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Abstract

We present FlowNet3D++, a deep scene flow estimation

network. Inspired by classical methods, FlowNet3D++ in-

corporates geometric constraints in the form of point-to-

plane distance and angular alignment between individual

vectors in the flow field, into FlowNet3D [21]. We demon-

strate that the addition of these geometric loss terms im-

proves the previous state-of-art FlowNet3D accuracy from

57.85% to 63.43%. To further demonstrate the effective-

ness of our geometric constraints, we propose a benchmark

for flow estimation on the task of dynamic 3D reconstruc-

tion, thus providing a more holistic and practical measure

of performance than the breakdown of individual metrics

previously used to evaluate scene flow. This is made possi-

ble through the contribution of a novel pipeline to integrate

point-based scene flow predictions into a global dense vol-

ume. FlowNet3D++ achieves up to a 15.0% reduction in

reconstruction error over FlowNet3D, and up to a 35.2%

improvement over KillingFusion [32] alone. We will release

our scene flow estimation code later.

1. Introduction

Scene flow is defined as a 3D vector field that provides

a low level representation of 3D motion. It is analogous to

optical flow, which describes the pixel movements on a 2D

image plane. Optical flow can be considered the projection

of scene flow into 2D. Applications such as object detection,

object tracking, point cloud registration, correspondence es-

timation and motion capture can benefit from this low-level

information for better performance.

Although the vector field representation is simple, scene

flow estimation is far from an easy task. This is due to the

requirement of accurate depth estimation and also the need

to deal with occlusion. Traditionally, scene flow estima-

tion is computed by optimising photometric error [21], or

through matching hand-crafted features [3], each applied

over multiple view geometry or RGB-D images. With the

fast development of deep learning, some works bring CNN

to scene flow estimation. This allows for the scene flow es-

timation to benefit from the semantic information and pow-

erful deep feature extraction. Recently, PointNet [5] and

PointNet++ [29] enabled the direct point cloud processing

for deep learning. These works are particularly interesting

since they are point cloud-based networks that can directly

process the rich 3D geometric information, rather than im-

plicitly learning 3D geometry from 2D images. Built on

top of PointNet++, FlowNet3D [21] tackles the scene flow

estimation problem on point cloud directly, achieving the

state-of-art scene flow estimation results. Despite the im-

pressive results of FlowNet3D, point cloud based scene flow

estimation is still at the very beginning of its development.

FlowNet3D trains the network with a naive supervision sig-

nal, which is the L2 loss between predicted flow and ground

truth vectors.

In this work, we apply geometric principles from clas-

sical point cloud registration algorithms in order to mature

deep scene flow estimation beyond the simple L2 norm be-

tween prediction and ground truth. In particular, we in-

vestigate two geometric constraints including: 1) point-to-

plane distance and 2) the cosine distance between predicted

flow vector and ground truth vector. The point-to-plane dis-

tance is a common loss term in Iterative Closest Point (ICP)

[2, 26] algorithm, which is known for fast convergence. Co-

sine distance can penalise the angle between two vectors di-

rectly. As a result of this, cosine distance encourages correct

alignment of our predicted scene flow vectors, not only that

they lie on the L2 norm surface. The application of these

geometrically principled constraints not only demonstrates

improved accuracy over the state-of-art, but also improved

convergence speed and stability of training.

Further, we introduce a novel benchmark for investi-

gating the practical performance of scene flow estimators,

through the proxy task of dynamic 3D reconstruction. Ap-

plication of scene flow to dynamic reconstruction provides

a holistic combination of the individual metrics previously

used to evaluate 3D flow estimation. We contribute a novel

pipeline for integrating point-based scene flow into a global
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dense volume.

To summarise, our main contributions are:

1. We improved the state-of-art point cloud-based scene

flow estimation accuracy from 57.85% to 63.43% by

combining point-to-plane loss, cosine distance loss

with L2 loss.

2. We propose an average angle error metric to evaluate

the flow direction deviation to supplement End Point

Error (EPE), which is not sufficient alone to evaluate

the angle difference between two vectors.

3. We propose dynamic 3D reconstruction, alongside

a novel dynamic integration pipeline, as a bench-

marking task for scene flow estimation. 3D re-

construction provides a holistic and inherently ge-

ometric measure of flow estimation performance.

Within our deformable scene flow benchmark task, our

FlowNet3D++ achieves up to 15.0% less reconstruc-

tion error than FlowNet3D, and up to a 35.2% im-

provement over KillingFusion.

The remainder of the paper is organised as follows: in

Section 2, we briefly describe related work. Section 3 de-

scribes our modifications to FlowNet3D, as well as our

method to integrate the sparse scene flow vector field in

dense dynamic reconstruction. In the experiment section,

we evaluate the effect of adding different geometric con-

straints to scene flow estimation and our dynamic recon-

struction results with several public datasets. Section 6 con-

cludes our work and describes potential future work.

2. Related Work

2.1. Tradition Scene Flow Estimation

Scene flow is a low-level representation of 3D motion of

points within a scene. It is a 3D extension from the 2D opti-

cal flow [3], which itself describes the pixel movements on

a 2D image plane. Many works have focused on estimating

scene flow using multi-view geometry [35] by associating

salient image key points. Later works [27, 11, 37, 36]

tackle this problem with joint variational optimisation of

image registration and motion estimation. [37] compute

dense scene flow from stereo cameras and achieved 5fps

on a CPU. SphereFlow [10, 15] is the first real-time scene

flow estimation system using RGB-D input. [16] proposed

to process rigid and non-rigid segments differently.

2.2. Deep Flow Estimation

The recent development in deep neural networks pro-

vides an alternative to address the problem of associating

points over deformed depth maps. One group of deep meth-

ods can be viewed as the successors of the classic 2D opti-

cal flow methods. For example, FlowNet [7] and its vari-

ants [12]. Instead of using hand-crafted feature for tracking

pixel locations, these methods rely on learned deep features

for tracking and then back-project into depth maps to fetch

the 3D scene flow. For better training and evaluation, Mayer

et al [24] created three synthetic scene flow datasets. They

also proposed a network for disparity and scene flow esti-

mation. [30] assume a dynamic scene contains foreground

objects and background and apply instance segmentation

masks over foreground to treat foreground and background

differently.

Similarly, [31] developed a neural network that jointly

estimates object segmentation, trajectories of objects, and

the object scene flow from two consecutive RGB-D frames.

Ilg et al. [13] proposed a network based on FlowNet [7] to

estimate occlusions and disparity together. [23] integrates

three vision cues to estimate scene flow for rigid objects

in self-driving tasks. The three vision cues are segmenta-

tion masks, disparity map, and optical flow and they are ex-

tracted by existing networks, i.e. Mask R-CNN [9], PSM-

Net [4], and PWC-Net [34].

All the above approaches are mostly image-based so

that appearance features can be conveniently extracted us-

ing 2D convolution. However, some sensory data such

as laser scanners is unstructured and therefore conven-

tional convolution is not applicable. To address the prob-

lem, Behl et al [1] evaluated the performance of scene

flow estimation when integrating bounding box and inte-

grating pixel-wise segmentation to scene flow estimation

pipeline. [1, 22, 8] are designed for scene flow estimation

on the point cloud. PointFlowNet [1] proposed to estimate

scene flow, ego-motion and rigid object motion at the same

time. In comparison to the PointFlowNet, FlowNet3D [22]

and HPLFlowNet [8] are more general scene flow estima-

tion frameworks that do not rely on rigid object assump-

tion. More specifically, FlowNet3D extracts features with

PointNet++ [29], mixes features and computes a coarse

scene flow using a flow embedding layer, and propagates

coarse scene flow to finer level using a set-upconv layer.

HPLFlowNet, instead of using PointNet++, states that us-

ing permutohedral lattice[20] and Bilateral Convolutional

Layer (BCL) [17] can improve global information extrac-

tion and faster performance.

3. Method

FlowNet3D is a neural network for estimating 3D scene

flow Vts given two point clouds, namely the source point

cloud Xs and the target point cloud Xt, where Xs and Xt

are two sets of unordered 3D points. For generality, the

numbers of both point clouds do not have to be identical,

i.e. |Xs| 6= |Xt|, but the predicted vector field always has

the same dimension as the source point cloud. FlowNet3D

adopts the Siamese architecture that first extracts down-

sampled point features for each point cloud using the Point-

Net++, and then mixes the features in the flow embedding
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Figure 1. We adapt FlowNet3D structure and highlight the loss terms we added with blue boxes.

layer. In the end, the output features of the flow embed-

ding are imposed with the regularisation and up-sampled

into the same dimensionality as the Xs. The network is

trained using the loss function of the L2 norm between pre-

dicted ‖Vts−Vgt‖2 where Vgt is the groundtruth scene flow

field.

FlowNet3D has been successfully applied in rigid

scenes. In this paper, we further explore the potential of

it when applied to non-static scenes, even the scenes dom-

inated by deformable objects. More importantly, we in-

troduce two loss terms that improves the accuracy of the

prediction in both dynamic scenes while maintains the per-

formance in rigid scene (measured using KITTI dataset).

The new loss term also speeds up and stabilises the training

procedure. Fig 1 illustrates the general idea of FlowNet3D

and loss terms we applied. More details on the original

FlowNet3D structure can be found in its paper.

3.1. Geometric Constraints

Point-to-Plane Loss is inspired by the popular point-to-

plane distance metric for point cloud registration, such as

the Iterative Closest Point (ICP) algorithm. Specifically, we

can use the set Xn
l and Xn

w to represent two 3D point clouds

at the nth frame, where the labels l and w represent the live

camera and the world coordinate system, respectively. Each

point x∈X
n
w is a 3D homogeneous coordinate. The point

x
n
w can be transformed from the world coordinate into the

camera coordinate using x
n
l = T

n
clx

n
w, where Tn

lw ∈ SE(3)
is a 3D rigid transformation.

Given Xn
l and Xn

w , Tn
cw can be estimated by minimis-

ing the following error function from a typical ICP algo-

rithm [26]:

T
n
cw = argmin

T̂n
cw

∑

xn
w∈Xn

w

‖n(xn
c )

⊤(Tn
cwx

n
w − x

n
c )‖

2, (1)

where n(xn
c ) is the function to calculate the surface normal

at xn
c . xn

c is the closet point to T
n
cwx

n
w. The dot product be-

tween the surface normal and the closet distance measures

the distance from T
n
cwx

n
w to the plane defined by x

n
c and its

normal, hence it is known as the point-to-plane metric.

Inspired by the point-to-plane metric, we introduce a

new loss for training the FlowNet3D, which is defined as

follows:

Lpp =
∑

xs∈Xs

‖n(xt)
⊤(xs − xt)‖

2, (2)

where xt is the closest point in the target set Xt to the source

point xs ∈ Xs. The scene flow may encode any rigid trans-

formation or simply the non-static motion field, which is

ultimately determined by the the samples provided during

training. During training on FlyingThings, both Xs and Xt

are in the same coordinate system and therefore, the trained

model naturally learns to represent segments of rigid mo-

tion fields. Interestingly, we found that the same model can

generalise to the point clouds extracted from consecutive

frames of a deforming object so well that it outperforms the

state-of-the-art dynamic fusion algorithm.

Cosine Distance Loss aims at constraining the angle be-

tween predicted flow field and the ground truth. From the

scene flow predictions of FlowNet3D, we noticed that some

of the predicted motion vectors differ greatly in direction

from the groundtruth. As a result, we introduce the co-

sine distance loss which aims to minimise the angle be-

tween prediction and ground truth. We compute the co-

sine distance directly between a predicted vector and its

groundtruth. This provides extra penalisation to vectors

with directions with deviate from the groundtruth, even if

they have the same L2 loss. Fig 2 illustrates the effect of

applying L2 loss and cosine distance together.

Combined Loss includes all three different loss terms

using a weighted summation:

L = L2 + λpLpp + λcosLcos (3)

93



Figure 2. The red circle denotes the energy contour that L2 loss

penalises equally. The blue circle denotes the energy contour af-

ter combining L2 and Lcos. Lcos explicitly punishes vectors with

large angle deviations. In this figure, v1 is penalised more than v0

after adding Lcos.

where λp and λcos are the weight to balance among the

loss terms, the L2 = 1
|V′

ts|

∑
v∈V′

ts
‖v − vgt‖2 and Lcos =

1
|V′

ts|

∑
v∈V′

ts

v·vgt

‖v‖‖vgt‖
. The V ′

ts is the predicted vector field

and vgt is an individual ground truth vector corresponding

to v. It is worth noting that the cosine loss and L2 loss

weigh over the angles and lengths of the predicted vector

field, respectively.

3.2. Scene Flow for Dynamic 3D Reconstruction

The performance of flow field estimation on a dynamic

scene is normally evaluated through the counting of inliers,

which are determined through a set threshold. However, this

evaluation scheme depends heavily on the threshold, which

must be set heuristically. We propose to benchmark scene

flow framework based on a state-of-the-art dynamic 3D re-

construction system, so that the scene flow can be evaluated

by viewing a 3D model. This provides a more holistic per-

formance measure, as well as a practical application for 3D

flow estimation.

Dynamic 3D reconstruction is recently introduced for re-

covering non-static objects, including deformable objects

such as moving animals or human beings [25, 14, 32, 33, 18,

19]. KillingFusion [32] and its variant SobolevFusion [33]

represent the state-of-the-art dynamic fusion method di-

rectly estimating a dense vector field between two TSDF

volumes. However, this variational optimisation process is

easily trapped in local minimum when the search space is

large. Our benchmark framework, which can also be con-

sidered as a dynamic reconstruction system, significantly

outperforms KillingFusion in terms of quality by a 35.2%

reduction in mean error.

Particularly, our benchmark framework takes in a se-

quence of point clouds with corresponding scene flow pre-

dictions to recover a 3D model. The reconstruction er-

ror can be visualised comparing with the ground truth

model. In experiments, the FlowNet3D++ reduces up to

15.0% error in the dynamic reconstruction task compare to

FlowNet3D.

Overview of the whole pipeline is illustrated in Fig.1 and

we show the essential steps below:

1. Compute the rigid SE(3) transformation between the

live point cloud and the canonical model using point-

to-plane ICP algorithm [2] as shown in Eq. (1). It com-

pensates the overall movement of the target object by

absorbing it into the current camera pose.

2. Predict the scene flow between the live and the canon-

ical point cloud. In this paper we experimented the

FlowNet3D[21] and our FlowNet3D++.

3. Warp the live point cloud using the scene flow com-

puted in the last step and create the synthetic depth

map by projecting the warped live point cloud into the

compensated camera pose.

4. Construct a live TSDF volume φn from the synthetic

depth map using the widely used depth to volume inte-

gration method, which is first introduced in KinectFu-

sion [26].

5. Refine the vector field ΨV between the live volume

and canonical volume using a simple variational voxel

based scene flow refinement.

6. Update the φglobal by taking the voxel-wise weighted

average between φn and φglobal for the TSDF values

live and accumulate the weight [6].

Step 2 introduces the deep scene flow to warp the live point

cloud so that a virtual TSDF volume that is much eas-

ier for the KillingFusion to optimise and therefore reduces

the computation complexity and quality of the recovered

model. Step 3, 4 and 5 formulate our novel scene flow inte-

grator that integrates a scene flow in point cloud resolution

to the full TSDF volume resolution with very little artefacts.

Scene Flow Integrator merges multiple point cloud into

a single 3D volumetric representation from which the 3D

model can be extracted. Specifically, assuming Xn
l repre-

sents point cloud of live frame in camera coordinate and

Xn
g represents the ray-casted point cloud from the canoni-

cal model, the scene flow predictor computes a scene flow

field Ψn
S that associate Xn

l with Xn
g . The warping from Xn

l

to Xn
g can be formulated as follows:

Xn′
g = {x|x := v(xn

l ) + x
n
l }, (4)

where x
n
l ∈ Xn

l . Note that Ψn
S and Xn

l share the same

resolution and Xn′
g and Xn

g are different. Therefore, our

target is to integrate Xn′
g into the canonical volume φglobal

smoothly.

Naively integrating Xn′
g into the global TSDF volume

seems a reasonable solution, however, in our experiments
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we discover this causes significant artefacts. This is because

scene flow computed on point clouds is only capable of in-

ferring the motion on the object surface or the zero level

set. To deform a volumetric TSDF, the vector field has to

cover the entire 3D region within the truncated area while

maintaining the property of TSDF to be a precise level set

function so that the artefacts are minimised.

Therefore, we tackle the problem by: 1) creating a syn-

thetic depth map D̃n = {d̃(u, v)|(u, v) ∈ Ω}, where Ω is a

set of pixel locations on the depth map, by projecting Xn′
g

onto the depth map D̃n. 2) creating a synthetic live volume

φn from D̃n. This is equivalent to integrating a depth map

to an empty TSDF volume.

By converting the deformed point cloud Xn′
g into a TSDF

volume φn, we have acquired a coarse alignment between

the φn and φglobal. The next step is to refine this coarse

alignment with a simple variational vector field refinement.

Voxel Based Vector Field Refinement: The concept of

running variational optimisation directly on TSDF volume

was first introduced in the KillingFusion [32] and simpli-

fied in SobolevFusion [33]. It solves the vector field by

evolving the source TSDF into target TSDF iteratively. This

approach enjoys the advantage of being capable of dealing

with topological changes but a drawback of this variational

SDF evolution lies in that it can easily get trapped in some

local minima. This is because it lacks explicit correspon-

dences associating level set functions. By providing a good

initial solution from our deep scene flow estimator, only

a few iterations of voxel based vector field refinement is

needed. Specifically, for a voxel at position x ∈ V and a

3D vector v = v(x) associates with this voxel, our energy

is simply defined as:

E(ΨV ) =
1

2

∑

x∈V

(φn(x+ v)− φglobal(x))
2

(5)

where φ(x) represent TSDF value at voxel centre x and the

energy can be optimised using gradient descent easily:

v
(k+1) = v

(k) − αE′(v(k)) (6)

where v
(k) ∈ Ψ

(k)
V represents the vector field Ψn

V at its kth

iteration and E′(v) is the gradient with respect to the v and

can be computed efficiently using the following calculus of

variations:

E′(v) = (φn(x+ v)− φglobal(x))∇φn(x+ v), (7)

where the ∇φn(x + v) is the spatial gradient at the voxel

position (x+ v) in the live volume φn.

It is worth noting that the vector field computed from

above optimisation is only meaningful in local regions and

the purpose is two-fold: (i) to register a roughly aligned

live volume to canonical model; (ii) to remove artefacts in-

troduced in the coarse non-rigid point cloud registration.

Thanks to the quality of the deep scene flow estimator, we

no longer require a regularisation term, such as those in

KillingFusion and SobolevFusion.

The above energy will produce a scene flow vector for

each SDF voxel. In general, the magnitude of this vector

field should be small because the main evolution has already

been compensated when warping the live point cloud to the

canonical point cloud. As a result, with a small number of

iterations, typically ranging from 3 to 70, we can mediate

the artefacts and noise introduced in from scene flow pre-

dictor.

We are aware that having variational refinement may af-

fect the deep scene flow benchmarking result. However, this

variational refinement is necessary for complex tasks like

dynamic reconstruction. If not present, the tracking can fail

after a few frames due to the large accumulated error. To

eliminate the effect of this variational refinement in bench-

marking, we explicitly set a fixed iteration number for all

experiments. For the Snoopy and Duck dataset, we use 30

iterations for all deep scene flow benchmarking.

4. Experiments

In this section, we evaluate our modifications to

FlowNet3D and validate their effectiveness quantitatively in

two subsections. In the first subsection, we benchmark our

FlowNet3D++ result using the existing scene flow datasets

FlyingThings and KITTI, which are pre-processed and pro-

vided by FlowNet3D. For pre-processing details, we refer

reader to the FlowNet3D supplementary material. We also

provide a graph to analyse the time taken for our training to

converge. In the second subsection, we quantitatively evalu-

ate the performance of FlowNet3D++ in our novel dynamic

reconstruction benchmark. This is performed on two recon-

struction datasets (Snoopy and Duck), both of which are

provided by KillingFusion[32]. Further qualitative results

can be found in our supplementary material.

To enable the point-to-plane loss term in Eq. 2, we also

pre-compute per-point surface normal for the FlyingThings

dataset but we do not use surface normals as input features.

Our model is trained from scratch using the training split

of FlyingThings dataset and testing is performed on the test

split. We directly transfer our model that was trained on

FlyingThings to KITTI without any fine-tuning. For the dy-

namic reconstruction benchmark, we also directly deploy

the model that was trained on FlyingThings dataset to the

pipeline, again without fine-tuning. For hyper-parameters,

in most experiments we use exactly same hyper-parameters

the FlowNet3D used to show the effectiveness of our loss

terms. For the best result we show in Table 4.2, we trained

200 epochs.
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Input

channels
Model

ACC

(0.05)

ACC

(0.10)
EPE

ADE

(degree)

xyz
F3D 23.71% 56.05% 0.1705 22.83

F3D++ 28.50% 60.39% 0.1553 20.78

rgb
F3D 25.37% 57.85% 0.1694 22.58

F3D++ 30.33% 63.43% 0.1369 21.14

Table 1. F3D is a shorthand for FlowNet3D. We evaluate our

FlowNet3D++ in two input settings. Input setting xyz means we

only use point position as input features. Input setting rgb means

both point position and the colour features are fed into the network.

For EPE and ADE, the lower the better.

4.1. Metrics

We report our results using 3D End-Point-Error (EPE)

and an accuracy metric (ACC) with two thresholds. These

three metrics are also used in FlowNet3D to provide fair

comparison. We also propose the average angle deviation

error (ADE) for this task for the evaluation of the predicted

scene flow vectors’ direction. EPE: the EPE is the L2 norm

between an estimated flow vector and its ground truth vec-

tor. ADE: we define the ADE as arccos( 1
N

∑
cos(vp, vgt)),

where vp and vgt are predicted vector and its ground truth

vector.

4.2. FlyingThings Dataset

In FlowNet3D++, we apply both the cosine distance loss

and point-to-plane loss alongside the original L2 loss. The

results listed in Table 4.2 show that our modifications im-

prove all metrics that we test. In fact, the geometric-only

XYZ-FlowNet3D++ even outperforms RGB-FlowNet3D,

which is allowed to incorporate colour information. We

use λpp = 1.3 and λcos = 0.9 for this test, but we found

λpp,cos ∈ [0.5, 1.5] generates good results in the general

case. As the FlowNet3D did not evaluate ADE, we com-

pute FlowNet3D’s ADE with the pre-trained model pro-

vided by [21].

4.3. KITTI Dataset

As KITTI scene flow dataset only provides a colourless,

LiDAR-scanned point cloud, we only show the results for

geometry-only models.

Model Outlier EPE ADE

F3D (with our eval script) 7.53% 0.3259 42.60

F3D++ 4.81% 0.2530 36.86

Table 2. KITTI scene flow benchmark. We report that our model

has significantly lower error in all tested error metrics.

We propose a more simple evaluation procedure on the

KITTI dataset than was used in [21]. Instead of cutting

the KITTI point cloud into numerous chunks and hav-

ing to deal with overlapping regions, we resize the KITTI

dataset to the size of FlyingThings scenes, which is x ∈
[−15m,+15m], y ∈ [−8m,+8m], z ∈ [0m, 35m], before

feeding it to networks. Although this produces differing re-

sults than in [21], we ensure a fair comparison by training

both FlowNet3D and FlowNet3D++ on FlyingThings and

transferring to our resized KITTI without fine-tuning. We

report our results in table 2.

4.4. Dynamic Dense Reconstruction

In this section, we demonstrate the effectiveness of

FlowNet3D++ within our proposed dynamic dense recon-

struction benchmark.

4.4.1 Configuration

Our depth-only dynamic reconstruction system is imple-

mented on top of InfiniTAM [28], an open sourced RGBD

dense SLAM system with modern CUDA support. The vol-

ume resolution is set as 2563 and voxel size 3 mm or 5

mm for all of our experiments. Specifically, we use 3mm

for small scenes like Snoopy and Duck dataset [32] and 5

mm for the VolumeDeform datasets [14]. The truncated

distance δ is set to ±4 times of the voxel size. The step

size α for optimiser is set to 0.1. We also implement a

SobolevFusion system for comparison (comparison images

can be found in Appendix). Similar to the KITTI scene,

applying FlowNet3D++ to videos that captured with differ-

ent cameras requires the scene to be resized to the range

of FlyingThings dataset, i.e. x ∈ [−15m,+15m], y ∈
[−8m,+8m], z ∈ [0m, 35m]. The choice of scaling fac-

tors depends on different voxel size, SDF volume size and

camera intrinsics. However, in practice, we found a rough

estimation of the scaling factors works well for all the ex-

periments. In particular, for the Snoopy sequence, the scal-

ing factors are set as sx = 25, sy = 25, sz = 30. The good

results achieved through this resizing method in dynamic

reconstruction provide evidence that the resizing in KITTI

evaluation is also valid.

4.4.2 Results

The KillingFusion dataset (Snoopy and Duck) provides a

ground truth mesh. Thus, we can quantitatively analyse the

benefit of adding deep scene flow estimation to the dynamic

reconstruction. We also present more images of running our

systems on VolumeDeform dataset and a video sequence we

record by ourselves in Appendix, to illustrate the benefit of

our pipeline qualitatively. Our Snoopy and Duck evaluation

result is reported in Table 3 and Fig 3.

5. Ablation study

To validate the individual benefit derived from each of

our geometric constraints, as well as their combination, we
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Figure 3. Mean mesh-to-mesh error. Blue regions represent low er-

ror. We use red to represent an error that is larger than 1cm. Top:

ground truth mesh. 2nd row and 3
rd: results of KillingFusion and

VolumeDeform (image copied from [32]). 4
th row: Our recon-

struction results with unmodified FlowNet3D. Bottom row: our

reconstruction result after applying our FlowNet3D++. It can be

seen that most of our model appears as blue indicating low overall

error. The bottom two rows demonstrate that FlowNet3D++ of-

fers an improvement over FlowNet3D. Quantitatively, our average

error on Snoopy and Duck scene is 35.2% and 34.3% lower than

KillingFusion reconstructions, respectively.

Mean Error To Ground Truth (mm)

Scenes
Volume

Deform

Killing

Fusion

KF +

FlowNet3D

KF +

FlowNet3D++

Snoopy 4.205 3.543 2.348 2.297

Duck 5.362 3.896 3.012 2.561

Table 3. Evaluation of FlowNet3D and FlowNet3D++ in our dy-

namic reconstruction benchmark

perform ablation tests for both the geometric-only models

and colour models. Unless otherwise stated, we use exactly

same training procedure as described in [22].

Results are shown in Table 4 and Table 5. The results in

the bottom rows of Table 4 and Table 5, we trained for 200

epochs, instead of 150 epochs.

In addition to the overall performance of the geometric

loss terms, it is also worth noting that in the RGB setting,

simply combining Lpp + Lcos does not yield the best ACC

and EPE after 150 epochs of training. Instead, the best re-

sult acquired after this schedule is the model trained with

Lpp. However, we found that the accuracy of FlowNet3D

+ Lpp plateaus after 150 epochs, whereas the accuracy of

model with both Lpp and Lcos still grows until 200 epochs.

Therefore, the combination of geometric losses in the RGB

setting provides our best configuration. In the XYZ setting,

however, the combination of geometric loss terms provides

the best result, even after the 150 epoch schedule.

Models (XYZ)
ACC

(0.05)

ACC

(0.10)
EPE ADE

F3D 23.71% 56.05% 0.1705 22.83

F3D + Lpp 27.79% 60.06% 0.1567 21.96

F3D + Lcos 25.30% 58.15% 0.1615 21.17

F3D + Lpp + Lcos 28.22% 60.11% 0.1556 20.75

F3D + Lpp + Lcos 28.50% 60.39% 0.1553 20.77

Table 4. Ablation study for FlowNet3D geometry-only model. The

last row is the result trained for 200 epochs. Other rows including

the original FlowNet3D are all trained for 150 epochs.

Models (RGB)
ACC

(0.05)

ACC

(0.10)
EPE ADE

F3D 25.37% 57.85% 0.1694 22.58

F3D + Lpp 28.52% 62.75% 0.1391 21.74

F3D + Lcos 26.84% 61.57% 0.1454 20.96

F3D + Lpp + Lcos 26.05% 60.53% 0.1492 21.27

F3D + Lpp + Lcos 30.33% 63.43% 0.1369 21.14

Table 5. Ablation study for FlowNet3D colour model. The last

row is the result trained for 200 epochs. Other rows including the

original FlowNet3D are all trained for 150 epochs.

6. Conclusion

In this paper, we introduced FlowNet3D++, which to

the best of our knowledge is the state-of-art point cloud-

based deep scene flow estimator. We contribute two prin-

cipled geometric constraints that each improve the accu-

racy of the state-of-art of point cloud based deep scene flow

from 57.85% to 63.43%. We also contribute a novel ge-

ometric based scene flow benchmark pipeline in dynamic

reconstruction context. Within our deformable scene flow

benchmark, our FlowNet3D++ achieves up to 15.0% less

reconstruction error than FlowNet3D, and up to a 35.2%

improvement over KillingFusion alone.

Acknowledgements

We gratefully acknowledge the European Commission

Project Multiple-actOrs Virtual Empathic CARegiver for

the Elder (MoveCare) grant for financially supporting the

authors of this work.

97



References

[1] A. Behl, D. Paschalidou, S. Donné, and A. Geiger. Point-
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V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In ICCV, 2015. 2

[8] X. Gu, Y. Wang, C. Wu, Y. J. Lee, and P. Wang. Hplflownet:

Hierarchical permutohedral lattice flownet for scene flow es-

timation on large-scale point clouds. In CVPR, 2019. 2

[9] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.

PAMI, 2018. 2

[10] M. Hornacek, A. Fitzgibbon, and C. Rother. Sphereflow: 6

dof scene flow from rgb-d pairs. In CVPR, 2014. 2

[11] F. Huguet and F. Devernay. A variational method for scene

flow estimation from stereo sequences. In ICCV, 2007. 2

[12] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In CVPR, 2017. 2

[13] E. Ilg, T. Saikia, M. Keuper, and T. Brox. Occlusions, motion

and depth boundaries with a generic network for disparity,

optical flow or scene flow estimation. In ECCV, 2018. 2
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