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Abstract

K-SVD algorithm has been successfully applied to im-

age denoising tasks dozens of years but the big bottleneck

in speed and accuracy still needs attention to break. For

the sparse coding stage in K-SVD, which involves ℓ0 con-

straint, prevailing methods usually seek approximate solu-

tions greedily but are less effective once the noise level is

high. The alternative ℓ1 optimization is proved to be power-

ful than ℓ0, however, the time consumption prevents it from

the implementation. In this paper, we propose a new K-SVD

framework called K-SVDP by applying the Primal-dual ac-

tive set (PDAS) algorithm to it. Different from the greedy al-

gorithms based K-SVD, the K-SVDP algorithm develops a

selection strategy motivated by KKT (Karush-Kuhn-Tucker)

condition and yields to an efficient update in the sparse

coding stage. Since the K-SVDP algorithm seeks for an

equivalent solution to the dual problem iteratively with sim-

ple explicit expression in this denoising problem, speed and

quality of denoising can be reached simultaneously. Ex-

periments are carried out and demonstrate the comparable

denoising performance of our K-SVDP with state-of-the-art

methods.

1. Introduction

Image denoising problem is primal in various regions

such as image processing and computer visions. The goal

of denoising is to remove noise from noisy images and

retain the actual signal as precisely as possible. Many

methods based on sparse representation have been pro-

posed to accomplish this goal in the past few decades

[26, 7, 21, 23, 15, 3]. K-means singular value decompo-

sition (K-SVD) is one of the typical works among these

models. It is an iterative patch-based procedure aiming at

finding an optimal linear combination of an overcomplete

dictionary to best describe the image. The solid theoretical

*Canhong Wen is the corresponding author.

foundations [19] and adaptability make it boost for dozens

of years. It can be divided into two stages, one is the dictio-

nary learning stage and the other is the sparse coding stage.

Some recent researches have been seeking for highly effi-

cient ways to make a breakthrough, but these modifications

mostly are taken on the dictionary learning stage [6, 10].

In fact, sparse coding is an optimization problem and ℓ1
optimization [27, 32, 8] is proved more powerful in solv-

ing denoising problems when the noise level is high [11].

However, taking time consumption into consideration, the

image denoising area always perfers to approximate the ℓ0
solutions using greedy algorithms instead [9] and treats it

as benchmark of K-SVD [2, 9, 26, 19, 18, 1]. Recently,

Liu et al. [14]apply the Mixed Integer quadratic program-

ming (MIQP) in the sparse coding stage which yields the

global optimal solution, but it also takes a long time. Thus,

a tradeoff between computational efficiency and denoising

performance in high noise conditions is needed.

In this paper, primal-dual active set algorithm (PDAS) is

applied to the sparse coding stage in the K-SVD framework,

and the new framework is called K-SVDP . PDAS algo-

rithm is first proposed by Ito and Kunisch in 2013 [12]and

then generalized and implemented by Wen, Zhang et al.

in 2017 [31]. By using the KKT condition and introduc-

ing the primal-dual variables, this NP-hard problem[16] can

be switched to a restricted linear regression model which

can be solved explicitly. We demonstrate the feasibil-

ity of this new scheme and compare it with the existing

K-SVD models achieved by orthogonal matching pursuit

(OMP) algorithm[28, 29], a typical ℓ0 greedy algorithm,

and Basis pursuit Denoising(BPDN) algorithm (also known

as LASSO in statistics) [27, 24], a classic ℓ1 optimization

algorithm, in experiment. The potential of our method will

be verified both theoretically and experimentally.

These are our major contributions:

• We successfully build a new K-SVDP framework by

applying the PDAS algorithm to sparse coding stage

and reach an explicit expression in this special case;
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• Comparison with the representative algorithms OMP

and BPDN are taken both theoretically and empiri-

cally;

• The results demonstrate the proposed K-SVDP is

competitive when the noise is low and has superior

performance in highly noisy images compared to the-

state-of-art methods.

The rest of the paper is organized as follows. In Sec-

tion 2, we state the image denoising problem and introduce

the K-SVD framework. In Section 3, K-SVDP is proposed

and theoretical analysis is described. In Section 4, exper-

iments in image denoising are carried out and the results

are showed. In Section 5, we arrive at the conclusion and

mention the possible future work.

2. Problem statement and K-SVD framework

Image denoising problem can be described as β = α+ǫ,
where α is the original noise-free image, ǫ is the added ran-

dom Gaussian white noise, and β denotes the noisy image.

Our target is to move ǫ from given β and obtain the real

image α.

In order to achieve this, sparse representation model first

searches for the principal component of the image called

dictionary by extracting sparse elements patch by patch in

β, and then treats the residual as noise ǫ and throw it out,

and finally reconstruct the image α based on the sparse rep-

resentation of the selected image elements. In this paper, we

only focus on the first phase of the above procedure which

the K-SVD algorithm is designed for and the other details

can be found in [9].

Considering a signal matrix Y = {yj}
p
j=1 ∈ R

n×p with

p original signals, a dictionary D = {dj}
K
j=1 ∈ R

n×K with

K prototype signal-atoms and sparse representation X =
{xj}

p
j=1 ∈ R

K×p with p solutions xj of corresponding yj .

The optimization object can be formulated as:

argmin
D,X

{

‖Y −DX‖2F
}

s.t. ‖xi‖0 ≤ T0, i = 1, 2, · · · , p

(1)

where T0 is the sparsity level, i.e. ℓ0-norm counting the

number of nonzero elements in a vector, and ‖Y −DX‖2F =
∑

‖yi −Dxi‖
2
2, i.e. the the Frobenius Norm of matrix Y −

DX .

K-SVD algorithm consists of dictionary learning and

sparse coding stage. The dictionary learning stage is to up-

date the dictionary and corresponding coefficient with given

X , and the sparse coding stage deals with finding the sparse

coefficient xi to each yi with known dictionary D. To sim-

plify the formula at sparse coding stage, let y and x denote

yi and xi, the target is as follows:

x̂ = argmin ‖y −Dx‖
2
2 s.t. ‖x‖0 6 T0. (2)

(a) Map (b) Man (c) House

(d) Bridge (e) Lake (f) Airport

(g) Boat (h) Airplane (i) Lena

Figure 1. Chosen images from USC-SIPI Image Database

The dictionary learning stage is generally solved by ap-

plying Single-Value Decomposition (SVD) to nonzero sub-

matrix of each Ei = Y −
∑

j 6=i djx(j), where x(j) denotes

the j − th row of X since the first column of singular value

vector contains the highest proportion of information. That

is, to extract the first column of the left singular value vec-

tor to update atoms column and treat the first column of the

right singular value vector as the corresponding coefficient

column. The details can be found in [2].

While the dictionary updating stage generates a con-

vex optimization problem, the sparse coding stage with ℓ0-

norm constraint is more challenging.

3. Proposed pursuit algorithm

Since the problem in (2) is NP-hard problem[16], pre-

vailing algorithms usually search for approximate solutions

by greedy algorithms (e.g. Matching pursuit [4], Orthog-

onal matching pursuit [28]). However, most of these ap-

proaches suffer from insufficient precision in high noise

level [13]. A remedy is turning to solve ℓ1 optimization (e.g.

Basis pursuit[5], Basis pursuit Denoising [27, 24]) which

has promising accuracy equivalently [11], but the compu-

tational expense makes it infeasible in large-scale denois-

ing problems. This really obstructs the development of the

K-SVD framework in image denoising, since at least thou-

sands of patches are in the process even if for the small

124× 124 image.

In this section, we plug a special case of the PDAS algo-

rithm, proposed by Wen et al. [31] who derived KKT con-

dition for general convex loss functions, in the K-SVDP

sparse coding stage. The goal of this section is to derive
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an explicit expression in the denoising problem, and then

discuss the connection with existing approaches.

3.1. The KSVDP sparse coding stage

It’s known that solution to (2) is necessarily a coordinate-

wise minimizer. So, let x⋄ = (x⋄
1, . . . , x

⋄
K) be the

coordinate-wise minimizer, i.e. each x⋄
j is minimizer in its

coordinate. A simple observation is that:

‖y −Dx‖
2
2 =

n
∑

i=1

(yi −
K
∑

q=1
Diqxq)

2

=
n
∑

i=1

(yi −
∑

q 6=j

Diqxq −Dijxj)
2

=
n
∑

i=1

(yi −
∑

q 6=j

Diqxq)
2

−2
n
∑

i=1

(yi −
∑

q 6=j

Diqxq)Dijxj +
n
∑

i=1

Dij
2xj

2

=
n
∑

i=1

(yi −
∑

q 6=j

Diqxq)
2

−2
n
∑

i=1

(yi −
∑

q 6=j

Diqxq)Dijxj + xj
2

(3)

where last equation is arrived since dictionary D is normal-

ized.

In order to find coordinate-wise minimizer, we define a

quadratic function respective to t in each coordinate j which

freezes x in the other coordinates to their optimal choices:

lj(t) =
n
∑

i=1

(yi−
∑

q 6=j

Diqx
⋄
q)

2−2
n
∑

i=1

(yi−
∑

q 6=j

Diqx
⋄
q)Dijt+t2

(4)

Then lj(t) achieve global minimum if and only if t∗j =
∑n

i=1(yi−
∑

q 6=j Diqx
⋄
q)Dij . For simplicity, let dj denotes

the j − th column of D, and define g⋄j = (y − Dx⋄)⋄′dj .

In this way, t∗j = x⋄
j + g⋄j . It’s natural to define a sacrifice

of lj(t) if we push t∗j from desirable value x⋄
j + g⋄j to zero,

and that is:

hj =
1

2
(x⋄

j + g⋄j )
2

(5)

We tend to set those scarify less to zero. i.e.

x⋄
j =

{

x⋄
j + g⋄j , if hj ≥ h[T0]

0, else,
for j = 1, . . . ,K,

(6)

Actually, these are the KKT conditions of x⋄ proved in [?].

So x⋄ is the solution to (2) if and only if it satisfies the above

conditions. We can tell from (6) that if xj 6= 0, then xj is

the optimal value and gj = 0, and if not, gj 6= 0 as defined.

This observation indicates xj and gj have complementary

supports and we can treat them as a pair of primal-dual vari-

ables. Then, searching for a solution to (2) is equal to find-

ing the best dual variable gj . Let A be the indicator set of

nonzero elements in coefficient x and I = (A)
c
. Then we

arrive at:






























xI = 0,
gA = 0,

xA = (D′
ADA)

−1
D′

Ay,
gI = (y −Dx)TDI ,

hI = 1
2 (gI)

2
,

hA = 1
2 (xA)

2

(7)

and

A =
{

j : hj ≥ h[k]

}

, I =
{

j : hj < h[k]

}

(8)

where h[1] ≥ h[2] ≥ . . . ,≥ h[K] denotes the decreasing

permutation of h. We solve this problem iteratively and

reach the pursuit algorithm in Algorithm 1.

Algorithm 1: Sparse coding algorithm in K-SVDP

Input: Signal y, fixed dictionary D ∈ R
n×K , the

maximum number of iterations R and

ℓ0 − norm constraint T0

Output: Sparse representation x
Initialization: randomly set A0 be a T0 subset of

{1, . . . ,K} and I0 =
(

A0
)c

;

for r ∈ {0, 1 . . . , R} do
• Compute xr

I , x
r
A, g

r
I , g

r
A, h

r
I , h

r
A by equation (6)

where A = Ar;

• Sort hj by hr
[1] ≥ hr

[2] ≥ . . . ,≥ hr
[K] ;

• Update the active and inactive sets by

Ar+1 =
{

j : hr
j ≥ hr

[T0]

}

,

Ir+1 =
{

j : hr
j < hr

[T0]

}

• If Ar+1 = Ar, then stop; else r = r + 1 and

return to steps above.

end

3.2. Comparison with existing approach

3.2.1 Comparison to greedy algorithms

In this part, a theoretical comparison to the representa-

tive of greedy algorithm Orthogonal matching pursuit al-

gorithm (OMP) [28] is given. OMP algorithm is an it-

erative method. Let Pi be the indicator set of dictionary

atoms have been selected until i-th step and Ri be the resid-

ual in i-th step, i.e. Ri = y − Dx(i) where x(i) denotes

the sparse coefficient x in i-th step. At (i+1)-th step, one

atom dj that is most correlated to the residual Ri is selected

by maximizing |〈dj , Ri〉| which is same as dual variables

gj = (y−Dx)′dj defined in the K-SVDP algorithm. Then,

in order to keep new residual orthogonal to selected dictio-

nary atoms, the OMP algorithm estimates the nonzero el-

ements of x(i+1) and computes residual Ri+1 by applying
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(a) σ = 15 (b) σ = 20

(c) σ = 25 (d) σ = 50

(e) σ = 75 (f) σ = 100

Figure 2. PSNR of K-SVDP versus sparsity levels T0 with σ =

15, 20, 25, 50, 75, 100

least squares to y on dictionary atoms have been selected

already, i.e. x(i+1) = (D′
Pi
DPi

)−1D′
Pi
y. After several it-

erations, this algorithm will converge.

However, from equation (5), we can tell that the K-

SVDP algorithm updates T0 atoms in the active set each

time based on hj which collects information both in primal

and dual variables iteratively. This procedure will gather

more information in each step, which accelerates the con-

vergence and improves the denoising performance.

3.2.2 Comparison with ℓ1 denoising

Since ℓ1-norm is the closest convex function to ℓ0-norm,

alternative methods seek for l1 constraint solution of prob-

lem (1). By transforming the ℓ0-norm into ℓ1-norm
and formulating the Lagrangian function, the problem is

changed to basis pursuit denoising(BPDN) problem, which

is also known as LASSO [27] in statistics.

x̂(λ) = argmin ‖y −Dx‖
2
2 + λ ‖x‖1 (9)

Recently, Hastie et al. (2017)showed that neither best sub-

set selection (2) nor LASSO (9) dominates in terms of accu-

racy, with best subset selection performs better in low noisy

σ 15 20 25 50 75 100

T0 20 20 15 2 2 2

Table 1. Chosen sparsity level T0 in σ = 15, 20, 25, 50, 75, 100

conditions and LASSO better in highly noisy images[11].

This tolerance of high noise partly thanks to the shrinkage

in LASSO, since the fitted variables from LASSO are con-

tinuous functions of x.[32] Best subset selection will hit dis-

continuous points when x is moving from I to A or from A
to I which makes them susceptible to high noise. However,

the K-SVDP based on best subset selection is still attractive

since its time complexity is far less than LASSO as shown

in the next section. As is said in [28], if there is an approxi-

mant holding of good quality, there is no need to waste time

in finding another closer solution.

4. Experiment

4.1. Design and Parameter setting

We select 9 images of size 512×512, as shown in Figure

1, from classic USC-SIPI Image Database[17] to compare

the image denoising performance of the K-SVDP with the

OMP and the BPDN-based K-SVD scheme.

For similarity, we set the number of iteration of K-

SVD to 10 for all pursuit algorithms. For each image,

p = 500 overlapping patches of size n = 8 × 8 are ex-

tracted to learn the dictionary D of size 64 × 256 as sug-

gested [9]. The experiment is repeated for noise levels

σ = 15, 20, 25, 50, 75, 100. Note that the last three are the

high noise level benchmarks according to [9]. In order to

select the optimal sparsity level T0 at different noise levels

for K-SVDP , we start with the noisy Man image for the

experiment. In each sparsity level for each σ, we compute

the peak signal-to-noise ratio (PSNR) of the restored image.

The PSNR of two images x and y is defined as (10). The

results are presented in Figure 2. Based on the results, the

optimal sparsity levels are chosen in Table 1.

PSNR = −10 log
‖x− y‖2

2552
(10)

σ 15 20 25 50 75 100

BPDN 1178.91 1177.59 1180.31 - - -

OMP 78.04 80.82 83.20 78.76 79.33 78.37

K-SVDP 93.29 96.19 84.28 58.93 59.47 61.56

Table 2. Reconstruction time(s) with σ = 15, 20, 25, 50, 75, 100

For the OMP algorithm, we run the supplementary code

provided by [9] and use the same method as we used for

K-SVDP to find its optimal sparsity levels. We choose the

SpaSM toolbox [25] based on piece-wise solution path [22]

to solve the LASSO problem in BPDN algorithm since it is

faster than the popular glmnet package [20].
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Figure Map Man House

σ/PSNR BPDN OMP K-SVDP BPDN OMP K-SVDP BPDN OMP K-SVDP

15/24.61 27.10 28.39 27.83 28.87 29.31 29.04 28.67 29.10 28.71

20/22.11 25.99 26.63 26.38 27.55 27.24 27.50 27.39 27.12 27.08

25/20.17 24.97 25.07 24.98 26.37 25.57 26.09 26.23 25.46 25.88

Figure Bridge Lake Airport

σ/PSNR BPDN OMP K-SVDP BPDN OMP K-SVDP BPDN OMP K-SVDP

15/24.61 26.72 27.82 27.34 28.74 29.04 28.71 29.14 29.55 29.41

20/22.11 25.81 26.26 26.15 27.40 27.05 27.15 27.64 27.32 27.58

25/20.17 24.95 24.87 24.99 26.28 25.45 26.14 26.45 25.62 26.48

Figure Boat Airplane Lena

σ/PSNR BPDN OMP K-SVDP BPDN OMP K-SVDP BPDN OMP K-SVDP

15/24.61 29.25 29.28 29.12 29.73 29.59 29.39 30.89 29.89 30.07

20/22.11 27.77 27.27 27.42 28.27 27.42 27.52 29.09 27.64 28.27

25/20.17 26.64 25.57 26.42 26.87 25.65 26.62 27.62 25.83 27.45

Table 3. Accuracy of the reconstruction PSNR(in dB) with σ = 15, 20, 25 (The higher, the better)

Figure Map Man House Birdge Lake

σ/PSNR OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP

50/14.15 19.75 21.76 19.92 23.74 19.87 23.26 19.68 22.26 19.88 23.35

75/10.63 16.40 20.67 16.48 22.30 16.46 21.85 16.39 21.29 16.47 21.87

100/8.13 13.97 19.83 14.02 21.17 14.00 20.78 13.99 20.26 14.04 20.81

Figure Airport Boat Airplane Lena Average

σ/PSNR OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP

50/14.15 19.90 23.85 19.96 24.13 19.96 24.03 19.99 25.67 19.88 23.56

75/10.63 16.48 22.48 16.48 22.61 16.49 22.26 16.54 23.87 16.47 22.13

100/8.13 14.03 21.34 14.02 21.36 14.04 21.11 14.06 22.41 14.02 21.01

Table 4. Accuracy of the reconstruction in terms of the PSNR(in dB) with σ = 50, 75, 100 (The best are highlighted in bold)

4.2. Reconstruction time

For σ = 15, 20, 25, we test the performance of three

methods, BPDN, OMP and K-SVDP , and run software in

the Matlabr R2017b environment on the Macbook with

2.9 GHz Intelr CoreTM i5 processor and 8G memory. For

each noise level, we record the average reconstruction time

among different images since the time expense is stable

when images change. For σ = 50, 75, 100, although BPDN

may gain a bit higher quality, we need to abandon it since

its time complexity is nearly 15 times that of the other two

algorithms. This can be tell from Table 2. At the same time,

we change to Matlabr R2019a online environment which is

faster to test the other two. The reconstruction time results

are shown in Table 2. From the result, we can conclude

that proposed K-SVDP framework is significant better than

BPDN and is competitive to the OMP especially for images

with high noise in terms of time.

4.3. PSNR comparison

Table 3 shows PSNR results in low noisy cases. We can

tell that the reconstruction performance of BPDN is better

when the noise level is relatively high but the margin of dif-

ference with K-SVDP decreases when the noise level de-

clines just as discussed in 3.2.2. The comparison between

OMP and K-SVDP is exactly the opposite. Considering

the time consumption and the fact that almost all the previ-

ous K-SVD benchmarks choose OMP as pursuit algorithm

[18, 1], so the next comparisons are only between OMP and

K-SVDP .

The high noise levels results of OMP and K-SVDP

are shown in Table 4. For all images, K-SVDP outper-

forms OMP by a significant margin in high noise levels.

In average, K-SVDP improves 3.68, 5.66, 6.99dB at σ =
50, 75, 100 respectively. Figure 3 shows the difference of

PSNR versus noise level for 9 images, and we can clearly

see that K-SVDP is markedly potential as the noise level in-

creases. This result can be expected. From 3.2.1, we know
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Figure Map Man House Birdge Lake

σ/SSIM OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP

15/0.829 0.928 0.921 0.910 0.907 0.892 0.891 0.931 0.923 0.896 0.896

20/0.753 0.892 0.887 0.866 0.867 0.846 0.847 0.898 0.893 0.846 0.851

25/0.683 0.854 0.848 0.819 0.835 0.795 0.816 0.864 0.852 0.797 0.828

50/0.443 0.678 0.679 0.619 0.707 0.596 0.714 0.683 0.677 0.596 0.743

75/0.307 0.534 0.599 0.475 0.620 0.459 0.626 0.536 0.614 0.464 0.649

100/0.223 0.430 0.544 0.372 0.556 0.360 0.551 0.425 0.557 0.370 0.569

Figure Airport Boat Airplane Lena Average

σ/SSIM OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP OMP K-SVDP

15/0.829 0.897 0.893 0.897 0.895 0.874 0.878 0.881 0.889 0.901 0.899

20/0.753 0.850 0.848 0.847 0.847 0.818 0.828 0.827 0.839 0.854 0.856

25/0.683 0.800 0.810 0.795 0.819 0.759 0.800 0.769 0.821 0.806 0.825

50/0.443 0.585 0.664 0.579 0.711 0.544 0.743 0.541 0.754 0.602 0.710

75/0.307 0.434 0.574 0.432 0.621 0.414 0.635 0.395 0.660 0.460 0.622

100/0.223 0.333 0.509 0.333 0.540 0.331 0.554 0.304 0.575 0.362 0.551

Table 5. Accuracy of the reconstruction in terms of the SSIM with σ = 15, 20, 25, 50, 75, 100 (The best are highlighted in bold)

(a) Map (b) Man (c) House

(d) Bridge (e) Lake (f) Airport

(g) Boat (h) Airplane (i) Lena

Figure 3. The difference of PSNR versus noise level of 9 images using different algorithms
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(a) Original (b) Noisy (c) OMP (PSNR=27.64dB) (d) K-SVDP (PSNR=28.27dB)

Figure 4. Denoising results in Lenna, σ = 20

(a) Original (b) Noisy (c) OMP (PSNR=16.46dB) (d) K-SVDP (PSNR=21.85dB)

Figure 5. Denoising results in House, σ = 75

OMP will be inferior to K-SVDP at the same sparsity level.

By preliminary experiments, we found the optimal T0 for

OMP is around 5. That’s to say, once the optimal sparsity

level of K-SVDP drops to lower than 5, it’s impossible for

OMP to defeat K-SVDP . Then combined with the optimal

sparsity level of K-SVDP showed in Table 1 and Figure 2,

we can draw the conclusion.

4.4. SSIM comparison

Besides PSNR, structural similarity index (SSIM)[30] is

included to evaluate. Different from the PSNR, the SSIM

is closer to the human visual effect since the correlation be-

tween image pixels is considered.

SSIM(x,y) =
(2µxµy + C1) (2σxy + C2)

(

µ2
x + µ2

y + C1

) (

σ2
x + σ2

y + C2

) (11)

where µx, µy are the mean intensity of the discrete signals,

and C1, C2 are parameters to ensure the stability of SSIM.

We use the default parameters and downsampling process.

Table 5 shows the SSIM of OMP and K-SVDP in

σ = 15, 20, 25, 50, 75, 100. For images Man, House, Lake,

Boat, Airplane and Lena which have clear objects in origi-

nal images, K-SVDP is almost better than OMP at all noise

levels. That is because a similar space in these images leads

to high correlations between pixels. For those whose scenes

are messy like Map, Bridge and Airport, results are simi-

lar to that in PSNR. PSNR is based on error sensitivity but

the SSIM perceives image distortion by detecting whether

the structural information changes. That’s to say, although

K-SVDP is slightly sensitive to error in low noise cases,

it managed to maintain a spatial structure which is exactly

where human vision is more concerned.

4.5. Visual comparison

Figure 4 and Figure 5 show the denoising details for

Lena with σ = 20 and House with σ = 75. To some extent,

K-SVDP seems to employ a moving average of the image

while OMP is more likely to operate on single points. So

when looking at Lena’s eye, the OMP processed one is more

clear in single points such as eyeballs and eyeliners, while

the K-SVDP operated one has less noise. The House results

in σ = 75 are more obvious. Only the K-SVDP restores the

tail shape though the streaks on it are not clear enough. Fig-

ure 6 shows the final adaptive dictionaries trained by Man

at σ = 50. We can see the dictionary obtained by K-SVDP

is highly structured compared to the OMP.

5. Conclusion and Future work

In this paper, we proposed a new K-SVDP framework

equipped with PDAS for sparse representation in image de-

noising. By introducing the primal-dual variables, the K-

SVDP algorithm directly solves the best subset problem

and presents a selection strategy that is different from the
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(a) OMP (b) K-SVDP

Figure 6. The trianed Dictionary of Man image, σ = 50

popular greedy algorithms and ℓ1 optimization. The ex-

plicit expression leads to low time complexity, while suf-

ficient KKT condition leads to high accuracy, especially in

high noisy cases. Moreover, the experiments demonstrate

that the proposal is competitive and feasible compared with

two state-of-the-art ways.

The main benefits of our new K-SVD framework are:

• This new framework is superior to BPDN in time com-

plexity and clarity at relatively low noise level;

• In high noise cases, it achieves significantly better per-

formance versus popular OMP algorithm and reduces

the time complexity compared to BPDN which makes

it possible to utilize;

• Results of SSIM and visual comparisons reveal that it

performs better on local patterns.

Future work will include a focus on improving the restora-

tion performance of the K-SVDP framework at low noise

levels and decreasing the time complexity further.
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