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Abstract

Accurate detection and segmentation of cell nuclei in

volumetric (3D) fluorescence microscopy datasets is an im-

portant step in many biomedical research projects. Al-

though many automated methods for these tasks exist, they

often struggle for images with low signal-to-noise ratios

and/or dense packing of nuclei. It was recently shown for

2D microscopy images that these issues can be alleviated

by training a neural network to directly predict a suitable

shape representation (star-convex polygon) for cell nuclei.

In this paper, we adopt and extend this approach to 3D vol-

umes by using star-convex polyhedra to represent cell nu-

clei and similar shapes. To that end, we overcome the chal-

lenges of 1) finding parameter-efficient star-convex polyhe-

dra representations that can faithfully describe cell nuclei

shapes, 2) adapting to anisotropic voxel sizes often found

in fluorescence microscopy datasets, and 3) efficiently com-

puting intersections between pairs of star-convex polyhedra

(required for non-maximum suppression). Although our ap-

proach is quite general, since star-convex polyhedra include

common shapes like bounding boxes and spheres as special

cases, our focus is on accurate detection and segmentation

of cell nuclei. Finally, we demonstrate on two challenging

datasets that our approach (STARDIST-3D) leads to supe-

rior results when compared to classical and deep learning

based methods.

1. Introduction

Detection and segmentation of cell nuclei in volumetric
(3D) fluorescence microscopy images is a ubiquitous prob-
lem in developmental biology and often constitutes the first
step when studying cellular expression patterns, or when
tracing cell lineages in developing organisms [17, 22]. The

⋆Equal contribution

task of nuclei detection is to roughly locate all individual
nuclei inside a 3D volume, e.g. by enumerating their cen-
ter points or bounding boxes. On the other hand, seman-

tic segmentation aims to label each pixel with a semantic
class (e.g., nucleus or background), but is not concerned
with discerning individual nuclei. Finally, instance seg-

mentation is more ambitious since it combines these tasks
by seeking a separate label mask for each individual nu-
cleus. As modern microscopes produce increasingly large
3D datasets, many automated instance segmentation meth-
ods have been proposed over the years [17]. These include
classical thresholding approaches with pixel-grouping via
connected component, morphological methods based on the
watershed transform [4, 16, 7], and optimization via graph-
cuts [5]. More recently, methods based on deep learning
have been shown to vastly improve results for natural and
biomedical images alike [11, 24, 25].

In general, deep learning based instance segmentation
can be roughly categorized into 1) methods that first per-
form semantic segmentation followed by grouping of pix-
els into distinct objects (e.g. U-Net [9, 6]), and 2) methods
that first predict axis-aligned bounding boxes of individual
objects with a subsequent semantic segmentation step for
each found object (e.g. [11, 27, 26]). Despite the advances
made by these methods, they often still underperform due
to the low signal-to-noise ratios and dense packing of nu-
clei in typical fluorescence microscopy datasets. In partic-
ular, methods of category 1) are prone to erroneously fuse
touching nuclei, and those of category 2) may fail to discern
objects that are poorly approximated with bounding boxes.

These problems have recently been highlighted by
Schmidt et al. [21] for the case of 2D fluorescence mi-
croscopy images. To alleviate these issues, [21] proposed
a method called STARDIST, which uses a neural network
that directly predicts an appropriate shape representation
(star-convex polygons) for cell nuclei and demonstrated im-
proved results. Concretely, for every pixel inside an object

3666



Input Segmentation (GT) Object probability Star-Convex distancesa)

c)

b)

Circumscribed Sphere 

(upper bound)

Inscribed Sphere 

(lower bound)

Convex Hull

(upper bound)

Kernel

(lower bound)

Rasterization

(exact)

Intersecting Polyhedra

Figure 1: a) The proposed STARDIST-3D method is trained to densely predict object probabilities p and radial distances dk to object
boundaries. b) Schematic of our CNN architecture based on ResNet [12]. c) During non-maximum suppression we use successively tighter
bounds to efficiently determine if the intersection volume of two star-convex polyhedra is above a given threshold (only shown in 2D here).

(nucleus) they predict the distance to the object boundary
along several radial directions, thus defining a star-convex
polygon. Furthermore, they also predict an object probabil-
ity to determine which pixels are part of cell nuclei and thus
are allowed to vote for an object shape. Since every pixel is
predicting a polygon to represent the entire shape of the ob-
ject it belongs to, they perform non-maximum suppression
to prune redundant shapes that likely represent the same ob-
ject. Note that [21] sits somewhere in between object detec-
tion and instance segmentation because the predicted shapes
are of relatively high fidelity, but are not pixel-accurate.

In this paper, we adopt and extend the approach of [21]
to the case of 3D volumes and use star-convex polyhedra

as shape representations for cell nuclei and similar shapes.
We directly predict the polyhedra parameters densely for
each pixel and then use non-maximum suppression (NMS)
to prune the highly redundant set of obtained polyhedron
shapes to ideally retain only one predicted shape for each
true object in the image. Please see Fig. 1 for an overview
of our approach. Note that we keep the benefits of [21], first
and foremost to accurately disambiguate densely packed
objects in images with low signal-to-noise ratios. Fur-
thermore, star-convex polygons/polyhedra are a superset of
convex shapes in 2D/3D and thus include common shapes
like bounding boxes and circles/spheres as special cases.

Contributions The extension of [21] from 2D to 3D is
challenging and our main contribution in this paper. First,
computing the intersection of two star-convex polyhedra (as
required for NMS) efficiently is non-trivial (see Section 2.3
and Fig. 1c), but highly necessary to make this approach
practical for large 3D volumes. Second, while [21] used 32
radial directions to represent 2D nuclei shapes, a naive ex-

tension to 3D would require 322 = 1024 directions which
is not feasible due to the excessive amount of computation
and memory required for large 3D volumes. We show that a
more judicious selection of radial directions (Section 2 and
Fig. 1a) enables faithful shape representations with as little
as 64 values. Third, microscopy volumes are commonly ac-
quired with anisotropic voxel sizes that result in squeezed
nuclei shapes along the axial (Z) direction. We find that it
is critical to adapt the star-convex representation to account
for this anisotropy of the data to achieve good results (Sec-
tions 2 and 3). Finally, we demonstrate on two challeng-
ing datasets that our proposed method (STARDIST-3D) leads
to superior results when compared to a classical watershed
method and U-Net baselines.

2. Method

2.1. Starconvex polyhedra

We describe the 3D shape of a single object (cell nu-
cleus) with a star-convex polyhedron. Concretely, for each
pixel inside an object we compute the distances dk to the ob-
ject boundary along a fixed set of n unit rays ~rk. To obtain
a faithful shape model, we use rays that are approximately
evenly distributed on an ellipsoid representative of the ob-
jects in a dataset. To that end, we first compute the points
(xk, yk, zk)k=0...n−1 of a spherical Fibonacci lattice [10]

zk = −1 + 2k
n−1

,

yk =
√

1− z2k sin
[

2π(1− ϕ−1)k
]

,

xk =
√

1− z2k cos
[

2π(1− ϕ−1)k
]

,
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Figure 2: Reconstruction accuracy (mean intersection over union)
of ground-truth instances when using different unit rays (Equidis-
tant/Fibonacci) and anisotropy factors s (for dataset PARHYALE).

where ϕ = 1+
√
5

2
denotes the golden ratio. To account for

anisotropy of the data we generate intermediate, anisotrop-
ically scaled vectors ~uk =

(

xk

sx
, yk

sy
, zk
sz

)

. The respective

anisotropy factor ~s = (sx, sy, sz) is calculated as the me-
dian bounding box size of all objects in the training images.
The final unit rays ~rk are then computed via normalization
~rk = ~uk

| ~uk| . The surface of a star-convex polyhedron rep-
resented by the distances dk is then given by its vertices
dk · ~rk and triangulation induced by the convex hull facets
of the unit rays ~rk (which is a convex set by definition). We
generally find that a sufficiently accurate reconstruction of
the labeled 3D cell nuclei in our ground-truth (GT) images
can be obtained with as few as 64 rays. Fig. 2 shows the
reconstruction fidelity for a dataset with highly anisotropic
images (PARHYALE, cf. Section 3) and highlights the im-
portance of using an appropriate anisotropy factor ~s. Note
that ~s is automatically computed from the GT images and
does not have to be chosen manually. Furthermore, Fig. 2
shows that our ray definition (Fibonacci) is more accurate
than using equidistant (polar/azimuthal) distributed rays.

2.2. Model

Following [21], we use a convolutional neural net-
work (CNN) to densely predict the star-convex polyhe-
dron representation and a value that indicates how likely
a pixel is part of an object. Concretely, for each pixel
(x, y, z), the CNN is trained to predict the n radial dis-

tances {dk(x, y, z)}k=0...n−1 to the object boundary as de-
fined above and additionally an object probability p(x, y, z)
defined as the (normalized) Euclidean distance to the near-
est background pixel (Fig. 1a). To save computation and
memory we predict at a grid of lower spatial resolution than
the input image, since a dense (i.e., per input pixel) output is
often not necessary (this is similar to the concept of bound-
ing box anchors in object detection approaches [19, 18]).

We use a slightly modified 3D variant of ResNet [12] as

a neural network backbone1 to predict both the radial dis-
tances and object probabilities (Fig. 1b). In particular, we
use residual blocks with 3 convolution layers of kernel size
3× 3× 3. Similar to [12], we start with two convolution
layers of kernel sizes 7× 7× 7 and 3× 3× 3, but with-
out strides to avoid downsampling. This is followed by m

residual blocks, where each block only performs downsam-
pling if the spatial resolution is still higher than the predic-
tion grid (see above); we double the number of convolu-
tion filters after each downsampling. After the last resid-
ual block, we use a single-channel convolution layer with
sigmoid activation to output the per-pixel2 object probabil-
ities p. The last residual block is additionally connected
to an n-channel convolution layer to output the radial dis-
tances dk. Our code based on Keras/TensorFlow [8, 1] and
documentation is available at https://github.com/
mpicbg-csbd/stardist.

Training Given the pixel-wise object probabilities and
distances of the prediction (p̂, d̂k) and ground-truth (p, dk),
we minimize the following loss function (averaged over all
pixels) during training:

L(p, p̂, dk, d̂k) = Lobj (p, p̂) + λdLdist(p, p̂, dk, d̂k). (1)

For the object loss Lobj we use standard binary cross-

entropy

Lobj (p, p̂) = −p log p̂− (1− p) log(1− p̂). (2)

For the distance loss Ldist we use the mean absolute error

weighted by the object probability (active only on object
pixels, i.e. p > 0) and add a regularization term (active only
on background pixels, i.e. p = 0):

Ldist(p, p̂, dk, d̂k) = p · ✶p>0 ·
1

n

∑

k
|dk − d̂k|+

λreg · ✶p=0 ·
1

n

∑

k
|d̂k|. (3)

This specific form was chosen to promote increased accu-
racy for points closer to the object centers (which eventually
will be used as polyhedra center candidates).

Prediction After the CNN predicts the radial distances d̂k
and object probabilities p̂, we collect a set of object can-

didates by only considering radial distances at pixels with
object probabilities above a reasonably high threshold, i.e.
we only retain shapes that very likely belong to an object.
Since the set of object candidates is highly redundant, we
use non-maximum suppression (NMS) to obtain only one

1We find that using a U-Net [9] backbone leads to very similar results.
2To improve readability we will drop from now on the explicit pixel

coordinate (x, y, z) for both p(x, y, z) and dk(x, y, z).
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Figure 3: Datasets used in our experiments. Shown are raw input images (purple) and associated ground-truth instance segmentation labels
(colored) for a single volume of the WORM (left) and PARHYALE (right) datasets.

shape for every actual object in the image, as is common in
object detection (e.g., [11]). Thereby, the object candidate
with the highest object probability suppresses all other re-
maining candidates if they overlap substantially. This pro-
cess is repeated until there are no further candidates to be
suppressed. All remaining (i.e. not suppressed) candidates
yield the final set of predicted object shapes.

2.3. Efficient nonmaximum suppression

The NMS step requires to assess the pairwise overlap of
a potentially large set of polyhedron candidates (> 104).
Unfortunately, computing the exact intersection volume be-
tween two star-convex polyhedra efficiently is non-trivial
(in contrast to convex polyhedra). To address this issue,
we employ a filtering scheme that computes as needed suc-
cessively tighter upper and lower bounds for the overlap of
polyhedron pairs (cf. Fig. 1c). Concretely, we compute the
intersection volume of the respective i) bounding spheres
(upper bound), ii) inscribed spheres (lower bound), iii) con-
vex hulls (upper bound), and iv) kernels3 (lower bound).
Note that iii) and iv) involve only the intersection of con-
vex polyhedra and can thus be computed efficiently [3]. If
a computed bound is already sufficient to decide whether
a candidate should be suppressed or not, no further com-
putation is carried out. Otherwise, we eventually perform
the expensive but exact intersection computation by raster-
ization of both polyhedra. We find that this NMS filter-
ing scheme leads to a noticeable reduction in runtime that
makes STARDIST-3D practical (e.g. 9 s for a stack of size
1141×140×140 with 12000 initial candidates).

3. Experiments

We consider two qualitatively different datasets (Fig. 3)
to validate the efficacy of our approach:

WORM A subset of 28 images used in Long et al. [15],
showing DAPI-stained nuclei of the first larval stage

3The (convex) set of all points that can serve as center of the star-convex
polyhedron.

(L1) of C. elegans (Fig. 3 left). Stacks are of average
size 1157×140×140 pixels with semi-automatically
annotated cell nucleus instances (15148 in total) that
underwent subsequent manual curation. We randomly
choose 18/3/7 images for training/validation/testing.
Note that the images have (near) isotropic resolution.

PARHYALE A subset of recording #04 of Alwes et al. [2],
showing Parhyale hawaiensis expressing Histone-
EGFP (Fig. 3 right). It contains 6 images of 512×512×
34 pixels with manually annotated nucleus instances
(1738 in total). We randomly choose 3/1/2 images for
training/validation/testing. In contrast to WORM, the
images are highly anisotropic in the axial direction.
This dataset is more challenging due its substantially
lower signal-to-noise ratio (cf. Fig. 6). Furthermore,
it contains much fewer labeled training images, more
akin to what is typical in many biological datasets.

3.1. Methods and Evaluation

We compare our proposed STARDIST-3D approach
against two kinds of methods (IFT-Watershed [16] and 3D
U-Net [9]) that are commonly used for segmentation of flu-
orescence microscopy images. First, a classical watershed-
based method that does not use machine learning. Second,
a variant of the popular U-Net with and without more so-
phisticated postprocessing.

To evaluate the performance of all methods, we use
accuracy(τ) = TP

TP+FN+FP
for several overlap thresholds

τ . TP are true positives, which are pairs of predicted and
ground-truth nuclei having an intersection over union (IoU)
value ≥ τ . FP are false positives (unmatched predicted
instances) and FN are false negatives (unmatched ground-
truth instances). We use the Hungarian method [14] (imple-
mentation from SciPy [13]) to compute an optimal match-
ing whereby a single predicted nucleus cannot be assigned
to multiple ground-truth instances (and vice versa). Note
that a suitable value of τ depends on the biological applica-
tion. For example, one would likely use a smaller τ < 0.5
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Figure 4: Accuracy for several IoU thresholds τ for datasets a) WORM and b) PARHYALE. We show the average performance over 5
independent trials for all trained models (shaded regions indicate best and worst result).

for the purpose of counting objects, whereas intensity mea-
surements inside each object would require more accurate
shapes and thus demand a higher value of τ .

STARDIST-3D We use STARDIST-3D as explained in Sec-
tion 2.2 with n = 96 radial directions and m =
3 residual blocks that start with 32 convolution fil-
ters. We predict at a grid half the spatial resolu-
tion of the input image, except for the anisotropic Z
axis of PARHYALE. We use automatically computed
anisotropy factors (cf. Section 2.1) of ~s = (1, 1, 1) for
WORM and ~s = (1, 1, 7.1) for PARHYALE. We use
weights λd = 0.1 and λreg = 10−4 for the loss func-
tion in Eq. (1).

IFT-WATERSHED The IFT-Watershed [16] is an efficient
combination of maxima detection and 3D watershed
segmentation. It represents an advanced classical im-
age segmentation method that we know is being used
in practice. Concretely, we use the Interactive Wa-

tershed plugin4 in Fiji [20] and perform extensive pa-
rameter tuning (such as Gaussian filter size during pre-
processing and maxima detection thresholds) using the
training images of each dataset.

U-NET We train a 3D U-Net [9] to classify each pixel into
background, nucleus, and also nucleus boundary, as
this helps substantially to separate touching nuclei [6].
We threshold the predicted nucleus probabilities and
group pixels in each connected component to obtain
individual nuclei.

U-NET+ We use the same trained 3D U-Net as above, but
apply more sophisticated postprocessing. Concretely,
we observe improved performance by thresholding the
nucleus probabilities to obtain seed regions that we

4https://imagej.net/Interactive_Watershed

grow (via 3D watershed [23]) until they reach pixels
with background probability above a second threshold.

We apply random data augmentations during training, in-
cluding flips, axis-aligned rotations, elastic deformations,
intensity rescaling, and noise. After training, thresholds
for all methods (as described above) are tuned on vali-
dation images to optimize accuracy averaged over τ ∈
{0.3, 0.5, 0.7}.

3.2. Results

The results in Table 1 and Fig. 4 show that STARDIST-3D
consistently outperforms all other methods that we com-
pared to (note that we report the average result over 5
trials for all trained models). The performance gap be-
tween STARDIST-3D and the other methods is especially
striking for dataset PARHYALE, which may be explained
by STARDIST-3D’s shape model being especially helpful to
disambiguate between neighboring nuclei in these challeng-
ing low-SNR images. In Fig. 6 we show lateral (XY) and
axial (XZ) views of segmentation results for both datasets.
Here, IFT-WATERSHED often produces imperfect boundaries
and erroneous splits, particularly for dataset PARHYALE.
This is expected, as the watershed operation uses the in-
put intensities alone without leveraging extracted features.
U-NET tends to under-segment the image, generally produc-
ing object instances that are too small, as the use of a single
threshold for the nucleus class leads to a trade-off between
object size and avoidance of falsely merged objects. In
contrast, U-NET+ exhibits slight over-segmentation, since
a larger first threshold produces more (but smaller) objects
that are then grown to yield the final instances. Finally,
STARDIST-3D produces superior segmentations, although it
can sometimes fail to detect some nuclei (especially for
dataset PARHYALE). As an additional visualization, we
show a 3D rendering of STARDIST-3D segmentation results
for both datasets in Fig. 7.
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Threshold τ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

WORM

IFT-WATERSHED 0.794 0.771 0.708 0.601 0.472 0.364 0.222 0.074 0.005
U-NET 0.873 0.861 0.814 0.706 0.570 0.418 0.255 0.116 0.027

U-NET+ 0.920 0.905 0.872 0.807 0.700 0.593 0.406 0.144 0.005
STARDIST-3D 0.936 0.926 0.905 0.855 0.765 0.647 0.460 0.154 0.004

PARHYALE

IFT-WATERSHED 0.467 0.426 0.356 0.245 0.161 0.096 0.036 0.000 0.000
U-NET 0.547 0.501 0.423 0.330 0.247 0.171 0.091 0.021 0.000
U-NET+ 0.592 0.552 0.481 0.372 0.280 0.198 0.097 0.010 0.000
STARDIST-3D 0.766 0.757 0.741 0.698 0.593 0.443 0.224 0.038 0.000

Table 1: Accuracy (average over 5 independent trials for trained models) for several IoU thresholds τ for datasets WORM and PARHYALE.

Note that we find (not shown) that the accuracy of
STARDIST-3D would drop dramatically (for example, from
0.593 to 0.291 for τ = 0.5) if we did not adapt the radial
directions to account for the anisotropy of the nuclei shapes
(Section 2.1) for PARHYALE. While STARDIST-3D’s lead is
less pronounced for dataset WORM, this may be due to the
higher signal quality of the input images and also the gen-
eral abundance of labeled cell nuclei available for training
and validation (11387 in total). In Fig. 5, we investigate
how STARDIST-3D and the other trained models cope with
less annotated data by randomly selecting only a partial 3D
image slice from each training and validation stack. Inter-
estingly, we find that with only 4.15% of the training and
validation data (472 instances in total), STARDIST-3D can
for τ = 0.5 reach the same performance (accuracy of 0.7)
as U-NET+ with access to 100% of the training and valida-
tion data.

4. Discussion

We presented STARDIST-3D, an extension of [21] to de-
tect and segment cell nuclei in volumetric fluorescence
microscopy images, even when they exhibit substantial
anisotropy. Our method outperformed strong watershed and
U-Net baselines, yet is easy to train and use, and due to our
star-convex polyhedra parameterization and efficient inter-
section implementation fast enough to process typical large
3D volumes. Furthermore, STARDIST-3D should be gener-
ally applicable to segment objects whose shapes are well-
represented with star-convex polyhedra.
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