settings. Input setting xyz means we
only use point position as input features. Input setting rgb means
both point position and the colour features are fed into the network.
For EPE and ADE, the lower the better.

4.1. Metrics

We report our results using 3D End-Point-Error (EPE)
and an accuracy metric (ACC) with two thresholds. These
three metrics are also used in FlowNet3D to provide fair
comparison. We also propose the average angle deviation
error (ADE) for this task for the evaluation of the predicted
scene flow vectors’ direction. EPE: the EPE is the Ly norm
between an estimated flow vector and its ground truth vec-
tor. ADE: we define the ADE as arccos(+ 3. cos(vy, vgt)),
where v, and vg; are predicted vector and its ground truth
vector.

4.2. FlyingThings Dataset

In FlowNet3D++, we apply both the cosine distance loss
and point-to-plane loss alongside the original Ly loss. The
results listed in Table 4.2 show that our modifications im-
prove all metrics that we test. In fact, the geometric-only
XYZ-FlowNet3D++ even outperforms RGB-FlowNet3D,
which is allowed to incorporate colour information. We
use A\pp, = 1.3 and Acos = 0.9 for this test, but we found
App,cos € [0.5,1.5] generates good results in the general
case. As the FlowNet3D did not evaluate ADE, we com-
pute FlowNet3D’s ADE with the pre-trained model pro-
vided by [21].

4.3. KITTI Dataset

As KITTTI scene flow dataset only provides a colourless,
LiDAR-scanned point cloud, we only show the results for
geometry-only models.

Model Outlier | EPE ADE
F3D (with our eval script) | 7.53% | 0.3259 | 42.60
F3D++ 4.81% | 0.2530 | 36.86

Table 2. KITTI scene flow benchmark. We report that our model
has significantly lower error in all tested error metrics.

We propose a more simple evaluation procedure on the
KITTI dataset than was used in [21]. Instead of cutting
the KITTI point cloud into numerous chunks and hav-
ing to deal with overlapping regions, we resize the KITTI

dataset to the size of FlyingThings scenes, which is x €
[-15m, +15m|,y € [-8m,+8m], z € [0m, 35m], before
feeding it to networks. Although this produces differing re-
sults than in [21], we ensure a fair comparison by training
both FlowNet3D and FlowNet3D++ on FlyingThings and
transferring to our resized KITTI without fine-tuning. We
report our results in table 2.

4.4. Dynamic Dense Reconstruction

In this section, we demonstrate the effectiveness of
FlowNet3D++ within our proposed dynamic dense recon-
struction benchmark.

4.4.1 Configuration

Our depth-only dynamic reconstruction system is imple-
mented on top of InfiniTAM [28], an open sourced RGBD
dense SLAM system with modern CUDA support. The vol-
ume resolution is set as 256° and voxel size 3 mm or 5
mm for all of our experiments. Specifically, we use 3mm
for small scenes like Snoopy and Duck dataset [32] and 5
mm for the VolumeDeform datasets [14]. The truncated
distance 9§ is set to £4 times of the voxel size. The step
size o for optimiser is set to 0.1. We also implement a
SobolevFusion system for comparison (comparison images
can be found in Appendix). Similar to the KITTI scene,
applying FlowNet3D++ to videos that captured with differ-
ent cameras requires the scene to be resized to the range
of FlyingThings dataset, i.e. = € [—15m,+156m],y €
[-8m,+8m],z € [0m,35m]. The choice of scaling fac-
tors depends on different voxel size, SDF volume size and
camera intrinsics. However, in practice, we found a rough
estimation of the scaling factors works well for all the ex-
periments. In particular, for the Snoopy sequence, the scal-
ing factors are set as s, = 25, s, = 25, s, = 30. The good
results achieved through this resizing method in dynamic
reconstruction provide evidence that the resizing in KITTI
evaluation is also valid.

4.4.2 Results

The KillingFusion dataset (Snoopy and Duck) provides a
ground truth mesh. Thus, we can quantitatively analyse the
benefit of adding deep scene flow estimation to the dynamic
reconstruction. We also present more images of running our
systems on VolumeDeform dataset and a video sequence we
record by ourselves in Appendix, to illustrate the benefit of
our pipeline qualitatively. Our Snoopy and Duck evaluation
result is reported in Table 3 and Fig 3.

5. Ablation study

To validate the individual benefit derived from each of
our geometric constraints, as well as their combination, we
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Figure 3. Mean mesh-to-mesh error. Blue regions represent low er-
ror. We use red to represent an error that is larger than 1cm. Top:
ground truth mesh. 2" row and 3"%: results of KillingFusion and
VolumeDeform (image copied from [32]). 4" row: Our recon-
struction results with unmodified FlowNet3D. Bottom row: our
reconstruction result after applying our FlowNet3D++. It can be
seen that most of our model appears as blue indicating low overall
error. The bottom two rows demonstrate that FlowNet3D++ of-
fers an improvement over FlowNet3D. Quantitatively, our average
error on Snoopy and Duck scene is 35.2% and 34.3% lower than
KillingFusion reconstructions, respectively.

Mean Error To Ground Truth (mm)

Scenes Volume Kill.ing KF + KF +
Deform | Fusion | FlowNet3D | FlowNet3D++

Snoopy | 4.205 | 3.543 2.348 2.297

Duck 5.362 | 3.896 3.012 2.561

Table 3. Evaluation of FlowNet3D and FlowNet3D++ in our dy-
namic reconstruction benchmark

perform ablation tests for both the geometric-only models
and colour models. Unless otherwise stated, we use exactly
same training procedure as described in [22].

Results are shown in Table 4 and Table 5. The results in
the bottom rows of Table 4 and Table 5, we trained for 200
epochs, instead of 150 epochs.

In addition to the overall performance of the geometric
loss terms, it is also worth noting that in the RGB setting,
simply combining £, + Lcos does not yield the best ACC

and EPE after 150 epochs of training. Instead, the best re-
sult acquired after this schedule is the model trained with
L,,. However, we found that the accuracy of FlowNet3D
+ L, plateaus after 150 epochs, whereas the accuracy of
model with both £, and L. still grows until 200 epochs.
Therefore, the combination of geometric losses in the RGB
setting provides our best configuration. In the XYZ setting,
however, the combination of geometric loss terms provides
the best result, even after the 150 epoch schedule.

Models (XYZ) (/3%; (’E)“Clg) EPE | ADE
F3D 23.71% | 56.05% | 0.1705 | 22.83
F3D + L, 27.79% | 60.06% | 0.1567 | 21.96
F3D + Leos 25.30% | 58.15% | 0.1615 | 21.17
F3D + L, + Leos | 28.22% | 60.11% | 0.1556 | 20.75
F3D + L, + Leos | 28.50% | 60.39% | 0.1553 | 20.77

Table 4. Ablation study for FlowNet3D geometry-only model. The
last row is the result trained for 200 epochs. Other rows including
the original FlowNet3D are all trained for 150 epochs.

Models (RGB) (g%g:) (’gﬁg) EPE ADE
F3D 25.37% | 57.85% | 0.1694 | 22.58
F3D + L, 28.52% | 62.75% | 0.1391 | 21.74
F3D + Lo 26.84% | 61.57% | 0.1454 | 20.96
F3D + Lyp + Leos | 26.05% | 60.53% | 0.1492 | 21.27
F3D + L, + Leos | 30.33% | 63.43% | 0.1369 | 21.14

Table 5. Ablation study for FlowNet3D colour model. The last
row is the result trained for 200 epochs. Other rows including the
original FlowNet3D are all trained for 150 epochs.

6. Conclusion

In this paper, we introduced FlowNet3D++, which to
the best of our knowledge is the state-of-art point cloud-
based deep scene flow estimator. We contribute two prin-
cipled geometric constraints that each improve the accu-
racy of the state-of-art of point cloud based deep scene flow
from 57.85% to 63.43%. We also contribute a novel ge-
ometric based scene flow benchmark pipeline in dynamic
reconstruction context. Within our deformable scene flow
benchmark, our FlowNet3D++ achieves up to 15.0% less
reconstruction error than FlowNet3D, and up to a 35.2%
improvement over KillingFusion alone.
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