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Abstract

Building an intelligent defect segmentation system for

textured images has attracted much increasing attention in

both research and industrial communities, due to its sig-

nificance values in the practical applications of industrial

inspection and quality control. Previous models learned

the classical classifiers for segmentation by designing hand-

crafted features. However, defect segmentation of textured

surface images poses challenges such as ambiguous shapes

and sizes of defects along with varying textures and patterns

in the images. Thus, hand-crafted features based segmen-

tation methods can only be applied to particular types of

textured images. To this end, it is desirable to learn a gen-

eral deep learning based representation for the automatic

segmentation of defects. Furthermore, it is relatively less

study in efficiently extracting the deep features in the fre-

quency domain, which, nevertheless, should be very impor-

tant to understand the patterns of textured images. In this

paper, we propose a novel defect segmentation deep net-

work – Main-Secondary Network (MS-Net). Our MS-Net is

trained to model both features from the spatial domain and

the frequency domain, where wavelet transform is utilized

to extract discriminative information from the frequency do-

main. Extensive experiments show the effectiveness of our

MS-Net.

1. Introduction

With the advancement of automation in manufacturing,

automation of material quality inspection with little human

intervention is in high demand. To meet the industry stan-

dards and guarantee stringent quality control limits, it is of

great significance to carry out product inspection in advance

and put rejected products in wasted upstream factory capac-

ity. In industrial production line, there are various kinds

of surface defects, such as metallic defects [32], railway

track defects [20] and mobile screen defects. Defects can
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be tiny, fine-grained, which are unrecognizable by humans

and extremely hard for intelligent inspection systems to de-

tect. Generally, the defect inspection can be framed as three

tasks, i.e., defect images classification, defect part detection

and defect part segmentation.

Several excellent previous works [30, 33, 20, 21, 41]

have studied the task of image based quality inspection, and

these works generally focus on either classification or de-

tection. The defect segmentation is much more challenging

than defect classification and defect detection, since it needs

to determine the defective region pixel-by-pixel. Moreover,

accurate and precise defect segmentation results are critical

for evaluating the product quality. For example, one im-

portant measure for manufacturer in judging whether one

mobile screen is of good quality, is the size of total defec-

tive regions. It is thus essential to automatically and effi-

ciently learn to segment the defects. Despite remarkable

efforts have been made in industrial defect segmentation, it

still remains as a challenging problem.

Lack of Adaptability. In the past years, there are some

machine vision based methods [4, 22] to perform defect

segmentation, e.g., SVM based method [29], random forest

based method [26] and so on. These methods usually de-

sign different hand-crafted features for particular tasks, and

classifiers are then trained on these features. In that case,

elaborately designed features can fit well under particular

conditions, but may fail to effectively segment defects of

other industrial surfaces. Thus, these methods are lack of

adaptability and cannot be directly adapted to various con-

ditions, which is often the case in product quality control

system. To this end, training a defect segmentation model

automatically and generalizing the model to different cases

are in high demand.

Ambiguous Defective Regions as well as Changing Tex-

tures. In some cases, defects look very subtle and unrec-

ognizable due to uneven illumination as shown in the two

row of Fig. 1. Although these defects are slight, they have

a great impact on the use of the product. In industrial prod-

uct inspection, even tiny and sparse defects shown on the

products can potentially lead to a catastrophic failure of

the whole system, and such products should be abandoned.
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Figure 1. Defect segmentation by different methods. The first column shows the original defective images containing recognizable and

unrecognizable defects. The second column shows the ground truth where defects are annotated by experts with particular criteria. From

the third to the last column, segmentation results by different methods are compared, which demonstrate that our model can segment

unrecognizable defects and produce fine-grained results better than other methods.

Generally speaking, it is often the case that there are very

similar visual patterns between the defective regions and

background textures. Background textures are often chang-

ing in either color distribution or illumination, which may

appear different from the defect patterns. Such the visual

similarity may confuse most of the state-of-the-art defect

segmentation methods, which are often based on features

of spatial domain to detect defects. Therefore, it is essential

to construct a defect-sensitive model, which can recognize

and separate not only obvious but also ambiguous defects

from various textures.

High Accuracy Requirements. For the purpose of indus-

trial surface inspection, it is necessary to know the exact

size and pixel-wise location of the defect, as illustrated in

Fig. 1. Such results are regarded as an important indica-

tor to evaluate the quality of a product. Most previous

works can only detect defects with bounding boxes rather

than pixel-wise defect measures, bringing difficulties in per-

forming remedies in real applications as well as the need in

further inspection tools. Therefore, pixel-level segmenta-

tion for defects is essential in maintaining safety and qual-

ity control. In that way, the accuracy of defect detection

can also be improved. However, the performance of exist-

ing segmentation works is still quite limited in achieving the

pixel-level accuracy.

Currently, deep learning [14], especially the convolu-

tional neural network (CNN), has achieved remarkable per-

formance in many computer vision applications, as it en-

ables the model to be learned automatically and takes ad-

vantage of large amounts of data to gain high precision.

In this paper, we explore a novel deep learning approach

for the defect segmentation. Different from the traditional

CNN only extracting features from the spatial domain, we

propose a novel Main-Secondary Network (MS-Net) to seg-

ment defects by using features extracted from both spatial

domain and frequency domain. Particularly, we use the con-

volutional layers to extract the features from spatial domain

and Discrete Wavelet Transform (DWT) to decompose the

image to extract features from frequency domain. Thus, the

whole network is composed of two sub-nets, i.e., Main Net

and Secondary Net. These two sub-nets jointly learn defect

features from two domains and features are integrated for

the segmentation.

This is inspired by different components containing in

the frequency domain. Since defective regions often appear

with some disparities and unsmoothness in the image, com-

bining components from two domains can leverage patterns

of defects and textures under different conditions. Wavelet

transform (WT) has been shown to be an efficient tool to

depict the contextual and textural information of an image

at different levels [12], motivating us to incorporate WT

to a CNN-based defect segmentation system. In particu-

lar, we use convolutional layers to construct a Main Net not

only for extracting spatial features but also learning visual

embeddings of wavelet coefficients. The Secondary Net is

adopted to obtain features from frequency domain by tak-

ing advantage of wavelet transform, which is often consid-

ered as a powerful tool for approximating arbitrary nonlin-

ear functions, appropriate for ambiguous defects.

As shown in Fig. 1, our model produces fine-grained seg-

mentation results with high precision and beats other state-

of-the-art segmentation methods.

Contribution. Main contributions are listed as below: (1)

We propose a novel network structure for surface defect

segmentation that can automatically detect and segment am-

biguous defects from various background textures and pro-

duce fine-grained results. (2) We provide a new strategy in

combining frequency and spatial domain features for com-
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puter vision and image processing tasks by utilizing discrete

wavelet transform and its inverse process. Experimental re-

sults show that our proposed approach performs well.

2. Related work

Industrial Surface Inspection. Generally, industrial sur-

face inspection tasks are concerned with identifying defec-

tive regions that deviate from background textures based

on certain criteria. To design particular criteria for differ-

ent problems, several methods have been proposed by using

hand-crafted features.

Statistical measures [9, 39] are used for identifying de-

fects from textures, such as histogram statistics, local binary

patterns and so on. Structural approaches [36] characterize

textures by texture primitives and detect defects by gener-

alizing the spatial placement rules based on those primi-

tives. There are also model based methods such as random

field model [15], the texem model [40]. Filter based ap-

proaches [33, 1] often apply filter banks on the image and

compute the energy of the filter response. In general, these

works employ the hand-crafted features to train classical

classifiers such as SVM for predicting pixel-wise defects

from industrial images.

However, they are prone to errors due to the complexity

and variation of background textures and they often have

high cost in time. They may perform well under particu-

lar conditions, but fail in other scenarios, inappropriate in

real industrial applications for the lack of adaptability. Cur-

rent deep learning based methods [21, 13] have also been

proposed, but they are mainly for defect detection. Differ-

ent from above methods, we present a deep segmentation

framework, which can be utilized under different conditions

and generalized as a whole. Our method wraps different

kinds of features and trains the network in an end-to-end

manner.

Defect Segmentation. With the development of convolu-

tional neural network (CNN) for image based tasks, several

defect segmentation networks [34, 32, 27] have been de-

signed to tackle the adaptability problem of hand-crafted

features. For example, Xian et al. presented an inspec-

tion system for metallic surface, consisting of defects detec-

tion and classification in coarse-to-fine manner. Since most

of existing works are for defect detection [41, 21] rather

than pixel-wise segmentation, defect segmentation tasks re-

main very challenging. Although defects can be unrecog-

nizable and ambiguous along with variations in background

textures, we propose a method performing well on diverse

datasets.

Object Instance Segmentation. Driven by the recent suc-

cess of R-CNN [8], the task of object instance segmenta-

tion has been widely developed [24, 35], which is defined

as per-pixel object classification of the image. It is often
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Figure 2. Illustration of Discrete Wavelet Transform (DWT). The

2D Haar wavelet transform on the grey-scale defective image

I
gray

i can be shown from the input to outputs. Firstly, one-

dimensional DWT is performed on the rows to get the low-pass

and high-pass frequency components of the input image. Sec-

ondly, another one-dimensional DWT is used on the columns to

compute final wavelet coefficients. The inverse wavelet trans-

form (INVWT) is just the opposite from DWT. It is to reconstruct

the grey-scale image from four wavelet coefficients.

referred as semantic segmentation, which is quite different

with defect segmentation task in that: (1) Image pixels are

classified into a series of categories for semantic segmen-

tation, while defect segmentation is considered as a binary

classification problem on image pixels. (2) There are often

many semantic information and object features extracted

by elaborate deep networks, such as U-Net [25], Mask R-

CNN [10], which are relatively less in defective images.

(3) The foreground defective regions are often overlapped

with the background textures without obvious semantic de-

viation, making the defect segmentation extremely diffi-

cult. Furthermore, due to different objectives of the two

tasks, state-of-the-art semantic segmentation methods usu-

ally don’t work in defect segmentation tasks.

Wavelet Transform. Wavelet Transform (WT) has been an

efficient tool in image super resolution [12], image restora-

tion [17] and also defect detection / segmentation [37, 2,

38]. Wong et al. [38] propose a a stitching detection and

classification technique, combining the improved thresh-

olding method based on the wavelet transform with the

back propagation (BP) neural network. Wen et al. [37] use

wavelet transform (WT) and a co-occurrence matrix (CM)

to extract features of texture images, then use those features

to locate defects on textile fabrics. Arivazhagan et al. [2]

propose to utilize Gabor wavelet transform to detect the de-

fects in fabrics. Different from them, we use WT to trans-

form the image to extract its information in frequency do-

main and introduce WT into CNN layers, combining both

spatial and frequency domain features for segmentation.
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Spatial feature

Convolution

Figure 3. MS-Net Architecture. This figure shows the detailed structure of our MS-Net, where the Secondary Net embeds DWT into CNN

to obtain features of frequency domain and skip connections are used to integrate features from two sub-nets. (a) The overall structure of

the network.(b) shows how the network combines the frequency domain feature and the spatial domain feature at the encoder stage. (c)

shows how the network combines two features at the decoder stage. The inputs of two sub-nets are the original defective image Ii and its

corresponding grey-scale image I
gray

i , and our model outputs the segmentation result, which is a grey-scale image Ŷi. The height, width

and channel-size of the feature map are shown for each layer.

3. Methodology

3.1. Model Overview

We propose a novel deep network called Main-

Secondary Network (MS-Net). As shown in Fig. 3, our MS-

Net is composed of two parts, i.e., Main Net and Secondary

Net. Particularly, the Secondary Net is used to extract and

process the features of defective images in the frequency

domain. The Main Net plays two roles. On the one hand,

it extracts features of input images in the spatial domain by

convolutional layers. On the other hand, it consequently

fuses the multi-channel features from the Secondary Net

and combines them to feed into convolutional layers. The

final segmentation result is obtained from the output of the

Main Net.

3.2. Problem Definition

Given the defective image set D, we aim to train

a pixel-wise classifier to predict the defects. Par-

ticularly, we have D = {Ii, Yi}
N

i=1, where Yi =
{

y
(i)
m ,m = 1, ..., |Ii| , y

(i)
m ∈ {0, 1}

}

denotes the ground

truth annotation / segmented result. For each image, it has a

pixel-wise label with ym = 1 representing a defective pixel

and ym = 0 representing a non-defective pixel. The goal is

to capture the conditional distribution of defect pixels and

learn the mapping function:

Ŷi = Mnet (Ii, Snet (I
gray
i )) (1)

where Mnet denotes the Main Net and Snet denotes the Sec-

ondary Net. Ŷi is the segmentation result.

3.3. Defect Segmentation

Secondary Net. As shown in Fig. 3, the Secondary Net is

an autoencoder structure with a down-sampling path and an

up-sampling path. In order to extract features from the fre-

quency domain and combine them with CNN, we design

a new operation block by using Discrete Wavelet Trans-

form together with convolutional layers (DWT + Convo-

lution).The frequency domain features are passed to the

Main-Net after passing through the convolution layer. The

Discrete Wavelet Transform (DWT) is often used to cap-

ture both frequency and location information of feature

maps [7, 17], which may be helpful in preserving texture

details. Since DWT is invertible, all information can be kept

through DWT and its inverse process (INVWT).

The Secondary Net takes a grey-scale image I
gray
i of the

size h × w × 1 as input and represents it as a set of fea-

ture maps. Particularly, this block first use the Haar based

DWT to transform and map the input to its frequency distri-

bution. We choose Haar based DWT for it is easy enough to

operate and depict defect information of different frequen-

cies and it is appropriate in terms of speed. The details are

shown in Fig. 2, where the input grey-scale image is de-

composed into four quarter-sized images, the inner products

of the original image and different wavelet basis functions

with interval sampling in the end.

After each DWT, the transformed image passes through

ResNet [11] basicblock based convolutional layer to learn

a compact representation as the inputs to the subsequent

DWT. The number of feature maps (or the channel-size) in-

creases in the down-sampling path to explore enough infor-
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mation from DWT. During the down-sampling process, fea-

tures with the same channel size are concatenated with the

Main Net feature maps and the image is encoded as differ-

ent embeddings. Skip connections are used to concatenate

feature maps.

In the up-sampling stage, the image is reconstructed by

INVWT and passes through ResNet [11] basicblock based

convolutional layers to extract additional features from the

result of INVWT. As shown in Fig. 2, the inverse process

is from the righthand side to the lefthand side, where the

channel-size will reduce to one quarter of the former fea-

ture map. Similarly, features extracted from the INVWT

will concatenate with Main Net feature maps, by which the

frequency characteristics of DWT are expected to benefit

the defect segmentation. As mentioned above, the overall

Secondary Net has 8 blocks.

The overall process can be summarized as :

Snet (I
gray
i ) = fIC (fDC (Igrayi )) (2)

where fIC indicates the INVWT operation in the up-

sampling process and fDC denotes the DWT operation in

the down-sampling process.

Main Net. As shown in Fig. 3, the Main Net is also struc-

tured as an autoencoder, where we take the original image Ii
with size h×w×3 as the input and the output is the segmen-

tation result with size h×w×1. The encoder down-samples

the input to get increasing number of feature maps from the

spatial domain, as well as combining frequency domain fea-

tures consequently. The decoder reconstructs the image to

the same spatial size with the input image but containing

only one channel. All the convolutional filters are in kernel

size 3×3 or 1×1with a stride of 2 or 1 and each convolution

is followed by a ReLU. We use the skip connection to con-

catenate features between the Main Net and the Secondary

Net, so that features from both domains are utilized for de-

fect segmentation. There are some convolutional layers be-

tween fusion feature layers to further obtain visual embed-

dings of defects and textures. Besides, to prevent gradients

vanishing and accelerate convergence, we mainly refer to

the convolutional layer structure of resnet.

Loss Function. This network is trained in an end-to-end

manner. The backward process is simple yet effective. We

use the cross entropy loss on the output of the Main Net and

back-propagate the loss through the two sub-nets to update

model parameters. The loss function can be written as:

Lseg = Yilog
(

Ŷi

)

+ (1− Yi) log
(

1− Ŷi

)

(3)

4. Experiment

4.1. Datasets and Settings

We evaluate the proposed method on three datasets, i.e.,

DeepCrack [18], CrackForest [6, 28]. We highlight that our

framework is able to segment defects of various complex

surface images.

CrackForest Dataset [6, 28]. It contains annotated road

crack images which can reflect urban road surface condi-

tion in general. The total number of images is 118, with

hand labeled ground truth contour for each image. The road

defect dataset is more complex because it is close to natural

scenes. In addition to defects such as cracks, there are also

gasoline spots and so on, posing challenges to the robust-

ness of the method.

DeepCrack Dataset [18]. It is a benchmark dataset with

cracks in multiple scales and scenes to evaluate the crack

detection systems.DeepCrack is a road crack data. The dif-

ference from CrackForest data is that deepcack has a larger

amount of data, more noise in the data, and more diffi-

cult segmentation.All of the crack images in this dataset are

manually annotated. It Contains a total of 300 training data,

including pictures of different sizes and a total of 237 test

images with different sizes.

4.2. Evaluation Protocols

We adopt four commonly-used metrics [19] for semantic

segmentation and scene parsing evaluations. Let nij be the

number of pixels of class i predicted to belong to class j,

where there are nclass different classes, and let ti =
∑

j nij

be the total number of pixels of class i. Here, we have only

two classes (defective and non-defective) and thus i = 2.

The four metrics are:

(1) Pixel Accuracy (pAcc):
∑

i nii/
∑

i ti, the percent of

pixels in the image which are correctly classified.

(2) Mean Accuracy (mAcc): (1/ncl)
∑

i nii/ti, the average

on pixel accuracy values of all classes.

(3) Mean IoU (region intersection over union) (mIoU):

(1/ncl)
∑

i nii/(ti +
∑

j nji − nii), the average on IoU

(the percent of overlap between the target and the predicted

output) of all classes.

(4) Frequency Weighted IoU (f.w.IoU):

(
∑

k tk)
−1

∑

i tinii/(ti +
∑

j nji −nii), mean IoU

with weights of each class.

4.3. Implementation Details

We use PyTorch [23] for all experiments. Our model

is trained with one TITAN Xp GPU and takes about one

hour to complete training. In the training stage, defective

images and their corresponding segmentation annotations

are used to train the network from scratch. The inputs of

Main Net and Secondary Net are original color images and

their corresponding grey-scale images, respectively. We use

the SGD optimizer to train the model and our model gets

converged after 150 epochs on all datasets. The momentum

is set to 0.9. The initial learning rate is set to 0.1 and decays

by 10−1 after 15 epochs.
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In the data pre-processing stage, we perform data aug-

mentation on the DeepCrack dataset and the CrackForest

dataset by following the commonly-used method [5, 35] in

medical image processing. Since these two datasets only

contain a few defective images, in order to train the model

better and make it robust, we randomly crop large-size im-

ages into multiple 224×224 small-size images while main-

taining the structure of them. Thus, our model can be fully

trained and maintain the robustness as well.

4.4. Competitors

We compare several competitors here that potentially can

be used to segment defects, including the learning based

approaches and hand-crafted features based methods. (1)

PHOT [1]: This method is a filter based method. It uses

Fourier transform and Gaussian filtering to extract the fre-

quency domain knowledge of the image, which differs from

our method in that it only uses frequency domain fea-

tures and is an un-learnable method. (2) SegNet [3] and

U-Net [25] : SegNet and U-Net is a semantic segmenta-

tion network with auto encoder structure, Feature extraction

through encoder and semantic segmentation using decoder.

(3) RefineNet [16]: RefineNet is a generic multi-path re-

finement network that explicitly exploits all the information

available along the down-sampling process to enable high-

resolution prediction using long-range residual connections.

RefineNet, U-Net and SegNet both use deep networks to

achieve segmentation. But unlike our approach, they only

use spatial domain features and does not use frequency do-

main features.

Note that recent state-of-the-art segmentation methods

including Mask R-CNN [10] have also been investigated

to be utilized to segment the defects. However, we find

that they are quite difficult to either train from scratch or

be fine-tuned over above datasets, mainly due to the model

complexity and the intrinsic differences between objective

images. In the experiments, recent segmentation methods

have shown poor results and thus do not appear here as com-

petitors.

4.5. Results Analysis

We analyze our experimental results from both quantita-

tive and qualitative aspects.

Quantitative Results. We demonstrate the application of

the proposed MS-Net on the test sets of two datasets. Ta-

ble 1 lists the results of the competing methods on these

two datasets, where our method has outperformed state-of-

the-art methods by all metrics in general. Our method beats

the method based on frequency domain features only and

deep learning based method. By comparing to results of U-

net [25], SegNet [3], RefineNet [16] and PHOT [1], we can

demonstrate the effectiveness of our MS-Net in exploiting

discriminative features from two domains (spatial domain

and frequency domain) and applying in the defect segmen-

tation task, since SegNet and RefineNet mainly take advan-

tage of spatial domain features and PHOT utilizes frequency

domain features.

We note that our MS-Net generally achieves favorable

performance when compared with the competing methods.

This suggests the overall performance advantages of the

proposed MS-Net in the capability of multi-source (spatial

domain and frequency domain) information extraction and

fusion for adapting the defect segmentation model. When

compared to the existing methods of defect segmentation

mIoU, the performance margins are quite large. This indi-

cates the importance of learning from both domains on la-

beled defect images, since hand-crafted features are not suf-

ficiently generalizable across different datasets with vary-

ing texture and defect conditions. Note that those metrics

in 4.2 are mostly used for semantic segmentation evalua-

tion, among which mIoU improvement can directly suggest

the model design advantages of our MS-Net in exploiting

the diverse knowledge in ambiguous defects and changing

textures, typical in real industrial deployments.

It is worth noting that the performance advantages by our

MS-Net are achieved using only a few layers, which is quite

applicable in real industrial inspection scenarios.

Qualitative Results. The visualization of the segmentation

results of our MS-Net as well as the competing methods are

shown in Fig. 4, 5.

As in Fig. 4, the segmentation results show that our MS-

Net can output fine-grained segmentation results with sharp

separation between defects and the texture. The defects on

road images appear to be winding through the whole im-

age and show much unsmoothness along the way, extremely

hard to achieve accurate pixel-wise segmentation results.

Our MS-Net can segment those kinds of defects quite well

in terms of sharpness and granularity, while other methods

can hardly produce sound and clear segmentation results.

For ambiguous defects of industrial images, our model

can also segment them quite correctly as shown in Fig. 4.

Visual comparisons of the competing methods on these two

datasets indicate the robustness and promising performance

of our MS-Net. The defects on CrackForest are quite very

thin and can be successfully segmented by deep learning

based methods, but our MS-Net performs better with re-

spect to pixel accuracy and comprehensiveness. The ap-

pearance of the defect is closer to the texture and they are

easily confused with those of image texture in general, lead-

ing to some weakness for other methods. This suggests that

our MS-Net can successfully discriminate the pattern dif-

ference between texture and sharp defects by taking both

spatial domain features and frequency domain features into

consideration.

More complex texture changes are shown in Fig. 5, In the

deep crack dataset, the texture is more complicated,More

3536



DeepCrack [18] CrackFroest [28]

pAcc mAcc mIoU f.w.IoU pAcc mAcc mIoU f.w.IoU

SegNet [3] 0.930 0.716 0.574 0.896 0.984 0.500 0.492 0.970

RefineNet [16] 0.979 0.840 0.783 0.961 0.980 0.657 0.570 0.967

Unet [25] 0.979 0.876 0.7962 0.962 0.981 0.692 0.596 0.970

PHOT [1] 0.658 0.810 0.392 0.622 0.895 0.021 0.014 0.867

Ours 0.986 0.914 0.849 0.974 0.980 0.799 0.626 0.968

Table 1. Quantitative Results of MS-Net on ’DeepCrack’, ’CrackForest’. We compare our method with both traditional image processing

method and deep learning based methods.

likely to cause textures to be identified as defects,Our net-

work reduces the number of false detections by combin-

ing different features and segmented from the such images,

showing the detection capabilities of our model in complex

environments.

Thanks to the frequency characteristics of DWT and its

combination with spatial domain features, our MS-Net can

correctly detect diverse defect patterns on various textures

and produce fine-grained and high-precision segmentation

results. Furthermore, we highlight that our method can not

only be applied on images for visual inspection and qual-

ity control, e.g. DeepCrack [18] and CrackForest [6, 28]

datasets, but also has effects on other types of images, We

did some experiments on other types of datasets in the abla-

tion study.

4.6. Ablation Studies

In order to investigate the effectiveness of our model ele-

ments for the defect segmentation task, we conduct several

ablation studies to measure the importance of two major el-

ements, i.e., spatial domain features and frequency domain

features.

Only Frequency Domain Features (Secondary Net). The

main benefit of our model is assumed to have combined fea-

tures from frequency domain by utilizing DWT. Other than

previous methods such as PHOT [1], we adopt the deep

learning framework and embed wavelet transform to ob-

tain frequency domain knowledge. In order to verify the

significance of this operation, we conduct the defect seg-

mentation by using only the Secondary Net of the MS-Net.

Although the Secondary Net combines DWT with convolu-

tional layers, it can be regarded as the main use of features

from frequency domain and convolution operations are uti-

lized to extract more knowledge from DWT. We have done

experiments on the two datasets with the same training con-

figurations as in Sec. 4.3. The quantitative results are shown

in Tab. 2.

Only Spatial Domain Features (Main Net). Since most of

previous methods are based on learning features of spatial

domain and they can achieve high performance for seman-

(1)

(2)

(3)

(4)

(5)

(6)

Figure 4. Qualitative Results on CrackForest by Different Meth-

ods. The meaning of each row: (1) The original images in the

datasets. (2) Ground truth annotations of defects. (3) Segmen-

tation results of our MS-Net. (4) Segmentation results of PHOT.

(5) Segmentation results of Seg-Net. (6) Segmentation results of

RefineNet.

pAcc mAcc mIoU f.w.IoU

CrackForest [6, 28] 0.839 0.606 0.514 0.791

DeepCrack [18] 0.956 0.500 0.478 0.916

Table 2. Quantitative Results of Ablation Study on Only Using the

Secondary Net.

tic segmentation tasks and so on, we conduct experiments

to test the results of only using Main Net for segmentation,

where only spatial domain features are taken into consider-

ations. In that case, features from the frequency domain by

skip connections are omitted and the segmentation model

only contains a few layers. The training configurations are
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(1)

(2)

(3)

(4)

(5)

(6)

Figure 5. Qualitative Results on DeepCrack by Different Methods.

The meaning of each row: (1) The original images in the datasets.

(2) Ground truth annotations of defects. (3) Segmentation results

of our MS-Net. (4) Segmentation results of PHOT. (5) Segmenta-

tion results of Seg-Net. (6) Segmentation results of RefineNet.

Defective image Ground truth Ours

Figure 6. Some failure cases of MSNet. The meaning of each

column: (1) The original images in the datasets. (2) Ground truth

annotations of defects. (3) Segmentation results of our MS-Net.

the same with Sec. 4.3. The quantitative results on three

datasets are shown in Tab. 3, which are not good as com-

bining features from two domains.

As shown above, the segmentation performance can be

improved after combining the two sub-nets. The likely rea-

son for this is that combining DWT with CNN can boost

the feature separation of defects from background textures

by decomposing the image to several channels in the fre-

quency domain.

We also show some failure cases. From the failure cases,

we can see that the network identified the shadow of the

object and the grass on the roadside as defects.The reason

(1)

(2)

(3)

Figure 7. Some failure cases of MSNet. The meaning of each

column: (1) The original images in the datasets. (2) Ground truth

annotations of defects. (3) Segmentation results of our MS-Net.

pAcc mAcc mIoU f.w.IoU

CrackForest [6, 28] 0.977 0.659 0.558 0.966

DeepCrack [18] 0.973 0.844 0.744 0.954

Table 3. Quantitative Results of Ablation Study on Only Using the

Main Net.

for this result is on the one hand because there is very lit-

tle data in this case in the training dataset, and it may also

be that the network tends to learn low-level features after

combining the frequency domain features.

We have also performed experiments on other types

of datasets to verify the validity of our model. We per-

formed a blood vessel segmentation experiment on the drive

dataset [31], Visualization results are shown in Fig. 7.It can

also work well on the drive dataset [31].

5. Conclusion

In this work, we propose a novel MS-Net framework

for defect segmentation, which will benefit industrial sur-

face inspection and product quality control. To the best

of our knowledge, we are the first to jointly utilize fea-

tures from frequency domain extracted through DWT and

features from spatial domain by CNN for separating de-

fects from different background textures. We further ana-

lyze our model components. Most importantly, our method

outperforms state-of-the-art methods in terms of accuracy

and speed. In the future, we will investigate extending our

framework to more segmentation cases and other related

tasks.

6. Acknowledgments

This work was supported in part by Science and

Technology Commission of Shanghai Municipality

Project(#19511120700,#19ZR1471800).

3538



References

[1] D. Aiger and H. Talbot. The phase only transform for un-

supervised surface defect detection. In Emerging Topics

In Computer Vision And Its Applications, pages 215–232.

World Scientific, 2012.

[2] S. Arivazhagan, L. Ganesan, and S. Bama. Fault segmen-

tation in fabric images using gabor wavelet transform. Ma-

chine Vision and Applications, 16(6):356, 2006.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. IEEE transactions on pattern analysis and

machine intelligence, 39(12):2481–2495, 2017.

[4] F. G. Bulnes, R. Usamentiaga, D. F. Garcia, and J. Molleda.

An efficient method for defect detection during the manufac-

turing of web materials. Journal of Intelligent Manufactur-

ing, 27(2):431–445, 2016.

[5] N. Cordier, B. Menze, H. Delingette, and N. Ayache. Patch-

based segmentation of brain tissues. 2013.

[6] L. Cui, Z. Qi, Z. Chen, F. Meng, and Y. Shi. Pavement dis-

tress detection using random decision forests. In Interna-

tional Conference on Data Science, pages 95–102. Springer,

2015.

[7] I. Daubechies. The wavelet transform, time-frequency local-

ization and signal analysis. IEEE transactions on informa-

tion theory, 36(5):961–1005, 1990.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 580–587,

2014.

[9] R. M. Haralick et al. Statistical and structural approaches to

texture. Proceedings of the IEEE, 67(5):786–804, 1979.

[10] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-

cnn. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2961–2969, 2017.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[12] H. Huang, R. He, Z. Sun, and T. Tan. Wavelet-srnet: A

wavelet-based cnn for multi-scale face super resolution. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 1689–1697, 2017.

[13] N. Kondo, M. Harada, and Y. Takagi. Efficient training for

automatic defect classification by image augmentation. In

2018 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 226–233, March 2018.

[14] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,

521(7553):436, 2015.

[15] S. Z. Li. Markov random field modeling in image analysis.

Springer Science & Business Media, 2009.

[16] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-path

refinement networks for high-resolution semantic segmenta-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1925–1934, 2017.

[17] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo. Multi-level

wavelet-cnn for image restoration. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, pages 773–782, 2018.

[18] Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li. Deepcrack: A deep

hierarchical feature learning architecture for crack segmen-

tation. Neurocomputing, 338:139–153, 2019.

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015.

[20] C. Mandriota, M. Nitti, N. Ancona, E. Stella, and A. Dis-

tante. Filter-based feature selection for rail defect detection.

Machine Vision and Applications, 15(4):179–185, 2004.

[21] D. Mery and C. Arteta. Automatic defect recognition in x-

ray testing using computer vision. In 2017 IEEE Winter Con-

ference on Applications of Computer Vision (WACV), pages

1026–1035, March 2017.

[22] B. Paniagua, M. A. Vega-Rodrı́guez, J. A. Gomez-Pulido,

and J. M. Sanchez-Perez. Improving the industrial clas-

sification of cork stoppers by using image processing and

neuro-fuzzy computing. Journal of Intelligent Manufactur-

ing, 21(6):745–760, 2010.

[23] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017.

[24] S. Qin, P. Ren, S. Kim, and R. Manduchi. Robust and ac-

curate text stroke segmentation. In 2018 IEEE Winter Con-

ference on Applications of Computer Vision (WACV), pages

242–250, March 2018.

[25] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-

lutional networks for biomedical image segmentation. In

International Conference on Medical image computing and

computer-assisted intervention, pages 234–241. Springer,

2015.

[26] F. Schroff, A. Criminisi, and A. Zisserman. Object class seg-

mentation using random forests. In British Machine Vision

Conference, pages 1–10, 2008.

[27] L. Shang, Q. Yang, J. Wang, S. Li, and W. Lei. Detection

of rail surface defects based on cnn image recognition and

classification. In 2018 20th International Conference on Ad-

vanced Communication Technology (ICACT), pages 45–51.

IEEE, 2018.

[28] Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen. Automatic road

crack detection using random structured forests. IEEE Trans-

actions on Intelligent Transportation Systems, 17(12):3434–

3445, 2016.

[29] V. A. Sindagi and S. Srivastava. Domain adaptation for au-

tomatic oled panel defect detection using adaptive support

vector data description. International Journal of Computer

Vision, 122(2):193–211, 2017.

[30] K. Y. Song, J. Kittler, and M. Petrou. Defect detection

in random colour textures. Image and vision Computing,

14(9):667–683, 1996.
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