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Abstract
Unconstrained remote gaze estimation remains chal-

lenging mostly due to its vulnerability to the large vari-

ability in head-pose. Prior solutions struggle to main-

tain reliable accuracy in unconstrained remote gaze track-

ing. Among them, appearance-based solutions demonstrate

tremendous potential in improving gaze accuracy. However,

existing works still suffer from head movement and are not

robust enough to handle real-world scenarios. Especially

most of them study gaze estimation under controlled scenar-

ios where the collected datasets often cover limited ranges

of both head-pose and gaze which introduces further bias.

In this paper, we propose novel end-to-end appearance-

based gaze estimation methods that could more robustly in-

corporate different levels of head-pose representations into

gaze estimation. Our method could generalize to real-world

scenarios with low image quality, different lightings and

scenarios where direct head-pose information is not avail-

able. To better demonstrate the advantage of our methods,

we further propose a new benchmark dataset with the most

rich distribution of head-gaze combination reflecting real-

world scenarios. Extensive evaluations on several public

datasets and our own dataset demonstrate that our method

consistently outperforms the state-of-the-art by a significant

margin.

1. Introduction

Unconstrained remote gaze estimation has many impor-

tant applications [24, 33, 11, 35, 1, 5] mostly around Human

Computer Interaction (HCI) [18, 26, 43]. A variety of

existing methods [46, 14, 31, 39] could achieve very high
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Figure 1: Effect of head movement on gaze. H represents head-

pose vector, E represents eye-ball vector and G represents gaze

vector. In (a), without head-pose, both poses map to the same

gaze ground-truth respective to camera causing confusion. Even

though the gaze vector, G, relative to camera coordinate stays the

same, both head-pose vector, H, and eye-ball vector, E, change.

However, with head-pose, it is easier to learn the difference and

more accurate mapping function to estimate gaze direction. Head

movement would also affect gaze distribution [34]. Since eye-ball

vector rotates around a given head-pose vector, a function of the

observed head-pose [34] is normally the mean of the gaze distri-

bution. Further, as illustrated in (b), assuming the ranges of head

movement and eyeball movement are up to 60 degrees. Thus, the

head-pose could cover up to 60
◦ in total. However, based on head-

pose, gaze could cover up to 120
◦ in total. In addition, if the head

moves to the edge of its distribution, the eye movement may have

occlusions against the camera. These occlusions would cause dif-

ferences in gaze’s ranges of distributions corresponding to head-

pose.

accuracy in detecting gaze directions under controlled set-

tings.

However, existing methods [22, 14, 31] still suffer from

problems like: inaccuracy under real-world conditions,

need of complex settings to adapt to free-head movement,

low image quality [53], offset from personal calibration, etc.

Among them, head movement perhaps is the most crucial

factor that significantly affects unconstrained remote gaze

estimation of the following reasons, 1) any gaze vector re-
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lated to a fixed camera coordinate depends on both eye vec-

tor (visual axis of an eyeball [10]) and head-pose vector,

2), as illustrated in Fig. 1, head-pose also strongly affects

gaze distribution including both mean and range [34], 3)

head-pose would change eye appearance [11]. The differ-

ence in head-pose would cause geometric deformation. Eye

regions like pupil, iris, sclera, etc, would be occluded to

different extents [34]. Because this deformation is holistic

throughout the face, it is too diminutive in a local eye region

for appearance-based methods to detect and track especially

without personal calibration. With this understanding, we

believe gaze estimation could be more robust to the change

of eye appearance caused by head movement by incorpo-

rating head-pose information. In this work, we introduce

two ways of incorporating head-pose into gaze estimation

to achieve better accuracy.

Among unconstrained remote gaze estimation methods,

appearance-based methods recently become popular due to

their general applicability to multiple scenarios [52, 31,

14, 17, 39, 53]. However, they are also not sensitive

enough to free-head movement especially when eye ball’s

relative position to camera coordinate is fixed, as in Fig.

1. Furthermore, they are trained and evaluated on public

datasets mostly collected under controlled scenarios with

very limited illuminations, subject identities, backgrounds,

etc [8, 14, 38, 48, 40, 31, 9, 42, 23, 53, 38]. Most im-

portantly, these datasets lack rich distribution of head-pose.

Some of their sampling ranges are even discrete. Due to

these problems, these datasets bear the risk of bias and could

not generalize to other real-world scenarios, e.g. in-car sce-

narios under sunlight.

We compensate the confusion caused by head move-

ment in gaze estimation by introducing two ways of in-

corporating head-pose. Our work focuses on proposing a

system to incorporate head-pose in two different scenarios.

First, when direct head-pose information, i.e. facial image

and head-pose vector, is available, we propose Head-pose-

aware Gaze Detector (HGD), an appearance-based method

that leverages head-pose and gaze in an end-to-end struc-

ture. Different from previous works like [34, 52], our

method merges head and gaze information more properly

in different levels of representations including hidden fea-

ture level, training task level, and model level. On each

level, these representations are merged with similar spa-

tial dimensions and information complexities. HGD out-

performs the state-of-the-art in both public datasets and our

dataset. Furthermore, in some scenarios (datasets) where

direct head-pose information is not preserved, we addition-

ally propose a side method, HGD-no-Head-Pose (HGD-

noHP), that could also incorporate head-pose into gaze es-

timation by extracting head-pose information from eye de-

formations. In order to evaluate our methods better on a

benchmark closely reflecting real-world scenarios, we fur-

ther collect our own dataset, i.e. In-car Gaze dataset. In this

dataset, we collect data from both head and eye movement

over much larger continuous ranges compared with existing

datasets.

Our contributions are summarized as follows.

• We propose an end-to-end method, HGD and one side

method, HGD-noHP, for better incorporating head-

pose in gaze estimation in the wild.

• For better evaluating our frameworks, we collect a

large-scale benchmark with richer head-gaze distribu-

tion better reflecting real world scenarios.

• Comprehensive evaluations on the In-car Gaze dataset

proposed in this work and other existing datasets verify

the superiority of our frameworks on gaze estimation

in the wild over the state-of-the-art.

2. Related Work

Recent remote gaze estimation methods focus more on

head-free gaze estimation by incorporating head-pose infor-

mation [46, 8, 45, 41, 21]. They could be divided into two

main categories, i.e. appearance-based and model-based

methods.

Model-based methods often use the geometric prior to

regularize models for gaze estimation. They are previously

widely explored for good accuracy and ability to handle

free-head movement by using multiple light sources or cam-

eras under controlled settings [15, 19, 28, 2, 56]. They could

be divided into two parts, Pupil Center Corneal Reflection

methods (PCCR) [11, 10] and non-PCCR methods de-

pending on if using external light sources or not. PCCR

methods could be precise in controlled scenarios but im-

practical for real-world scenarios. Non-PCCR methods in-

clude 3D model-based methods [25, 10, 13] and 2D shape-

based methods [4, 54]. 3D model-based methods and 2D

shape-based methods directly infer gaze from observed eye

shapes, such as pupil center or iris edges. If applied to

real-world scenarios, model-based methods could not eas-

ily adapt to free-head movement, low image quality, dif-

ferent lightings or subjects without extra calibration. This

complexity limits them from being applied to more general

environments.

Appearance-based methods directly use eye images as

input and can, therefore, work with low-resolution images.

Because they are typically data-driven, they could lever-

age large amounts of head-pose independent training data

to generalize to arbitrary users without extra setup or cal-

ibration. Current works using monocular cameras become

more attractive given its generality [55]. Even though ex-

isting appearance-based methods do include head-pose in-

formation in the pipelines but they do not incorporate it

properly. In existing methods like [3, 8, 52, 34], the mea-

sured 3D head-pose vector is directly inserted into the sec-

ond last Fully Connected (FC) layer. This direct concate-
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Figure 2: Structure of HGD. In this framework, head-pose and gaze are merged and have a balance in input level (we use both face and

eye images as inputs in the input level for models), hidden feature level (concatenation between two hidden features), model level (parallel

relationship between head model and gaze model) and task level (parallel relationship between head-pose task and gaze task). The blue

part represents the training and testing on head-pose information and the red part on gaze information (we enhance the resolution of input

images here for demonstration purpose). Best viewed in color.

nation would be difficult for the last FC layer to learn since

the 3D head-pose vector is very different from the learned

hidden features in terms of spatial dimension and embed-

ded information complexity. In other ways of incorpo-

rating head-pose, [17] proves that a Convolutional Neural

Network (CNN) that takes multi-region inputs, i.e. eyes,

faces and face grids, can improve gaze estimation. These re-

gions, mainly the full face, could better encode head-pose,

geometric structure of head and illumination across larger

areas than those available in the eye region. Thus, from ex-

periments in [17, 39], we observe that full-face-based CNNs

are more accurate for gaze estimation than eye-image-based

CNNs. However, they are limited in applicability as the en-

tire face may not be available in all scenarios [14]. Fur-

thermore, the method proposed in [17] may be limited to

2D-screen scenarios and the full face-based method in [39],

only using full face as input, may be more vulnerable to low

image quality where eye regions could be more blurry. Un-

like [52, 34], our methods merge head-pose and gaze when

they are in similar levels of representations, e.g. merging

between hidden feature vectors, parallel learning tasks, etc.

Different from [17, 39], our methods are also not limited to

2D screens, less vulnerable to low image quality and could

better generalize to different scenarios.

3. Gaze Dataset

Even though many public gaze datasets are already avail-

able [8, 14, 38, 48, 40, 9, 42, 23, 53, 38, 17], many of them

[23, 48, 38] are collected in controlled laboratory settings

and have limitations in scales, subjects, ranges of sampling,

etc [40, 9, 52, 14]. These limitations would cause problems

like lack of variation for subject appearances, head-pose,

gaze, etc [23, 42, 48, 38], and further prevent appearance-

based methods from better generalization [46]. Thus, we

collect our benchmark, In-car Gaze, closer to real-world

scenarios to train more generalized appearance-based meth-

ods and more clearly demonstrate the advantage of our

frameworks.

In-car Gaze not only has the largest continuous ranges

of sampling for gaze and head-pose but also has one of

the largest scales in frames. Many of the datasets like

[23, 42] underplay the collection of head-pose information,

e.g. most of them do not store facial images but only eye

images. This causes an imbalance in the distribution, stored

data format and quantity between head-pose and gaze in-

formation. We overcome this by focusing on the collec-

tion of both head-pose and gaze. Besides, most datasets

[40, 52, 8] are recorded under controlled scenarios having

limited participants [40, 9, 52, 14] and environment settings

like illumination conditions and backgrounds. Differently,

we invite 1000 participants with diverse facial appearances.

Furthermore, our dataset is the only dataset that labels both

left eye and right eye on the same face respectively with two

different gaze ground-truths and has multi-camera views per

shot (supplementary, Sec. In-car Gaze Dataset).
Our work do not solely focus on car driving scenar-

ios. Different from existing car gaze solutions and datasets

[29, 36, 47, 27, 44], our frameworks and datasets focus

more on improving general gaze estimation by incorporat-

ing head-pose information. The flexibility of our solutions

and detailed labelling of In-car Gaze dataset could general-

ize to other daily life scenarios.

4. Proposed Method

In the following sections, we introduce methods to in-

corporate head-pose into gaze estimation in two different

scenarios: head-pose learned from human face when direct

head-pose information, i.e. both face images and head-pose

labels, is available and head-pose learned from eye defor-

mations when direct head-pose information is not available

[11]. When merging, we consistently unify head-pose and

gaze representations in a similar level of spatial dimension

and embedded information complexity. We believe this in-

tuitive strategy would help our models better incorporate

head-pose to reach higher gaze estimation accuracy. Fur-

thermore, realizing that the distance between two pupils

causing asymmetry, we find that Both Eyes concatenated

on the Channel (BEC) level could help achieve the best

accuracy and efficiency compared with single eye method

and else, referring to Component Analysis. Thus in both

of our frameworks, eye images are pre-processed in BEC

method on our dataset but in the fashion of single eye in
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public datasets when paring information is not available.

4.1. HeadPose Learned from Human Face

Eye image, the direct local information, is important for

gaze prediction. However, for appearance-based methods,

the change of eye appearances from head movement may

be too diminutive to detect solely from this local informa-

tion. Thus, the change of eye appearances caused by head-

pose would cause confusion for the regressor. To solve this,

we introduce extra global information by bringing in full

face information. This is because geometric deformation

caused by head movement will be more distinctly expressed

in the scale of full face. We further formulate this learn-

ing problem as a task of learning a transformation function,

Ftransform, from eye, Xeye, and face, Xface, to gaze pre-

diction, gw, as in Eqn. 1. With this intuition, in scenar-

ios, e.g., our collected dataset, where both facial images

and head-pose labels are available, we propose our main

method, HGD, as illustrated in Fig. 2. The original image

is passed through a MTCNN face detector [51] to produce

face image and eye images based on detected landmarks.

Then the remaining framework learns both head-pose (as

the blue part) and gaze (as the red part) from these face and

eye images. [39] uses spatial weights to focus on the edges,

the geometric layout of face besides eye regions. Different

from that, in our method, this weighting could be implicitly

learned through the head-pose prediction task from face im-

age. We use a simple ResNet-34 [12] structure as the face

model to learn head-pose directly from face image, as the

top part in Fig. 2. In this setting, head-pose information is

implicitly embedded in the geometric structure of the pro-

vided face image. The face model outputs a 64 × 1 feature

vector from the second last FC layer and a 3D head-pose

angle (yaw, pitch). This part is formulated as the first equa-

tion in Eqn. 2. We then also have a ResNet-34 [12] as the

gaze model to produce a gaze hidden feature (64× 1) at its

FC-3 layer, formulated as the second equation in Eqn. 2.

The gaze model concatenates the shared head-pose feature

with its gaze feature and then outputs to the fusion layers,

following FC layers, to predict gaze. This part is formulated

as the last part in Eqn. 2, also illustrated in Fig. 2. From

this framework, the gaze model not only learns head-gaze

relationship from the back-propagation from both training

tasks but also from the concatenated features. This end-to-

end schema allows the model more easier handle low image

quality and adapt to different scenarios.

For implementation, depending on the distribution of

head-gaze distribution in different datasets, we have two

training strategies for this structure.

Multi-task, Implicit Learning: Public datasets, as

Columbia Gaze [38] or MPII Gaze [52] datasets shown in

Fig. 5, usually have insufficient combination of head-pose

and gaze due to insufficient collection of head-pose. There-

fore, it would be easier for the model to learn the head-gaze

relationship even though these datasets may not truly re-

flect the real-world scenarios. In this case, we train the face

model and the gaze model jointly on two parallel tasks, one

head-pose loss and one gaze loss, as in Eqn. 3. The learning

of face model and the designated loss function would force

the gaze model to learn the relationship between gaze and

head-pose thus helping gaze prediction. The backpropaga-

tion from two losses would simultaneously constrain face

model and gaze model mutually. We set the model to mainly

learn to predict gaze and assist this learning with an ancil-

lary head-pose task. Purposely, we multiply the head-pose

loss with a weakening factor so as to strengthen the gaze

learning during training. Because of the intrinsic charac-

teristics of deep learning, we could not fully supervise the

whole learning process during multi-task learning and en-

sure that the gaze model could learn head-gaze relationship

properly in every step. Consequently, we call this implicit

learning strategy.

Multi-stage, Explicit Learning: During training in our

dataset, we realize that the losses of both head-pose and

gaze could not converge jointly as well as we experience in

public datasets like Columbia Gaze [38]. This may be due

to facts that in real-world scenarios as in our dataset, the

distribution of head-gaze is very dispersed, as shown in the

right of Fig. 5. Also, different from most public dataset col-

lected in controlled laboratory scenarios, our dataset is col-

lected in daily scenarios and the labelling could be rough.

Thus it would be more difficult for the model to learn the

relationship between head-pose and gaze jointly online. In

this case, we sacrifice computation efficiency to conduct a

multi-stage training strategy. We first only train the face

model with the head-pose loss until it converges well. Then

we freeze the face model and use its inferenced output,

i.e. head-pose hidden features, to feed the gaze model for

gaze prediction. Under this strategy, we are able to secure

the stable performance of both models with less internal

constraints during training. In this setting, we specifically

train the face model on head-pose prediction and it back-

propagates only on its own and so as gaze model. Com-

paratively, we call this strategy explicit learning since we

separate the learning processes explicitly upon two tasks.

As shown in Tab. 3 and Tab. 1, HGD achieves the best ac-

curacy in our dataset and public datasets where head-pose

information is well preserved.

gw = Ftransform(Xeye, Xface), (1)

Ftransform =











Vface = CNNface(Xface,Wface),

Veye = CNNeye(Xeye,Weye),

gw = Ffusion(Vface, Veye),

(2)

Lossbatch =
M
∑

n=1

(Loss
(n)
gaze(gw, lg) + β · Loss

(n)
head

(h, lh)). (3)
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Figure 3: Structure of HGD-noHP. The yellow area denotes that

the landmark detector is trained on photo-realistic synthetic data

from UnityEyes [49]. The green area denotes the inference of

the landmark detector and the training of gaze detector on target

dataset.

Where Ftransform indicates the predict function from

eye and face to gaze, gw represents the predicted gaze,

CNNface and CNNeye represent head-pose and gaze

model respectively, Vface and Veye are respective hidden

features, Wface and Weye represent parameters in both

models respectively, Ffusion means the fusion layers, M is

the batch size, β is the weakening factor, both lg and lh are

the ground-truth labels and h means the head-pose.

4.2. Headpose Learned from Eye Deformation

In some of the public datasets, no head-pose informa-

tion is provided. In real-life scenarios, sometimes only eye

images would be provided for remote gaze estimation so

our model needs to be very robust to the offset from free-

head movement while maintaining accuracy. As mentioned

previously, based on works from [11, 34], we know that

head movement would change eye appearances, as further

demonstrated in Fig. 4. With investigation, we realize that

head-pose can also be approximated reversely from eye ap-

pearances solely, mainly eye features, e.g. shapes of pupils

and iris.

After inspired by model-based gaze estimation algo-

rithms [31], we designed a new appearance-based algo-

rithm, HGD-noHP, that focuses on predicting gaze from

eye’s deformations. Eyeball movement would mainly force

the movements of pupils and iris regions causing deforma-

tions respective to camera. However head movement would

not only cause the deformations from pupils and iris but also

the overall structure of eye regions including eyelids, etc. It

is indeed hard to differentiate between these two kinds of

causation relationships explicitly. Thus, instead of directly

learning attention maps or gazemaps as in [30] to mask out

specific regions like iris or eyeballs, we utilize labeled data

from UnityEyes 1 [49] to learn those two mappings from

two target losses, i.e. head-pose and gaze losses. We be-

lieve this implicit learning could best utilize the strength of

learning based methods.

[31] trains a tremendously large hourglass model on syn-

thetic data to predict eye’s landmarks and has a model-based

1https://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/tutorial.html

H

2
86

2

Figure 4: Example of multi-camera views in car. We collect data

through 4 cameras in different perspectives to allow models more

generally learn gaze estimation in real-world scenarios. The 1st

row shows images collected in daytime scenarios and the 2nd row

shows images collected in nighttime. Deformation of eye appear-

ance respective to camera view due to change of head-pose with-

out eyeball movement. The change of appearance may not be clear

when head movement is small but obvious when large.

framework followed to estimate the gaze based on these

predicted landmarks. Differently, we use a much simpler

model, ResNet-34 as the detection module to achieve bet-

ter computation efficiency, shown in Fig. 3. Its main task

is to serve as the backbone of a landmark detector to pre-

dict 16 landmarks of eye’s interior margins and iris (8 land-

marks for each category, 32 units in total). We first train the

landmark detector on synthetic eye images from UnityEyes.

Then we freeze the landmark detector and extract the infer-

enced hidden features out from the second last FC layer of

200 units. Further, we feed those hidden features to two ad-

ditional modules, gaze module and head-pose module. Each

of them consists of 5 FC layers to train to predict gaze and

head-pose respectively on UnityEyes. Those learning tasks

would train two modules to learn the important mappings

from landmark hidden features to gaze and head-pose.

Different from [31] only directly using the predicted

landmarks, on the target dataset, e.g. Columbia dataset,

we first extract inferenced features from landmark detector.

Based on that, we also extract inferenced features of 200

units from both gaze and head-pose modules. We concate-

nate those three hidden features as input to train a final gaze

model of 5 FC layers. We believe the concatenated hidden

features have richer information about deformations of eye

corresponding to both head-pose and gaze than just land-

marks. Furthermore, we also use the SimGAN [37] trained

on the target dataset to help improve the synthetic data by

adding more realistic elements (supplementary, Sec. Syn-

thetic Eyes from UnityEyes Improved by SimGAN). This

would compensate the accuracy loss due to the decreased

capacity of landmark detector. By learning landmark fea-

tures in the first stage, we add prior knowledge to guide the

first part of this framework and believe it would learn the

essential geometric features of eyes and the mappings from

those geometric deformations to both gaze and head-pose.

The training is conducted on photo-realistic synthetic data

from UnityEyes improved by SimGAN since labeling eyes’

landmarks to the details of interior margins and iris could
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be very ambiguous and tedious. We further demonstrate

that this side framework may not achieve better accuracy

than our main proposed method but still outperforms the

state-of-the-art in our dataset as shown in Tab. 3 and other

existing datasets like Columbia [38] and MPIIGaze [52], as

in Tab. 1 and Tab. 2.

5. Experiments

In this section, we first list our implementation details

and two evaluation metrics. We then thoroughly analyze

the importance of different parts in our algorithms through

component analysis. Lastly, we not only evaluate our algo-

rithms with the state-of-the-art on public datasets but also

on our own benchmark.

5.1. Implementation Details

Data Preprocessing: In our dataset, images are stored

in grayscale and sometimes have overexposure due to vari-

ous lightings. For alleviating the effect of overexposure, we

use Multilevel Histogram of Oriented Gradients (MHoG)

[6] + Linear Discriminant Analysis (LDA) which is invari-

ant to various illuminations to certain extent, as suggested

in [14]. We use MHoG + LDA to first extract features from

images and then concatenate it with the original images to

feed into the framework (supplementary, Sec. 10 Data Pre-

processing). This preprocessing could help improve testing

accuracy in our dataset, as in Tab. 4.

Training: We leverage Pytorch [32] as the implemen-

tation environment and our experiments are conducted on

a single NVIDIA GPU with 16 GB memory. Our frame-

works are trained for 100 epochs with batch size of 64. The

input images are set to be 224 × 224. The starting learn-

ing rate is set to 0.0001 and decays by 0.1 every 30 epochs.

Wing loss [7] is adopted in our methods. For HGD, after

many experiments, the weakening factor, β is empirically

set to 0.3 during online multi-task training. In HGD-noHP,

gaze and head-pose module each consists of 5 FC layers of

sizes: 200, 200, 100, 50 and 2. The gaze model consist

of 5 FC layers of sizes: 600, 300, 100, 32 and 2 to pre-

dict gaze. We use UnityEyes to generate 100,000 synthetic

images (90,000 for training, 10,000 for testing).

Evaluation Metrics: Different papers use their own

evaluation metrics as in [16]. For sharing the same evaula-

tion standard, we consistently use two methods in our work

(supplementary, Sec. Evaluation Metrics). Vector Error

Metric (VEM) calculates the 3D angle difference between

the predicted, P , and the labeled 3D vector, R, as in Eqn.

4 and Eqn. 5. We also use Angle Error Metric (AEM) to

calculate the real difference in angular values between the

predicted angle, (Θp, αp), and labeled angle, (Θr, αr), and

ensure their real values are not far off, as in Eqn. 6.

P = T (Θp, αp), R = T (Θr, αr), (4)

DV EM = arccos(P ·R), (5)

DAEM =
1

2n

∑

|Θp −Θr|+ |αp − αr| . (6)

Where T represents the transform function from 3D an-

gles to vectors, P represents the predicted angle, R rep-

resents the labeled angle and n represents the number of

samples in test data.

5.2. Evaluation on Public Dataset

5.2.1 Evaluation of Gaze Estimation with Direct Head-

pose Information

To better demonstrate the advantage of our algorithms over

the state-of-the-art, we further evaluate our algorithms over

three public datasets.

Backbone Framework Columbia [38] MPII [52] GazeCapture [17]

AEM VEM AEM VEM MSE

HGD - Exp 0.84 1.32 NA NA 2.10

ResNet-34 [12] HGD - Imp 0.82 1.35 NA NA NA

HGD-noHP 1.94 3.32 4.02 5.33 3.39

MPIIGaze [52] 5.42 8.02 4.41 6.38 6.93

HGD - Exp 1.52 2.49 NA NA 2.49

Lenet [20] HGD - Imp 1.59 2.41 NA NA NA

HGD-noHP 2.34 3.45 4.31 5.52 3.92

MPIIGaze [52] 5.32 8.26 4.51 6.43 8.03

iTracker [17] 4.1 7.32 NA NA 2.13

RedFTAdap [50] 3.54 NA 5.35 NA NA

PictorialGaze [30] 3.8 NA 4.5 NA NA

Bayes-adversarial [46] NA NA 4.3 NA NA

Table 1: Comparison of our algorithms with the state-of-the-art on

public datasets (cross-subject). Eye image input is pre-processed

in the fashion of single eye per unit.

As in Tab. 1, in all three public datasets, our frameworks

could outperform the state-of-the-art. For a fair comparison,

we also replace the backbone of our frameworks with Lenet

[20] and they still achieve better accuracy than the state-of-

the-art. MPII Gaze dataset [52] (not MPIIFaceGaze [39])

does not provide facial images and is collected in front of

laptops causing limited distributions of head-gaze combina-

tion. However, HGD-noHP could still take benefit from in-

corporating head-pose related information to outperform or

achieve a comparable accuracy against the state-of-the-art.

Even though GazeCapture [17] is collected using phones

or tablets and has a smaller distribution of head-gaze, our

frameworks could still generalize on it. With this constraint,

our frameworks may not be able to significantly demon-

strate its advantage in incorporating head-pose information

for gaze estimation. However, they could still achieve better

accuracy against the state-of-the-art.

5.2.2 Evaluation of Gaze Estimation without Direct

Head-pose Information

As mentioned earlier, in scenarios where direct head-pose

information is not available through vector format or facial

images, we could infer head-pose information through geo-

metric deformations from eye. Our HGD-noHP framework

focuses on learning eye features first and then transfer to

gaze prediction. In Tab. 2, HGD-noHP outperforms the

state-of-the-art by a significant margin with head-pose in-

formation removed purposely. This signifies the strong re-

lationship between eye features and head-pose.
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Columbia [38] UnityEyes [49]

HGD-noHP AEM 1.94 2.34

VEM 3.32 3.45

HGD-noHP w/o SimGAN [37] AEM 2.51 NA

VEM 4.17 NA

ResNet-34 [12] AEM 3.29 4.24

VEM 5.39 5.92

MPIIGaze [52] AEM 5.4 5.12

VEM 8.42 7.98

M-3D Gaze [55] AEM 4.09 4.87

VEM 6.2 5.67

Table 2: Comparison of HGD-noHP and other algorithms on pub-

lic dataset when head-pose information is removed purposely (de-

gree).

Method AEM VEM

HGD - Imp 3.69 5.17

HGD - Exp w/ BEC 1.79 2.87

HGD - Exp 2.53 3.67

HGD-noHP w/ BEC 2.94 4.6

HGD-noHP 3.21 4.97

iTracker [17] 5.61 8.64

iTracker with ResNet-34 5.56 8.07

MPIIGaze [52] 4.49 6.61

MPIIGaze with ResNet-34 3.71 5.44

M-3D Gaze [55] with ResNet-34 5.7 9.57

Table 3: Comparison of different head-gaze merging algorithms

on our dataset (degree).

5.3. Evaluation on the RealWorld Incar Gaze
Dataset

During driving, the driver has a relatively broader range

for head-pose and gaze among daily life activities, so we

select driving as our base scenarios for data collection. As

demonstrated in Fig. 5 (more detailed comparison in Tab.

1 of supplementary), In-car Gaze have the largest continu-

ous sampling ranges of head-pose and gaze compared with

existing datasets. 1,000 participants are invited from all dif-

ferent kinds of age groups and body traits to ensure the di-

versity. The collection is conducted inside a car with win-

dow and sunroof glasses open sitting outdoors throughout

daylight and night to imitate the real-life daily scenarios.

For designing a robust system, participants are also asked

to wear a variety of different attires including sunglasses,

glasses, hats, etc. Different from most, we also preserve fa-

cial images and label the gaze ground-truths for both left eye

and right eye independently from the same face. Last but

not least, 400 images are captured for each participant and

a large scale of 400,000 frames are stored. 4 near infrared

cameras (better visibility, less noise at night than RGB cam-

eras) are set up inside the car in different positions toward

the driver. During collection, our machine navigates a laser

pointer point to the front within a prefixed grid. For each

point, 4 photos are produced from 4 sync cameras, as in

Fig. 4. In our dataset, we also store 9 facial landmarks, eye

patches, face patches, recovered gaze ground-truths of both

left and right eyes, and head-pose vectors.

We, in depth, compare our methods of head-gaze merg-

ing with the state-of-the-art. In order to evaluate the al-

gorithms fairly, we also replace the backbone of iTracker
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Figure 5: Comparison of distribution of head-pose and gaze

across 3 datasets. On the left image, the first row shows the distri-

bution of gaze and the second one shows the distribution of head-

pose. The right image shows the distribution of head-gaze combi-

nation. The first row demonstrates the distribution in yaw direction

and the second one in pitch. Our dataset has the biggest sampling

ranges for both head-pose and gaze in both directions.

[17], MPIIGaze [52] and M-3D Gaze [55] frameworks with

ResNet-34 [12]. As in Tab. 3, all of our presented algo-

rithms could achieve better accuracy than the state-of-the-

art with a significant margin. By merging head-pose rep-

resentation, HGD with explicit learning method achieves

the best accuracy. HGD-noHP, due to their limit in head-

pose representation, achieve slightly worse accuracy. The

original iTracker framework [17] takes left eyes, right eyes,

faces and face grids as inputs for the gaze estimation task

with 2D on-screen settings. However, in more general real-

life settings, face grid may not be necessarily related with

gaze estimation but causes more noises. Furthermore, MPI-

IGaze [52] and M-3D Gaze [55] do not merge head-pose

and gaze as comprehensive as our frameworks, either, thus

having accuracy drop in their corresponding results.

Classification: The practical use of this work is to assist

to detects driver’s attention. Thus, it may not be necessary

to fully determine the exact angle where the driver is look-

ing. In this case, we split the frontal space of the driver into

9 sub-spaces (categories), modify HGD structure to a clas-

sifier and plot its results as in Fig. 6 (supplementary, Sec.

Regression and Classification). From the confusion matrix,

we could see that HGD could accurately catch most of the

gaze actions in practice.

5.4. Component Analysis

Significance of Head-pose Information: In Tab. 4, the

first row represents our main proposed method, HGD. It

demonstrates that when all components are included, HGD

framework could achieve the best accuracy. From top to

bottom, we in sequence get rid of MHoG + LDA, head-pose

task and face model. As a result, we observe increasing gaze

errors which demonstrate the importance of head-pose in-

formation in gaze estimation comparatively. Additionally,

as listed in Tab. 5, incorporating head-pose information

into gaze estimation could consistently gain improvements

across different backbones. Our work focuses on proposing

a novel framework for incorporating head-pose into gaze
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estimation under two different scenarios regardless of back-

bones. Our solution is general to various backbone neural

networks including Lenet, ResNet-34, ResNet-52, ResNet-

101, ResNet-121, etc.

Face Model Head-Pose Task mHoG + LDA AEM VEM

X X X 1.79 2.87

HGD X X x 2.33 3.53

X x x 3.95 6.25

x x x 6.88 8.48

Table 4: Comparison of HGD with various components on In-car

Gaze dataset.

Backbone ResNet10 ResNet18 ResNet34 ResNet56 ResNet101

w/ Face Model AEM 6.01 2.98 1.79 1.77 1.81

(head-pose information) VEM 8.07 4.67 2.87 2.83 2.85

w/o Face Model AEM 4.23 3.92 3.67 3.69 3.65

VEM 6.93 6.52 5.28 5.64 5.45

Table 5: Comparison of HGD framework with different back-

bone structures on In-car Gaze dataset. Despite that Resnet-56 and

Resnet-101 may achieve slightly better accuracy than Resnet-34 in

certain scenarios, we choose Resnet-34 as the main backbone due

to its relatively much better computational efficiency.

Single Eye vs Double Eye: When a person is gazing at

an object, both eyes have different gaze angles due to the

distance between two pupils causing asymmetry. Gaze an-

gles from both eyes should not be regarded as the same as

assumed by many existing datasets [52, 38, 9]. This as-

sumption would potentially risk the accuracy of gaze esti-

mation. Under this insight, during collection, we purposely

collect the specific gaze ground-truth labels for both eyes

independently. To the best of our knowledge, our dataset is

the only dataset that directly labels the difference between

right eye’s and left eye’s gaze angles. Furthermore, we

conduct extensive comparison experiments focusing on dif-

ferent means of merging both eyes during gaze estimation.

These methods include: SEM, BEH, BEV and BEC. Note:

SEM is the abbreviation for Single Eye Method where the

algorithm only takes one eye at a time and outputs one gaze;

BEH is the abbreviation for Both Eyes to be Horizontally

stitched together and used as the input; BEV is the abbrevi-

ation for Both Eyes to be stitched together Vertically (sup-

plementary, Sec. Merging Double Eyes). Since In-car Gaze

is the only one that directly keeps different gaze labels for

both eyes from the same face thus these comparison exper-

iments could only be conducted on In-car Gaze, as in Tab.

3.

From the results, we conclude that BEC help the algo-

rithm perform the best in both accuracy and computation ef-

ficiency. BEC could potentially find the correlation between

both eyes in gaze estimation during training. When we

conduct the comparison experiments on our full collected

dataset, we note that BEC outperforms the SEM method by

around 1 degree in accuracy. Furthermore, when we limit

the training dataset to only 20,000 eye images (equivalent to

20,000 input units for SEM or 10,000 input units for BEC

method), BEC method outperforms the SEM by almost 2

degrees in accuracy. We plot out the test gaze error graph
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Figure 6: Left is a classification confusion matrix of HGD with

explicit learning. The labeled number from 1 to 9 represents the

9 sub-spaces in front of the driver. Each sub-space represents an

object, e.g. rear mirror (supplementary, Sec. Regression and Clas-

sification). Right is the test gaze error graph for both SEM and

BEC methods within 30 epochs given limited 10000 units of data

in our collected dataset. Under the same settings, test gaze error

of BEC decreases faster than SEM. Best viewed in color.

for both SEM and BEC methods within 30 epochs given

limited data and find out that, under the same settings, test

gaze error of BEC would decrease faster than SEM, as in

the right of Fig. 6. We believe this is due to the relatedness

between right eye and left eye. This relatedness is easier for

BEC to learn given both eyes from the same face especially

when the training data is limited.

Different from [3] focusing on the difference, asymmetry

of two eyes and trying to optimize gaze prediction through

the better one between two streams, our methods try to learn

the difference, asymmetry, through a single stream of fewer

parameters. We believe the similarity between two eyes is

substantial enough for the model to learn the difference.

Dataset Method AEM VEM Dataset AEM VEM FLOPS(G)

SEM 2.1 3.44 7.72 11.57 0.627

In-car Gaze BEH 2.04 3.33 In-car Gaze 7.31 11.08 0.624

(full) BEV 2.2 3.55 (20,000 Eyes) 7.54 11.36 0.624

BEC 1.79 2.87 6.19 9.42 0.32

Table 6: Comparison of using single or double eyes. BEC con-

catenates both eyes on the channel level. Thus the shape of input

for both eyes would change from 2×W×H×C to W×H×2C.

For all the methods using both eyes as inputs, the algorithms would

output the gaze angles of both eyes respectively and the final error

is calculated by averaging both eyes’ errors together.

6. Conclusion

In this work, we fully analyze the insufficiency of current

methods and datasets on incorporating head-pose informa-

tion into gaze estimation. We propose our frameworks that

could better incorporate head-pose into gaze estimation in

two scenarios. We further collect our own dataset to better

evaluate our algorithms. Extensive evaluations demonstrate

the advantage of our algorithms in free-head movement and

our dataset in richer head-gaze distribution.
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