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Abstract

Microplastics pollution has been recognized as a seri-

ous environmental concern, with research efforts underway

to determine primary causes. Experiments typically gener-

ate bright-field images of microplastic fibers that are filtered

from water. Environmental decision making in process en-

gineering critically relies on accurate quantification of mi-

croplastic fibers in these images. To satisfy the required

standards, images are often analyzed manually, resulting in

a highly tedious process, with thousands of fiber instances

per image. While the shape of individual fibers is relatively

simple, it is difficult to separate them in highly crowded

scenes with significant overlap. We propose a fiber instance

detection pipeline, which decomposes the fiber detection

and segmentation into manageable sub-problems. Well sep-

arated instances are identified with robust image processing

techniques, such as adaptive thresholding, and morpholog-

ical skeleton analysis, while tangled fibers are separated by

an algorithm based on deep pixel embeddings. Moreover,

we present a modified Intersection-over-Union metric as a

more appropriate similarity metric for elongated shapes.

Our approach improves significantly on out-of-sample data,

in particular for difficult cases of intersecting fibers.

1. Introduction

Microplastics: Plastics products are an ubiquitous com-

modity in our society. Pollution with macroscopic plastics

has caused significant stress on our environment, as they are

highly resistant to natural degradation. Much less attention

has been devoted to microscopic plastic particles in water

and its accumulation in animal and human organisms; con-

cerns have been raised only recently [5].

To develop effective solutions to reduce microplastic

pollution, researchers have investigated its origins, such as

the everyday washing of synthetic textiles [9, 10]. Risk-

assessment, as in [2], depends on reliable statistical anal-

ysis of samples, which are typically microscopy images of

∗Equal contribution

Figure 1: Example crop of a filter image containing mi-

croplastic fibers.

microplastic fibers filtered from water samples, as shown

in Figure 1. While the fiber mass density can be efficiently

weighed with a scale, the quantification of other key figures,

such as fiber count density, and fiber length distribution, re-

quires tedious identification and measurement of thousands

of individual fiber instances.

Curvilinear Objects: In fact, statistical quantification of

object instances from image data poses a common problem

in the life sciences. While there exists a multitude of objects

of interest, we focus on thin, and elongated microplastic

fibers. However, curvilinear objects are an important sub-

class in general.

For instance, the C. elegans worm has served as an es-

sential model organism for research in developmental biol-

ogy [1]. Another example are amyloid fibrils of prion pro-

teins, which play an important role in the understanding of

neurodegenerative diseases [3].

We also like to mention short-fiber-reinforced poly-

mers, which are basically a three-dimensional collection of

densely packed, but non-intersecting, straight sticks. Their

analysis helps material scientists to quantify the effects of

stick length and orientation on their tensile strength [6].
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Figure 2: Flowchart of the proposed fiber instance segmentation pipeline. The Deep Pixel Embedding module is highlighted

by the yellow square box.

Instance Segmentation: In general, automatic instance

detection and segmentation in images define image pro-

cessing tasks for computer vision. Recently, it received in-

creased attention due to the progress of deep learning in se-

mantic segmentation, and object detection.

In particular, generic methods such as the celebrated

Mask-RCNN [8] provide a solution for a wide range of ob-

jects. Even though fiber instances appear to be consider-

ably less complex than objects commonly encountered in

computer vision tasks, they present challenges due to com-

plex instance configurations. A typical fiber scene con-

tains hundreds to thousands of instances, whereas natural

scenes usually contain a few dozens of instances. While this

complication can be reduced by separation into independent

parts, the remaining clusters still contain a sizable number

of entangled instances that are highly crowded and over-

lap significantly. This situation is frequently recognized as

a cause of failure for generic instance segmentation meth-

ods [11]. In particular, it aggravates the performance of

methods based on bounding boxes, because each flat box

will cover many thin instances.

Lastly, the imaging mechanism of bright-field mi-

croscopy introduces additional ambiguity at instance inter-

sections, since objects are translucent, and this property ren-

ders it e.g. difficult to determine occlusions and depth or-

dering.

Contributions: We study the problem of instance seg-

mentation in microscopy images containing many over-

lapping, fiber-like instances. A robust image processing

pipeline similar to [17], which decomposes the instance seg-

mentation problem into a sequence of easier subproblems

as shown in Figure 2, is proposed. The main components

are locally adaptive thresholding [18], and morphological

skeleton analysis [7] combined with branch grouping based

on fiber continuity.

While this simple baseline works well for well-separated

fibers, it has difficulty to resolve tangled fibers. Thus,

we specifically address instance crossings with deep pixel

embeddings (DPE), which is a proposal-free instance seg-

mentation method, previously developed in the context of

autonomous driving [4], and applied in polymers analy-

sis [12].

Precision and recall of fiber detection shows that the

combination of image processing with deep pixel embed-

dings improves the separation of difficult out-of-sample

fiber clusters. In addition, we introduce a modified

Intersection-over-Union score which is a more faithful mea-

sure for the similarity between elongated shapes.

2. Related Work

Little image processing work exists that specifically ad-

dresses the visual segmentation of microplastic fibers. The

work of [13] uses adaptive thresholding, and connected

component analysis to identify instances. However, their

instances appear very well separated, which avoids many of

the complications that we face in our image samples (Fig-

ure 1).

Related work in developmental biology has been devoted

to the automatic analysis of C. elegans. The work of [17]

first segments all worm pixels via thresholding. This bi-

nary mask is transformed into a morphological skeleton,

which is used to identify endpoints, branches, and intersec-

tions. Crossings are resolved by connecting branches with

the lowest mutual angle relative to the junction point.

The work of [15] is also based on image skeletonization.

However, they apply a score-guided graph search method

to group skeleton branches. Different branch groupings
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are scored greedily using a probabilistic shape model for

worms.

Complementary to skeleton-based approaches, the work

of [14] uses active contours to detect worms. This ap-

proach minimizes contour energies that contain data and

shape terms, but its initialization depends on ground-truth

endpoints.

The automated quantification of amyloid fibrils was

shortly addressed by [20], who applies a similar approach

as [17]. As to short-fiber-reinforced polymers, the recent

work of [12] uses deep pixel embeddings [4] to separate

fibers.

Mask-RCNN: As we use Mask-RCNN as a baseline, we

shortly summarize the method originally presented by [8].

Mask-RCNN is a complex, multi-modular deep learning

model that has been very successfully applied to instance

segmentation on popular datasets such as Pascal VOC, and

COCO.

After extraction of image features with convolutional

layers, a Region Proposal Network (RPN) [16] determines

regions, which potentially contain an object. These regions

are transformed to a fixed-size representation by so-called

RoI Align layers. Each region feature vector is then passed

to two branches. The first branch computes the confidence

for each possible object class to be presented in the region,

and a corresponding bounding box. The second branch

computes a binary segmentation for each object bounding

box.

In the end, Mask-RCNN returns the bounding box, and

segmentation, of the object class with the highest confi-

dence. In our case, there is only one object class, as we

deal only with fibers of the same type.

Deep Pixel Embeddings: Deep pixel embeddings (DPE)

is applied to the resolution of fiber crossings; therefore we

briefly sketch the method originally presented by [4].

In contrast to Mask-RCNN, DPE does not employ region

proposals or bounding boxes for object detection. More-

over, DPE does not depend on any particular network ar-

chitecture, but is rather characterized by its loss function.

Given an input image with shape h × w, each pixel is

mapped to a d-dimensional embedding vector, typically by

some CNN. Let us assume that a number of k instances is

present in the image. The resulting feature map with shape

h × w × d, and a one-hot h × w × k label map, are then

subject to three different terms of the DPE loss.

The DPE loss function is constructed such that the em-

bedding vectors of the pixels of one instance should be sim-

ilar, while embedding vectors corresponding to different in-

stances should be dissimilar [4]. Thus, the loss function has

two competing terms to achieve this objective. First, a vari-

ance term forces the embedding vectors of one instance’s

pixels to be close to their common mean to make them more

similar to each other. Second, a repulsion term tries to push

the embedding means of different instances apart from each

other. Third, a regularization term penalizes the norm of

each instance mean to bound their magnitude. After train-

ing, inference is performed by clustering the predicted pixel

embedding vectors, e.g. by mean shift clustering.

3. Methods

Image Processing Pipeline

Fiber instance segmentation constitutes an essential part

of the image processing pipeline to quantify fiber statistics.

The core components of the pipeline are summarized by the

flowchart shown in Figure 2.

The raw fiber images usually contain other elements be-

sides the fiber instances themselves, such as a label and a

ruler. Thus, the first step in all our processing requires to

extract the fiber area. Images are converted to gray-scale

and locally adaptive thresholding removes small image per-

turbations by using the average value of the 5× 5 neighbor-

hood of each pixel as a threshold. Then, small connected

components of the mask are filtered out that correspond to

dirt.

Next, an image morphology algorithm [19] computes the

morphological skeleton of each connected component to de-

termine their endpoints, junction points, and branches. At

this point, we can already sort out skeletons of well sep-

arated instances by checking for the absence of junction

points. The remaining skeletons, which contain at least one

junction point, require additional processing to separate the

tangled instances.

In the following, we discuss two approaches to group

branches at junction points, which means the matching of

fiber branches incident on a given junction. Or phrased in

different words, we infer how to continue a fiber across a

junction point.

Branch Grouping by Fiber Continuity: As a baseline

approach for branch grouping, we implement the following

intuitive strategy, which is also used in [17,20]: It computes

the pairwise angles between skeleton branches incident on

a junction point, and pairs them according to lowest mutual

angle.

Branch Grouping with Deep Pixel Embeddings: The

branch grouping strategy based on continuity is solely re-

lying on skeleton information in the very vicinity of a junc-

tion. Image analysis of junction points would benefit from

information on the image context around a junction. For

this purpose we use Deep Pixel Embeddings.

This algorithm is the first step in our pipeline which in-

volves a learning mechanism, i.e. model training on exam-
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Figure 3: Instance segmentation results of Deep Pixel Em-

bedding on intersection patches. The examples were se-

lected randomly, and are ordered by increasing number of

instances present in the input patch.

ples prior to inference. Specifically, we train the DPE model

on intersection patches, and their corresponding instance la-

bels. Intersection patches are fixed-size image crops cen-

tered on the junction, which are additionally masked with

the previously obtained semantic mask.

After training, the DPE model can be used to predict in-

stance labels on unseen intersection patches, as shown in

Figure 3. These intersection patch labels are used to inform

the skeleton branch grouping. This means, each skeleton

branch is assigned to the majority label of the intersection

area. Afterwards, pairs of branches with the same label are

grouped together.

Component Merging

While the junction pixels are in principle shared between

the overlapping fibers, they are not assigned to a particular

instance in the case of grouping by continuity. In the case

of grouping with DPE, the junction pixels are randomly as-

signed to one of the overlapping instances.

To join the grouped skeleton branches, we simply con-

nect their ends with a straight line across the junction to

form a connected fiber skeleton. All fiber skeletons are di-

lated again to their original width to obtain the final instance

segmentations.

4. Experiments

Data

The image data and fiber labels used in this

work were collected by researchers of the Environ-

mental Risk Assessment and Management group at

EMPA. They provided seven high resolution images

(8100× 5400, 0.01mm/pixel) of filters, which contain on

average 1000 fiber instances (between 300 and 2400).

The corresponding label masks were obtained by manual

pixel annotation. Over all images, 66% of the fibers did not

intersect with any other fiber, which we refer to as single

fibers. Moreover, 15% intersect exactly with one other fiber,

6% intersect with two other fibers, and 3% intersect with

three other fibers. We refer to fibers which intersect with

one or more other fibers as “tangled” fibers.

Note, while a fiber rarely intersects with more than three

other fibers, the size of fiber clusters can be much larger

than that, because fibers are connected via other fibers.

Preliminary analysis

As discussed in the introduction, the analysis of fiber in-

stances can be broken down into a sequence of easier prob-

lems. In this section we discuss particularly simple ap-

proaches to estimate the key figures fiber count and fiber

length distribution. However, we will conclude that more

sophisticated solutions are indeed necessary, in particular

for the estimation of the fiber length distribution.

Fiber Counting by Endpoint Counting: An intermedi-

ate result of the skeleton analysis is the detection of fiber

endpoints. As we know that fiber instances always have two

endpoints, it is straightforward to estimate the number of

fibers from the number of endpoints. This approach would

avoid the identification of entire fiber instances, and reduce

it to the simpler problem of endpoint detection.

Averaged over all image samples, this approach achieves

an endpoint detection precision of 0.90±0.02, and recall of

0.91± 0.01. We use a distance of 10 pixels as cutoff to de-

termine false positive (FP), true positive (TP) and false neg-

ative (FN) instances (as a reference, the mean fiber length

is 76 pixels). We already observe that endpoints of tangled

fibers are harder to detect than those of single fibers (FN

fractions are 0.25, and 0.04, respectively). The average, rel-

ative fiber count difference was 10 ± 2 %. However this

metric can be misleading, as it conceals the compensation

of false negatives by false positives.

Length Distribution of Single Fibers: As mentioned in

Section 4, two-thirds of all fibers do not intersect with any

other fiber, which makes them much easier to segment. Due

to the large count of fibers, we could hope to estimate the

length distribution of all fibers by simply using the statistics

of the single fibers. This approach would avoid the compli-

cated resolution of tangled fibers.

However, our observations revealed the fact that tangled

fibers are on average 63% longer than well-separated fibers,

which invalidates this shortcut. We assume that longer

fibers have a bias to get entangled more easily. Conse-

quently, proper estimation of the length distribution needs

to resolve the length of tangled fibers, too.
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(a) Montage of Label/Prediction pairs

(b) IoU/mIoU histograms

Figure 4: (a) Montage of label/prediction pairs (blue/red)

produced with the embedding method. Each example has

IoU < 0.40 and mIoU ∈ [0.50, 0.55]. Overlap is indicated

in green. (b) Histogram of scores over all label/prediction

matches for the embedding method. Blue: IoU score.

Green/Orange/Red: Stacked histograms of mIoU scores

colored according to the argmax number of dilations k.

Evaluation of Fiber Detection

To evaluate the precision and recall of instance segmen-

tation, we need a way to determine whether a predicted fiber

is a TP or FP. For this purpose, we need to match it with

one of the labeled fibers, and decide whether the match sur-

passes a true positive threshold to be counted as TP. The

match is then classified as “good enough” for a TP instance.

The matching is achieved simply by selecting all label

instance segmentations that intersect with the predicted in-

stance segmentation. If any of the intersecting labels ob-

tains a “good enough” score with the prediction, we reg-

ister a TP detection, otherwise FP. Every label that is not

matched “sufficiently well” to any of the predictions, is reg-

istered as FN.

It is apparent, that the definition of “good enough” is crit-

ical for the evaluation. Commonly, the Intersection over

Union (IoU) score, or Jaccard index, between label and pre-

diction masks is invoked for this decision. While the Jac-

card index is a reasonable measure of fit for flat objects en-

countered in standard computer vision problems, it is less

appropriate for thin and elongated objects like fibers, which

are characterized by a low area to border ratio. More specif-

ically, the IoU score is not robust to slight misalignments

between prediction and label, which makes it an overly pes-

simistic similarity score. As a consequence, predictions that

are semantically close to a label, might still receive a very

low IoU score.

To turn the common IoU into a more meaningful mea-

sure for the similarity of elongated objects, we propose to

use a modified IoU:

mIoU(P,L) = max
k∈N0

Sk(P,L) with

Sk(P,L) =
|(Pk ∩ L) ∪ (P ∩ Lk)|

|Pk ∪ Lk|
(1)

where Pk, Lk denote k-time binary dilations of the pre-

diction and label masks, respectively. Intuitively, the mIoU

score is high, when a large intersection can be achieved with

little dilation. Conversely, if intersection is small even with

large dilation, the mIoU diminishes. This makes it tolerant

against small differences, in particular shifts.

To demonstrate the difference between IoU and mIoU,

we extract prediction/label pairs with IoU smaller than 0.40

and mIoU between 0.50 and 0.55. We show a montage of

these fibers in Figure 4a. While these pairs represent per-

ceptually good matches, their quality is underestimated by

IoU. In contrast, mIoU measures their fit more faithfully

with respect to the ground truth labeling.

We also report some simple formal properties of the

mIoU. It is symmetric in its arguments L, and P and it is

at most 1, if and only if P = L. Moreover, the modified

IoU is always larger or equal to the usual IoU, and reduces

to IoU when no dilation is performed, i.e. S0(P,L) =
IoU(P,L). Lastly, the maximum operator in the defini-

tion of mIoU is well behaved for all finite-size masks, i.e.

∀P,L : argmaxk Sk(P,L) < ∞.

As shown in Figure 4b, the mIoU is practically often

equal to the IoU, but in many cases the number of dilations

is one and sometimes it exceeds two dilations.

Evaluation Results

Instance Detection: For these experiments we performed

leave-one-out cross-validation on 7 high-resolution mi-
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(a) Morphological Predictions (b) Mask R-CNN Predictions

(c) Grouping by Continuity (d) Grouping by DPE

Figure 5: Comparison of instance predictions. (a) Endpoints (•) and crossings (✕) detected by skeleton analysis. TP shown

in green, FP in red, and FN in blue. (b,c,d) Exemplaric instance predictions of the three methods discussed in the main text.

The input image is the same in each case.

crofiber images, i.e. for each fold a model is trained on six

images, and tested on the remaining image. For the evalua-

tion of instance detection, we choose an mIoU threshold of

0.50 to determine true positive (TP) predictions. The results

Table 1: Evaluation of fiber detection precision and recall

on single and tangled fibers. The mIoU>50 metric de-

scribes the fraction of instance predictions that achieve an

mIoU score of more than 0.50.

M-RCNN Skeleton Embedding

Precision
Single 0.57±0.03 0.80±0.03 0.83±0.03

Tangled 0.23±0.07 0.30±0.03 0.41±0.04

Recall
Single 0.57±0.02 0.80±0.03 0.81±0.03

Tangled 0.23±0.01 0.36±0.03 0.43±0.04

mIoU>50

Single 0.57±0.03 0.78±0.02 0.81±0.03

Tangled 0.16±0.02 0.29±0.02 0.40±0.04

in Table 1 clearly show the advantage of branch grouping

with DPE over branch grouping by continuity. In particular,

DPE significantly improves the detection quality of tangled

fibers, which is also apparent in the instance prediction ex-

amples shown in Figure 5.

On single fibers, the advantage of DPE over continuity

grouping is naturally small, because no junctions need to be

resolved. However, in some cases, DPE can reject falsely

detected junctions in single fibers, as for example shown in

the bottom right corner of the examples in Figure 5.

When we use IoU>50 instead of mIoU>50 to eval-

uate precision and recall for the DPE approach, the

results for single fiber precision/recall decrease to

0.64±0.02/0.63±0.02, and tangled fiber precision/recall re-

duces to 0.30±0.04/0.32±0.04. This decrease is expected, as

IoU is naturally a rather pessimistic metric, which will re-

ject many matches, even though they are reasonable. This

undesirable property is also illustrated by the analysis in
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(a) (b)

(c) (d)

Figure 6: (a) mIoU distribution of predictions on single fibers; (b) mIoU distribution for predictions on tangled fibers; (c)

joint distribution of mIoU scores between label-matched predictions of M-RCNN and Embedding; (d) Joint distribution of

mIoU scores between label-matched predictions of Skeleton and Embedding. The diagonal line in (c,d) indicates the y=x

level.

Figure 4. In any case, using IoU would not change the rank-

ing of the compared methods.

Instance Segmentation Quality: Moreover, we assess

the quality of instance segmentation masks. As shown in

the bottom row of Table 1, the approach using DPE achieves

the highest fraction of instance predictions which have an

mIoU larger than 0.50 with their matched label (denoted by

mIoU>50). Again, the difference is particularly pronounced

for tangled fibers.

In addition to these bulk numbers, we also investigate

the mIoU distribution of predictions in Figure 6. While the

mIoU distributions for DPE and continuity grouping (skele-

ton) are virtually the same for single fibers (Figure 6a), the

number of low-mIoU predictions of tangled fibers is clearly

reduced for DPE (Figure 6b).

The joint distribution of the mIoU for fibers matched be-

tween Mask-RCNN and DPE (Figure 6c) shows that the

average improvement is not the cumulative result of minor

improvements for every case, but rather the result of better

performance of DPE on difficult cases. This performance

gain on difficult instances is also particularly apparent in

Figure 6d, which shows that DPE significantly improves the

failure cases for which continuity based grouping achieves

only low mIoU.

Count and Length Results: We also report results for

fiber count and length estimation, which are usually the rel-

evant figures for practitioners, even though their diagnostic

value for instance segmentation is questionable.

The mean relative count difference (averaged over im-

ages, taking into account every prediction, independent of

its mIoU) is 7± 2% for the Mask-RCNN model, while it is

17 ± 2% for the skeleton baseline, and 7 ± 2% for the em-
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bedding model. However, as mentioned already before, the

count difference must be interpreted with caution, because

FP predictions can compensate FN, and vice versa. For this

reason, one should rather consider precision and recall as in

Table 1.

The mean relative length difference (averaged over all

predictions with mIoU> 0.50) for the Mask-RCNN model

is 11 ± 3%, while it is 9 ± 3% for the skeleton baseline,

and 8±3% for the embedding model. The difference of the

length results between single and tangled fibers is minor.

To put these results into perspective, the variability be-

tween four human raters was measured for one image. The

mean pairwise difference of the total count between raters

was found to be 4 ± 1%, while it was 6 ± 2% for the fiber

length, averaged over all fibers. As expected, this result in-

dicates that the disagreement between human raters is lower

than the disagreement with the presented automatic meth-

ods. Moreover, the advantage of human annotators is more

apparent for the fiber count, while it is barely significant

when measuring fiber length.

5. Conclusion

We have presented a pipeline for instance segmentation

of microplastic fibers in microscopy images. The image

processing pipeline relies on a combination of robust image

processing methods to deal with the bulk of single fibers,

and Deep Pixel Embeddings to resolve the difficult tangled

cases.

We demonstrate the advantage of using DPE for skele-

ton branch grouping over grouping strategies by continuity

and perceptual organization. DPE improves the resolution

of complex fiber junctions, because it considers the image

context around the junction for disambiguation and visual

semantics extraction.

Additionally, we propose a modified Intersection-over-

Union score for elongated objects to make the assessment

of their similarity more faithful. The proposed algorithmic

pipeline for fiber detection and analysis serves as an exam-

ple for flexible data analysis with robustness by adaptive

design of the various processing steps.
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