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Abstract

The method of importance map has been widely adopted

in DNN-based lossy image compression to achieve bit al-

location according to the importance of image contents.

However, insufficient allocation of bits in non-important re-

gions often leads to severe distortion at low bpp (bits per

pixel), which hampers the development of efficient content-

weighted image compression systems. This paper rethinks

content-based compression by using Generative Adversar-

ial Network (GAN) to reconstruct the non-important re-

gions. Moreover, multiscale pyramid decomposition is ap-

plied to both the encoder and the discriminator to achieve

global compression of high-resolution images. A tunable

compression scheme is also proposed in this paper to com-

press an image to any specific compression ratio without re-

training the model. The experimental results show that our

proposed method improves MS-SSIM by more than 10.3%

compared to the recently reported GAN-based method [3]

to achieve the same low bpp (0.05) on the Kodak dataset.

1. Introduction

Efficient image compression is significant for the stor-

age, transmission, and processing of image information. At

present, there are two types of image compression: lossy

compression and lossless compression. The key point to

lossy compression is to find a balance between the compres-

sion ratio and the distortion to guarantee the image quality

at low bpp [6, 23]. Recently, lossy compression based on

Deep Neural Networks (DNNs) is under focused develop-

ment [2–4, 8, 18, 20]. The method of importance map has

been widely adopted in DNN-based lossy image compres-

sion to achieve bit allocation according to the importance

of image contents [13, 15]. However, its compression per-

formance often dramatically drops at low bpp. In addition,

there seem to be few tunable DNN-based image compres-

sion methods allowing an image to be compressed to any

specific bpp without retraining the model.

In this paper, a novel GAN-based tunable image com-

pression system aiming at low bpp is proposed to recon-

struct the non-important regions of the image to compensate

for the severe distortion caused by the insufficient allocation

of bits in those non-important regions. The proposed sys-

tem has been tested on the Kodak, ImageNet and Cityspace

datasets. The experimental results show that our proposed

scheme outperforms the-state-of-art schemes when bpp is

smaller than 0.2. For example, our method achieves 10.3%

higher MS-SSIM than [3] at low bpp (0.05) on the Kodak

dataset. Moreover, our method can compress images to

specified compression ratios without retraining the model.

In contrast, the compression ratio of an image is unchange-

able in [14,15] because the importance map is deterministic

for a given network structure. Therefore, they have to mod-

ify and retrain the model to generate new importance maps.

Our contributions are listed as follows:

• We rethink content-based image compression under

the GAN setting to reconstruct the non-important re-

gions. We find that insufficient allocation of bits in

non-important regions greatly limits the performance

of content-based compression algorithms at low bpp.

• Unlike other methods using multiple complex net-

works to generate semantic maps and masks [3], we

design a simple network (Masking) to identify the im-

portant regions of the image and generate the impor-

tance map to guide the allocation of bits.

• Different from [20], we use the multiscale structure not

only in the encoder but also in the discriminator. The

symmetrical multiscale structure makes it more adapt-

able to different sizes of objects at both the encoding

end and the decoding end.

• We introduce tunability into our system. Unlike [14,

15], we achieve different compression ratios through

an user-defined parameter n without retraining the

model.

The rest of the paper is organized as follows: In Sec-

tion 2, some common image compression algorithms and

techniques are briefly reviewed. Section 3 describes the en-

tire architecture and loss function of our model. Section 4
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presents our experimental results and comparison with other

methods. Section 5 analyzes and summarizes our results

and Sectio 6 draws the conclusion.

2. Related Work

Recently, image compression based on deep learning

has been a hot research topic. Up to now, data autoen-

coder [2, 4, 5, 16, 25, 30] and Recurrent Neural Networks

(RNNs) [26, 27] are the two widely used models in the

image compression architecture. Early works using block

compression decompose the image into blocks, which are

then compressed and composited [14, 15]. Recently, global

compression of the entire high-resolution image is attract-

ing more and more attention [3, 20, 27, 29].

GAN has been hailed as one of the greatest achievements

in the field of deep learning in recent years. The idea is to

construct a generator and a discriminator [10]. The training

purpose of the discriminator D(·) is to maximize its dis-

criminative accuracy, and the training goal of the genera-

tor G(·) is to improve the authenticity of its reconstructed

image as much as possible. In the training process, GAN

adopts an alternating optimization method, and its objective

function can be expressed by the following formula:

min
G

min
D

E[logD(x)] + E
[
log(1−D(G(x)))

]
(1)

With the emergence of all kinds of variants such as con-

ditional GAN [17] and CycleGAN [32], GANs have been

widely applied in the field of computer vision [3, 20, 31,

32]. In the beginning, GAN is difficult to generate high-

resolution images, which greatly limits its application. Re-

cently, GAN is under intense development, and the high-

resolution images can be synthesized by GAN [7, 29]. For

example, TC Wang et al. present a method for synthesizing

2048×1024px photo-realistic images from semantic label

maps using conditional GAN in [29]. Therefore, GAN is

adopted to achieve global image compression [3].

At present, some GAN-based image compression meth-

ods have been proposed [3, 8, 20, 22], but neither of them

considers the influence of image content importance on bit

allocation, which limits GAN’s effect on image compres-

sion. The method proposed by Santurkar et al. is to train

thumbnail images to get an efficient generator, but the in-

formation contents of the thumbnail image are so low that

GAN can’t play much of a role [22]. The closest work

to us is [3], which trains a GAN-based system to achieve

the compression of images. However, this scheme has sev-

eral weaknesses, which limit it in practical applications. As

shown in Fig. 1, their method requires multiple complex

semantic segmentation network and feature extraction net-

work to generate semantic maps and masks. Instead, we just

design a simple network (Masking) to identify the important

regions of the image and generate the importance map to

guide the allocation of bits. Secondly, due to the complex-

ity of their entire architecture, their codec efficiency is so

low that it can’t meet the needs of practical applications at

all. Moreover, changing the compression ratio has to reset

parameters and retrain the model in their framework.
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Figure 1. Top: our method, bottom: other method [3]

3. Model

3.1. Architecture

Our image compression system is composed of six parts:

encoder, quantizer, masker, entropy encoder, decoder, and

discriminator. The entire architecture is shown in Fig. 2.

For a given image x ∈ X, the encoder converts it into a

compact code matrix ω = E(x), by multiscale convolution

operations. The masker takes ω as the input and gener-

ates an importance matrix m̂ = M(ω) through a simple

convolutional network [14, 15] to guide the bit-allocation.

The quantizer Q(·) quantizes ω by using a nearest neigh-

bor principle [2, 15, 25] and outputs q̂ = Q(ω). The out-

put of the quantizer and the masker are multiplied to gain

the content-based image compression result, denoted as z

= m̂ · q̂. The masker here can be understood as obscuring

the non-important regions in the image and allocating more

bits to the important regions. Entropy encoder is applied to

the system to remove the data redundancy and outputs ĥ =

H(z). The decoder G(·), which is also named as generator,

is the inverse of the encoder and generates the reconstructed

image x̂ = G(z). The discriminator D(·) is an important

part of the GAN, which improves the compression perfor-

mance through alternating training [3] with the generator.

The six components of the image compression system

will be introduced in the rest of the sections in detail.

Encoder

In our image compression system, a fully convolutional

neural network is used as the encoder, which consists of a

crossover stack of several convolutional layers and residual

blocks. To improve the compression performance of high-

resolution images, we adopt the pyramidal decomposition

scheme shown in Fig. 3 to our model.
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Figure 2. Illustration of the GAN-based tunable image compression system. In the figure, blue, purple, yellow, gray, red, and green

blocks represent encoder, masker, quantizer, encoder, decoder, and discriminator, respectively. It is noted that “k5-n64-s2↓” represents a

convolution layer with 64 filters of size 5 × 5 and a stride of 2. Each residual block has a uniform structure composed of two convolutional

layers followed by a batch normalization [12] and a ReLU [9]. Masking is an operation that extends the importance map to importance

matrix according to Eq.(3)

Let xm denotes the input of the scale m layer, so x1 de-

notes the original input image. Em(xm) represents the out-

put of the scale m layer. In our paper, we set m to 1, 2, and

3 sequentially and execute encoding individually for each

scale. The results of each scale are weighted and summed

to produce an output E(x) = α1E1(x1) + α2E2(x2) +

α3E3(x3). Finally, E(x) is convoluted with two convo-

lutional layers to get the output of the encoder ω with the

dimension of H
8 ×

W
8 ×K. According to [3], different K

produces different compression effects, which is a trade-off

between the compression ratio and the distortion.
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Figure 3. Illustration of the encoder’s pyramidal decomposition

structure with 3 scales. It’s noted that “C-n16-s2” represents a

convolutional layer with 16 filters and a stride of 2 and “R-n256-

s1” represents a residual block with 256 filters and a stride of 1.

Masker

In an image, we tend to be interested only in some re-

gions, which provides leeway for further improvement in

compression ratio. For example, for the portrait shown in

Fig. 4, we are only interested in the face and body regions,

which are called the important regions. The natural idea

is that more bits are allocated to the important regions and

fewer bits are allocated to the non-important regions. The

bit allocation according to the importance of image contents

is achieved by constructing a masker.

The output of the encoder ω is used as the input of the

masker, which is convoluted with two residual blocks. Each

residual block has 256 filters. The kernel size and stride

length of each filter are 3 × 3 and 1, respectively. These

residual blocks are followed by a convolutional layer with

1 filter. The size of the output matrix y is H
8 ×

W
8 ×1. As

shown in Fig. 5, a Sigmoid activation is used to map the

data y to the range [0,1] to get an importance map m. How-

ever, the data after Sigmoid may converge to 0 or 1, re-

sulting in the vanishing of the importance feature of m. To

avoid this issue, we normalize the data in the matrix y be-

fore the activation. The formula of the normalization pro-

cedure is specified as

ŷi,j =
yi,j − µ

σ
, mi,j = tf.nn.sigmoid(ŷi,j) (2)

where yi,j represents the data value of the i-th row and the

j-th column in the matrix y and ŷi,j represents the data value

of the i-th row and the j-th column in the matrix ŷ. µ and σ

are the mean and variance of the matrix y, respectively. As

mentioned earlier, we aim to design an tunable image com-

pression system to compress the image to any bpp without

retraining the model. So here we replace µ with µ + n in

the Eq.(2), where n is a random number within the range of

[-2,2], and it is reassigned before each training batch.

The importance map m is extended by the formula

Eq.(3) to the importance matrix m̂, as shown in Fig. 5.
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(a) (b)

Figure 4. (a) The upper image is the original image x, and the

lower image is the importance map m (b) Images of each channel

of the importance matrix m̂ (take K = 16 ans n = 0 as an example).

The size of the m̂ is H

8
×W

8
×K. From left to right, top to bottom,

the channel of the matrix m̂ gradually rises. The black regions

represent importance regions.

m̂i,j,k =

{
0, if mi,j <

k−1
K

1, if mi,j ≥
k−1
K

k = 1, . . . ,K (3)

where mi,j represents the data value of the i-th row and the

j-th column in the matrix m, and m̂i,j,k represents the data

value of the i-th row, the j-th column and the k-th channel in

the matrix m̂. Taking the image x in Fig. 5 as an example,

the original image, the importance map and the images of

each channel in the importance matrix are shown in Fig. 4.

As the channel rises, the bits are mainly allocated to the face

and body regions, and hardly in the background, which con-

tributes to the improvement of the compression ratio. How-

ever, the image may be severely distorted at low bpp due to

the insufficient bit allocation in the background regions. To

address this issue, we reconstruct the non-important regions

of the image based on GAN to improve the performance.

Quantizer

The selection of quantization bit is very important to the

quantizer. Appropriate quantization bit not only improves

the compression ratio, but also reduces the distortion. We

set CL = {0, 1, 2, ..., 2L-1}, and there are plenty of methods

to quantize the input to a number in CL. Here we use the

nearest neighbor quantization method [2,15,25] to compute:

q̂ = Q(ω) = argmin
j

|ω − cj | (4)

where cj = j, and j ∈ CL = {0, 1, 2, ..., 2L-1}.

Entropy encoder

As shown in Fig. 2, in our method, images are recon-

structed directly from the bitstream z instead of the quan-

tization results q̂ and the importance matrix m̂, which is

exactly what we differ from other methods. The importance

matrix m̂ indicates the non-mask bits (in gray) and the mask

bits (in white) in q̂. As shown in Fig 5, the code matrix z

obtained by multiplying the results of masker and quantizer

leaves only the non-mask bits. Then we encode each chan-

nel of z from the bottom up in a row-by-row manner. Here

we can only encode the non-mask bits. A large number of

mask bits (data 0) at the top of each channel in z can be en-

coded as a termination code instead of being encoded one

by one. When the mask bits are much more than the non-

mask bits, our compression ratio can reach very low bpp.

Since only a few non-mask bits at the bottom of each chan-

nel need to be encoded, we use simple Huffman coding for

entropy coding in this work [11].

Decoder

The decoder is the inverse of the encoder, and its func-

tion is to generate images with minimal distortion from the
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Figure 5. Illustration of how to generate an importance map m and an importance matrix m̂ from the original image x and use the

importance matrix m̂ to guide the bit-allocation of the quantization result q̂. The colors of cubes in q̂ are from light to deep, respectively,

and the quantized values are from 0 to 3. The gray and white cubes in m̂ represent 1 and 0, respectively. The light purple box corresponds

to the Masking block in Fig. 2. Normalization, tf.nn.sigmoid(·) and Extension correspond to the preprocessing of y and the extension of

the m. If the Huffman encoding is specified, that is 0-1, 1-01, 2-001 and 3-0001, then the circled part of z is quantized to 1101.
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compression code matrix z. A good decoder should make

restructured images as similar as possible to the original im-

ages in terms of texture, color, and so on. The decoder is

composed of a stack of 3 convolution layers, 15 residual

blocks, and 3 transposed convolution layers. First of all, the

input z is convoluted with 128 filters of size 3×3 and stride

1. After that, the obtained feature maps are convoluted with

256 filters of size 3×3 and stride 1, followed by 15 residual

blocks. Similar to [14], these residual blocks are identical in

the proposed model, consisting of two convolutional layers

with 256 filters. Finally, the output of the last stage residual

block is passed through 3 transposed convolutional layers

to generate a reconstructed image x̂.

In fact, the decoder is also the generator in our GAN-

based system. It improves its performance during the alter-

nating training with the discriminator and generates images

that the discriminator cannot identify the authenticity.

Discriminator

The discriminator D(·) is able to identify the authentic-

ity of the input image, i.e., whether it is the original image

or the reconstructed image. As an important part of GAN,

the discriminator D(·) is trained in parallel with the gener-

ator G(·) [3, 20] to improve the performance of generating

images. In this paper, we continue to use the idea of pyrami-

dal decomposition to design a multiscale discriminator. The

motivation for adopting a multiscale architecture is to min-

imize the distortion at each scale separately. For example,

artifacts such as noise and blurriness are more easily found

and eliminated at shallower scales, but the differences of

the structure and the color of the image are usually found at

deeper scales. Here we assume that x̂ is the input of the

discriminator D(·), and the input x̂m of the correspond-

ing scale m is obtained by the average pooling layer with

a stride of 2. The input of each scale passes through a con-

volutional network Dm(·) to produce an output Dm(x̂m).
Each convolutional layer of the networks is followed by

Leaky ReLU instead of ReLU as the activation [29].

3.2. Loss function

In the previous sections, we have designed an image

compression system based on GAN. Now we train the

model on a batch of B, that is XB={X(1),X(2),· · · ,X(B)},

containing high-resolution images. The loss function of our

model is composed of the following two parts.

Adversarial Loss

We design our compression system based on GAN. The

generator G(·) is trained in parallel with the discriminator

D(·). We call this part of the loss as adversarial loss, which

is composed of the losses from generator G(·) and discrim-

inator D(·). The adversarial loss is defined as follows:

LA =

m∑

i=1

βi

{
E[logDi(x)]+E

[
log(1−Di(G(x)))

]}
(5)

where x is the original image, m is the scale of discrimina-

tor, and βi is the weighting factor for scale i.

Distortion Loss

The distortion loss measures the distortion of the original

image x and reconstructed image x̂. The purpose of the

training is to minimize the following loss:

LD = E[d(x, x̂)] (6)

where d(·) is a function to measure the similarity of the

original image x and reconstructed image x̂. In this paper,

the Mean Square Error (MSE) is used in the distortion loss.

Overall Loss

There is a constraint relationship between the above two

losses. For example, increasing the adversarial loss may

produce more generated contents in the reconstructed im-

age, resulting in an increase in the distortion loss. There-

fore, in the training process, we should consider the above

two losses comprehensively. Since we train the model on

the batch XB of size B, we need to consider the loss on the

entire batch. The overall loss function is expressed as

LG,D,E,B=
1

B

B∑

j=1

〈
η

m∑

i=1

βi

{
E
[
log(1−Di(G(xj)))

]

+ E[logDi(x
j)]

}
+ κE

[
d(xj , x̂j)

]〉
(9)

The training purpose is to minimize the overall loss.

min
G,E,B

min
D

LG,D,E,B (7)

4. Experiments and Results

Our GAN-based tunable image compression system is

trained on a subset of 15000 images in the ImageNet

database [21]. All images are scaled to 768 × 512, and

every eight images are packed into a batch. Then, we test

the model on the Kodak dataset [1] which is specifically

designed to test the performance of lossy image compres-

sion. The compression ratio of the image is evaluated by

bpp, which is the average number of bits required per pixel

to store the compressed result. The distortion between the

original and restructured image is commonly measured by

MSE [2–4,15,25], PSNR, MS-SSIM [15,20,27]. Compared
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with MSE, PSNR and MS-SSIM are used in this paper be-

cause they are more consistent with the actual perception of

human vision [19]. In addition, we also compare the perfor-

mance of our model on several different datasets.

In the rest of this section, we first introduce the parameter

settings of our model, then compare the performance and vi-

sual effects of different compression methods and datasets.

Besides, we perform an ablation experiment to show the

impact of the importance matrix, entropy coding, GAN. Fi-

nally, we analyze the compression tunability of our system.

parameter settings

Firstly, we set the weights α1, α2, and α3 of 3 scales in

the encoder to 1/2, 1/4, and 1/4, respectively. Similarly, the

weights β1, β2, and β3 of 3 scales in the decoder are set

to 1/2, 1/4, and 1/4, respectively. The weights η and κ of

two loss components of the overall loss are set to 1 and 16,

respectively. In addition, we set the batch parameter B to

8, which is to train the model using 8 images as a batch.

Moreover, we set the quantization parameter L to 2, which

means CL = {0, 1, 2, 3}. In this work, if not specifically

mentioned, let K = 16. During the training process, the

model is iteratively trained 128 times on the dataset. The

initial learning rate is set to 2×10−3, and after 64 iterations,

the learning rate is changed to 2×10−4.

Comparison of different methods

Firstly, We compare the MS-SSIM performance of our

tunable and non-tunable method with some conventional

methods such as JPEG [28], JPEG2000 [24], and BPG on

the Kodak dataset [1]. We divide our compression sys-

tem into two cases: tunable and non-tunable, which can be

achieved by setting n to a random value and a fixed value

during the training process, respectively. In addition, some

DNN-based methods, such as [15,20,25], are also included

in the comparison.

As shown in Fig. 6, our method outperforms JPEG,

JPEG 2000, BPG and the method proposed by Theis et

al [25] at a wide range of scale. At high bpp, the perfor-

mance of our method is close to that of Mentzer et al. [15]

and Rippel & Bourdev [20], but at low bpp, our performance

is much better than their methods. For example, compared

with the method proposed by Mentzer et al., the bpp of our

tunable and non-tunable models is reduced by 30.1% and

39.3% when MS-SSIM is 0.95, respectively.

Next, we further compare the PSNR performance of dif-

ferent methods based on the work of [13]. We compare our

non-tunable method with JPEG 2000 and BPG as well as

the methods proposed in [5, 14, 25]. In addition, the lat-

est content-adaptive method proposed by Jooyoung et al.

is also included in the comparison. As shown in Fig. 6,

at low bpp, the PSNR performance of our method is still

superior to other methods. At high bpp (bpp > 0.5), our

method will be slightly worse than [13], because at this

time even the non-importance regions have been allocated

enough bits, more and more contents generated by the GAN

result in a decrease in PSNR performance. However, as we

have always emphasized, our method focuses on the per-

formance at extreme low bpp, and it’s acceptable to have a

general performance at high bpp. The performance on dif-

ferent datasets is available in the supplementary materials.

Ablation experiments

The use of GAN in our proposed image compression

system is to eliminate the distortion caused by insufficient

bit allocation to non-important regions rather than gener-

ate new image contents. In our method, sufficient bits are

allocated to the important regions, which can be recon-

structed realistically, and GAN has less impact on them.

Under such circumstances, the main basis for the discrim-

inator to discriminate is the non-important regions. So to

confuse the discriminator, the generator will focus on re-

constructing non-important regions. The role of the impor-

tance matrix is to guide the allocation of bits and improve

the representative efficiency of the bits [3]. The function

of entropy coding is to further reduce data redundancy by
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Figure 6. Comparison of compression performance by different methods measured by MS-SSIM and PSNR.
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exploiting the specificity of data distribution in the impor-

tance matrix. We design the following five models accord-

ing to whether the presence of GAN, masker and entropy

coding in the architecture: (1) full model; (2) model with-

out GAN; (3) model without masker; (4) model without en-

tropy coding; (5)model without masker and entropy cod-

ing; As shown in Fig. 7, under the same compression per-

formance, (1) has the best performance while (5) has the

worst performance. When MI-SSIM is 0.96, (2), (3), (4),

and (5) has 15.8%, 89.3%, 31.6%, and 116.3% higher bpp

than (1), respectively. The performance of the model with

GAN performs better than that of the model without GAN

at low bpp. However, the improvement is gradually dimin-

ished with an increase of bpp. At high bpp, the introduc-

tion of GAN may even slightly impair compression perfor-

mance. This shows that GAN’s help with image compres-

sion is more pronounced at low bpp, which is not mentioned

in other GAN-based methods. In the compression task, we

usually want the bpp to be as small as possible, so the in-

troduction of GAN can help solve the bottleneck limiting of

the performance improvement at low bpp.
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Figure 7. Illustration of the results of the ablation experiment.

Tunability analysis

Our system has the tunable characteristic, which means

we can reassign the user-defined parameter n in the masker

to achieve different compression ratios without retraining

the model. However, in the methods like [14, 15], for an

image, one type of network structure corresponds to one

unique importance map. Therefore, only by modifying and

retraining the model, it is possible to obtain different impor-

tance map, then achieve different compression ratios.

The compression ratio of the image is determined by the

parameter n, which is an intuitive and simple dependency.

However, it should be noted that n and bpp may not be in

a strictly linear relationship. In the process of testing, dif-

ferent n is used to get its corresponding bpp. The data are

fitted by Least Squares Method (LSM) to gain the tunability

characteristic curve, as shown in Fig. 8. The image can be

compressed to any specific bpp within the range of [0.05,

0.4] as long as we set n to the corresponding value. For ex-

ample, if we want to compress an image to 0.384 bpp, then

by looking up the figure and setting n to -1.32, we can get a

compression ratio around 0.384 bpp. The red dots in Fig. 8

are the test results of images on the Kodak dataset.
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Figure 8. Tunability characteristic curve of the image compression

system. The red dots represent the different compression ratios

tested on the Kodak dataset at a fixed n.

Comparison of visual effects

In Fig. 9, we compare our methods with JPEG, JPEG

2000, BPG as well as the methods of Fabian Mentzer et

al. [15] and Rippel & Bourdev [20] visually. As can be seen

from Fig. 9, conventional image compression methods such

as JPEG, JPEG 2000 and BPG inevitably produce blurring,

ringing, etc. [3], which can seriously affect the human vi-

sual experience. Though the methods of Fabian Mentzer et

al. [15] and Rippel & Bourdev [20] are very good at detail

processing, they fail to show the structure and color of the

image well. In contrast, our method overcomes the above

flaws, and some important colors and textures are well-

retained and more visually pleasing due to the bit-allocation

based on the image contents.

In Fig. 10, we compare our non-tunable method with the

most advanced GAN-based method at low bpp. Compared

with [3], since we introduce the important matrix into our

system, the details of the image, such as the window of the

house, the lock on the door, the holes in the woman’s hat

and the fuselage and paddles of the aircraft, are well pre-

served. Besides, due to the use of GAN, the non-importance

regions of the image are also very harmonious, without se-

vere distortion resulted from the lack of bits. In term of

MS-SSIM, since [3] is too dependent on GAN, their MS-

SSIM is only 83.9% at 0.05 bpp. In contrast, our MS-SSIM

is 10.3% higher than theirs. For more visual comparisons,

please refer to the supplementary materials.

5. Discussion

In our architecture, we design the multiscale encoder

and discriminator based on the idea of pyramidal decom-

position, introduce importance map for bit allocation, and
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(a) Original (b) Jpeg (c) Jpeg2000 (d) Bpg (e) Mentzer et al. (f) Rippel et al. (g) Tunable (h) Not tunable

Figure 9. Illustration of the original image and the reconstructed images produced by conventional and DNN-based compression methods.

From left to right, the bpp of each method is 24 bpp, 0.123 bpp, 0.125 bpp, 0.108 bpp, 0.128 bpp, 0.093 bpp, 0.116 bpp, 0.103 bpp.

(a) bpp / MS-SSIM: Ours 0.039 / 0.927, Agustsson et al. 0.030 / 0.824 (b) bpp / MS-SSIM: Ours 0.063 / 0.906, Agustsson et al. 0.069 / 0.795

(c) bpp / MS-SSIM: Ours 0.058 / 0.921, Agustsson et al. 0.065 / 0.845 (d) bpp / MS-SSIM: Ours 0.040 / 0.937, Agustsson et al. 0.034 / 0.844

Figure 10. Illustration of comparison with the state of the art GAN-based method. From left to right: Original, Ours, Agustsson et al.

further compress data by entropy coding. As for the train-

ing approach, we introduce two losses, all of which are

weighted and summed to get the overall loss function and

use global compression of high-resolution images instead of

block compression. At the same time, we introduce GAN

to reconstruct non-important regions of the image to solve

the distortion caused by insufficient bit allocation to non-

important regions.

The experimental results show that our method outper-

forms the-state-of-art content-based and GAN-based meth-

ods when bpp is smaller than 0.2. At low bpp, the ex-

istence of GAN has a more significant impact on perfor-

mance improvement because the insufficient bit allocation

in the non-importance regions often occurs in the case of

low bpp. In terms of MS-SSIM and PSNR, our method

is superior to conventional compression algorithms such as

JPEG, JPEG2000 and BPG, and also outperforms the state-

of-the-art DNN-based compression methods at low bpp. Vi-

sually, our approach solves the flaws of conventional algo-

rithms such as ringing, blurring, etc., and can better pre-

serve the texture, color, and other details of the image. In

addition, as shown in Fig. 8, our system has the tunable

characteristic, and within a certain range, the compression

ratio of any bpp can be achieved through an user-defined

parameter n without retraining the model. On the Kodak

dataset, to achieve MI-SSIM of 0.95, the average time to

encode and decode the image is 21 ms and 29 ms, running

on the GeForce GTX 1080 Ti.

6. Conclusions

In this paper, we have proposed a GAN-based tunable

lossy image compression system. In the proposed system,

GAN is trained to reconstruct the non-important regions of

the image and thus reduce the distortion caused by the insuf-

ficient bit allocation to those non-important regions. More

importantly, the idea of tunability has been applied to the

DNN-based image compression systems. Our compression

system has the tunability characteristic, which means we

can compress an image to a specific compression ratio with-

out retraining the model.
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