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Abstract

In this paper we propose integrating a priori knowledge
into both design and training of convolutional neural net-
works (CNNs) to learn object representations that are in-
variant to affine transformations (i.e. translation, scale, ro-
tation). Accordingly we propose a novel multi-scale maxout
CNN and train it end-to-end with a novel rotation-invariant
regularizer. This regularizer aims to enforce the weights
in each 2D spatial filter to approximate circular patterns.
In this way, we manage to handle affine transformations in
training using convolution, multi-scale maxout, and circu-
lar filters. Empirically we demonstrate that such knowledge
can significantly improve the data-efficiency as well as gen-
eralization and robustness of learned models. For instance,
on the Traffic Sign data set and trained with only 10 images
per class, our method can achieve 84.15% that outperforms
the state-of-the-art by 29.80% in terms of test accuracy.

1. Introduction

Recently Sabour et al. [34] proposed a new network ar-
chitecture, CapsNet, and a dynamic routing training algo-
rithm to connect the capsules [17], a new type of neurons
that output vectors rather than scalars in conventional neu-
rons, in two adjacent layers and group similar features in
higher layers. Later on Hinton et al. [16] proposed an-
other EM-based routing-by-agreement algorithm for train-
ing CapsNet. In contrast to CNNs, the intuition behind
CapsNet is to achieve “viewpoint invariance” in recogniz-
ing objects for better generalization which is inspired by in-
verse graphics [15]. Technically, CapsNet not only predicts
classes but also encodes extra information such as geometry
of objects, leading to richer representation. For instance, in
[16], 4 x 4 pose matrices are estimated to capture the spa-
tial relations between the detected parts and a whole. Unlike
CNNs the performance of CapsNet on real and more com-
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plex data has not been verified yet, partially due to the high
computation that prevents it from being applicable widely.

In fact exploring such invariant representations for ob-
ject recognition has a long history in the literature of both
neural science and computer vision. For instance, in [21]
Isik et al. observed that object recognition in the human vi-
sual system is developed in stages with invariance to smaller
transformations arising before invariance to larger transfor-
mations, which supports the design of feed-forward hier-
archical models of invariant object recognition. In com-
puter vision part-based representation (e.g. [11]) is one of
the most popular invariant object representations that con-
siders an object as a graph where each node represents an
object part and each edge represents the (spatial) relation
between the parts. Conceptually part-based representation
is view-invariant in 3D and affine-invariant (i.e. invariant to
translation, scale, and rotation) in 2D. Although the com-
plexity of part-based models in inference on general graphs
could be very high [7], for tree structures such as star graphs
this complexity can be linear to the number of parts [10].
Girshick et al. [12] has shown that such star graph part-
based models can be interpreted as CNNs.

In this paper we aim to study the following problem: Can
we design and train CNNs to learn affine-invariant repre-
sentations efficiently, effectively, and robustly?

Motivation. Besides CapsNet, we are also partially mo-
tivated by the works such as [2, 50] that utilize a priori
knowledge as guidance to design and train neural networks
efficiently and effectively. For instance, [2] proposed the
notion of “neural module” to conduct certain semantic func-
tionality using deep learning for visual question answer-
ing. Such modules can be reusable to comprise complex
networks to perform certain tasks. The semantics and the
network design here come from the compositional linguis-
tic structure of questions. Thanks to these modules, the
network design is much more understandable by checking
whether the outputs of a module follow what we expect.
[50] proposed encoding network weights as well as the ar-
chitecture into a Tikhonov regularizer by lifting the ReLU
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activations, and accordingly developed a block coordinate
descent algorithm for fast training of deep models.

In contrast to a posteriori knowledge such as visualiza-
tion of learned filters in [47], a priori knowledge based ap-
proaches are more likely to be model-driven so that one can
derive by reasoning alone, rather than being data-driven,
in terms of building automatic systems such as neural net-
works. In this way, the networks with a priori knowledge
are expected to be much easier to be understood by human,
and their performance is more predictable and robust.

Contributions. Thanks to the convolution, CNNs are trans-
lation equivariant. This capability has contributed signifi-
cantly to their widespread success. They, however, are not
efficient or effective to capture the scaled or rotated objects,
and thus enhancing CNNs with the capability of learning
scale-invariant and rotation-invariant features is very chal-
lenging but appealing.

In this paper we design a novel deep multi-scale max-
out [13] CNN to learn scale-invariant representations. We
then propose training this network end-to-end with a novel
rotation-invariant regularizer. To our best knowledge, we
are the first to propose such regularization for handling ro-
tation in deep learning. Note that we take the multi-scale
maxout block and the regularizer as a priori knowledge for
learning affine-invariant representations. Empirically we
demonstrate the benefit of integrating such knowledge with
network design and training, leading to better generaliza-
tion, data-efficiency, and robustness of deep models than the
state-of-the-art in learning affine-invariant representations.

2. Related Work

Scale-Invariant Networks. One simple way to handle
the scale issue is using image pyramid in deep learning
[31]. Some works [44, 24, 38] are particularly interested
in extracting scale-invariant features from the networks.
More broadly, multi-scale convolutional filters (or multi-
kernels) are employed in networks [30, 39, 3, 28]. The
inception module in GooglLeNet [37] is able to capture
multi-scale information with maxout units. A similar idea
has been explored in TI-Pooling [26]. ResNet [14] man-
ages to capture multi-scale information using skip connec-
tion. Multi-scale DenseNet [19] proposes using a two-
dimensional multi-scale convolutional network architecture
that maintains coarse-level and fine-level features through-
out the network. Note that with the increase of the number
of hidden layers all the CNNs tend to extract deep features
within multiple scales to a certain degree.

Rotation-Invariant Networks. Recently quite a few works
focus on learning rotation-invariant features using deep net-
works. Cohen and Welling [6] proposed Group equivari-
ant CNNs (GCNN) by exploiting larger groups of symme-
tries, including rotations and reflections, in the convolu-

tional layers. Worrall et al. [42] proposed Harmonic Net-
works by replacing regular CNN filters with circular har-
monics and returning a maximal response and orientation
for every receptive field patch. Both works argue that ro-
tating the data point is equivalent to rotating the filters.
Therefore, they manage to learn rotation-invariant filters in
a continuous space. In contrast, some other works such as
[51, 49,32, 18, 48, 33, 40] propose learning the filters in
a discretized space by quantizing the rotation angles with
predefined numbers (e.g. from 0 to 27, step by 7) so that
the final features encode the rotation information. For in-
stance, Rotation Equivariant Vector Field Networks (RotE-
gNet) [33] was proposed by applying each convolutional fil-
ter at multiple orientations and returning a vector field that
represents magnitude and angle of the highest scoring ori-
entation at every spatial location.

Interpretable Networks with A Priori Knowledge. An-
dreas et al. [2] proposed neural modules to mimic some
basic semantic functionality using deep neural networks,
based on which larger networks are constructed for specific
tasks using the knowledge from natural language processing
(NLP) such as grammar graphs as guidance. Belbute-Peres
et al. [9] proposed embedding structured physics knowl-
edge into larger systems as a differentiable physics engine
that can be integrated as module in deep neural networks
for end-to-end learning. Amos et al. [1] proposed using
Model Predictive Control (MPC) as a differentiable policy
class for reinforcement learning in continuous state and ac-
tion spaces that leverages and combines the advantages of
model-free and model-based approaches. They also showed
that their MPC policies are significantly more data-efficient
than a generic neural network.

Other Related Networks. Dilated convolution [45] sup-
ports exponential expansion of the receptive field (i.e. win-
dow) without loss of resolution or coverage and thus can
help networks capture multi-scale information. Deformable
Convolutional Networks (DCN) [&] proposed a more flex-
ible convolutional operator that introduces pixel-level de-
formation, estimated by another network, into 2D convolu-
tion. Spatial Transformer Networks (STN) [22] learn affine-
invariant representations by sequential applications of a lo-
calization network, a parameterized grid generator and a
sampler. Dynamic Filter Networks (DFN) [23, 43] was pro-
posed to learn to generate (local) filters dynamically condi-
tioned on an input that potentially can be affine-invariant.

Data Augmentation. It is a well-known technique in deep
learning for reducing the filter bias during learning by gen-
erating more (fake) data samples based on some predefined
rules (or transformations) such as translation, scaling, rota-
tion and random cropping. Trained with such augmented
data, one can expect that the networks may be more robust
to the transformations. For instance, TI-Pooling [26] assem-
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(a) Multi-scale maxout block

(b) Regularization

Figure 1. To learn affine-invariant representations, we propose (a) a multi-
scale maxout convolutional network block to handle translation and scale,
and (b) a regularizer to handle rotation. We use (a) for constructing our
network, and embed (b) into our learning.

bles all the transformed instances from the same data point
in a pool and takes the maximal response for classification.
STN [22] learns to predict a transformation matrix for each
observation that can be used to augment data.

Loss Functions. From the perspective of the feature space,
affine-invariant representations for an object under different
transformations with translation, scale, and rotation should
be mapped into a single point in the feature space ideally,
or a compact cluster. To achieve this, several loss functions
were proposed. For instance, the center loss [41] enforces
the features from the same class to be close to the corre-
sponding cluster center. Similar ideas have been explored
in few-shot learning with neural networks [35] as well. In
fact well-designed networks can generate compactly clus-
tered features for each class with good discrimination, even
if trained without such specific losses. Also such losses do
not aim to learn affine-invariant features, explicitly or im-
plicitly. Empirically we do not observe any improvement
using the center loss over the cross-entropy loss, and thus
we do not report the performance using the center loss.

In contrast to these previous works, we handle scale and
rotation jointly in CNNs for learning affine-invariant repre-
sentations. We introduce a priori knowledge into network
design and training as interpretability in deep models. We
demonstrate better generalization, data-efficiency, and ro-
bustness of our approach than the state-of-the-art networks.

3. Our Approach

Overview. To achieve translation and scale invariance, we
propose a multi-scale maxout block as shown in Fig. 1(a),
a set of filters with different predefined sizes are applied to
images with convolution, and then the maxout operator is
used to locate the maximum response per pixel among the
filters. Mathematically this block can be formulated as

max {w @ L}, V(3 j), (1
weN
where ® denotes the convolution operator, w € {2 denotes

a 2D spatial filter, I denotes an image, and w ® I;; denotes
the scalar output of the convolution at pixel (4, j).

In contrast to rotation-invariant networks such as RotE-
gNet, there is no rotation constraint on the design of net-
work architectures including filters. Instead, we impose
such constraint on learning with our rotation-invariant regu-
larizer. Similar to other regularizers, ours encodes the prior
knowledge of filters that we would like to learn (denoted as
the template in Fig. 1(b)). Inspired by Harmonic Networks,
ideally the learned filters should be symmetric along all pos-
sible directions, like circles. Due to the discretization of im-
ages, however, we propose an alternative to represent such
symmetry that can be learned efficiently and effectively.

Learning Problem. In this paper we consider the following
optimization problem:

welg}glee ' f(%ﬁ(%#)) + M R1(w) + AaRa(w, 0),
)

where {z;,4;} C X x )Y denotes the training data with
image z; € X,V and its class label y; € )V, w € 2 de-
notes the parameters for the network defined by function
¢: X xQ — )Y, 0 € O denotes the templates in the fea-
sible space O that w should match with, £ : ) x ) — R
denotes the loss function, R denotes the weight decay with
f2 norm, R : {2 X © — R denotes the regularizer that mea-
sures the difference between w and 6, and A, Ao > 0 are
predefined constants. Different from conventional CNNss,
here we propose learning not only the network weights w
but also the matching templates 6 within the feasible space
© that encodes certain constraints on the templates such as
symmetry. In the sequel we will explain how to effectively
design a scale-invariant network ¢, and how to efficiently
construct a rotation-invariant regularizer Ro.

3.1. Network Architecture

We illustrate our network in Fig. 2, where all the oper-
ations are basic and widely used in CNNs such as batch
normalization (BN) [20], and “+” denotes one operation
followed by the other. Due to the small image sizes (e.g.
32 x 32 pixels) in our experiments, we conduct downsam-
pling for three times only using max-pooling. In each block
the first convolutional layer is responsible for mapping the
inputs into a higher dimensional space, e.g. 3 — 32, and the
other two convolutional layers learn the (linear) transforma-
tion in the same space, e.g. 32 — 32. For grayscale images,
the input dimension is changed from 3 to 1.

Different from existing networks such as GoogLeNet
and TI-Pooling, we propose extracting features within dif-
ferent scales using a sequence of convolutional operations.
Considering the trade-off between computational efficiency
and accuracy, we only exploit three scales, i.e. 3 X 3,5 X
5,7 x 7, using fixed filter size of 3 x 3 in each convolutional
layer, and use maxout to select a scale with the maximum
response. This scale is taken as the best one to fit for the
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Figure 2. Tlustration of the network we use in our experiments for learn-
ing affine-invariant features. Each dashed block is a multi-scale maxout
block accounting for scale invariance, and the numbers here denote the
default dimensions of inputs for the corresponding blocks and layers.

object. In fact we use two and three 3 x 3 convolutions to
approximate the responses with filter sizes of 5x 5 and 7x 7,
respectively, for efficient computation. With the increase of
the network depth, information within larger scales (i.e. re-
ceptive field) can be extracted as well.

We also find that the network depth is more important
than the network width w.r.t. the accuracy. It has been
demonstrated in Wide Residual Networks (WRN) [46] that
wider networks can improve the performance. In contrast
to the parallel mechanism in WRN, in each block we apply
convolutions sequentially. Note that the proposed mecha-
nism can be integrated with other networks as well.

3.2. Training with Rotation-Invariant Regularizer
3.2.1 General Formulation

As illustrated in Fig. 1(b), in order to enforce the filters to
satisfy certain spatial properties such as rotation invariance,
the templates here need to be constructed in certain way to
encode such properties. Therefore, we propose the follow-
ing general formulation for rotation-invariant regularizers:

Rg(w79) (3)
Pk dk

=B | Y Y dwn(m,n), 0(h(m.n)) |
M=—pk N=—qk

where k € KC denotes the index of a 2D spatial filter, Exx
denotes the expectation over all 2D spatial filters, (m,n)

(@ (b)

Figure 3. Examples of weight patterns, defined by hash function h, that
can be used to approximate circular patterns for rotation invariance. In
each subfigure the same color denotes the same weight.

denotes the 2D-index of a weight in the k-th filter with size
(My,, Ni), pr = [%w Sk = [%1, [-] denotes the ceil-
ing function, d : R x R — R denotes a distance function,
h : R x R — R denotes a hash function that determines
the weight pattern in the templates for matching, and corre-
spondingly 6 : R — R is a learnable function.

Choices of Distance Function d. In general we do not have
any explicit requirement on d. For instance, it can be /;-
norm, {2-norm, or group sparsity norm such as {3 ;-norm.
Moreover, this distance measure can be conducted in not
only Euclidean but also non-Euclidean spaces such as man-
ifold regularization [4], which will be appreciated in geo-
metric deep learning [5].

Choices of Hash Function h. For rotation invariance, ide-
ally it should be a circular pattern defined by h(m,n) =
(m?+n?)= in a continuous space. Due to the discretization
of images, however, it hardly forms circles in filters with-
out interpolation which will significantly increase the com-
putational complexity in convolution. Instead, we propose
learning some simpler patterns that can be used to approx-
imate circles. For instance, we illustrate two exemplar pat-
terns for filters with size 3 x 3 in Fig. 3, where the patterns

in (a) and (b) are defined by h(m,n) = {(m2 + nQ)%J and

h(m,n) = [(m2 + n2)%] , respectively, and |- | is the floor
function. Other hash functions may be also applicable here,
but finding the best one is outside the scope of this paper.

3.2.2 An Empirical Showcase

In this section we will show a specific regularizer that we
use in our experiments later. For the simplicity and effi-
ciency, we decide to employ the least square loss for d and
the pattern in Fig. 3(a) for h without fine-tuning the accu-
racy on the data sets.

Specifically we define our empirical rotation-invariant
regularizer as follows:

Ra(w,0) “)
2

Zm’ n’ Wk (m/7 ’I’L/)
=Erx Z (wk(m,n) - /70 ) s

o Prqr — 1

wr(m/,n') .
where 0 (h(m,n)) = Em""}'}f“;rl is a scalar.
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Similar to the center loss in [41], here we aims to re-
duce the variance among the weights in each 2D spatial fil-
ter with 3 x 3 pixels, on average. Meanwhile, the patterns
in the templates are updated automatically with the mean of
the weights. In this way we can learn filters that can better
approximate 2D spatial circular patterns for rotation invari-
ance. In backpropagation, since Ra(w, 6) in Eq. 4 is always
differentiable w.r.t. wy, Vk, any deep learning solver such as
stochastic gradient descent (SGD) can be used to train the
network with our rotation-invariant regularizer.

Discussion. Recall that Fig. 3 essentially encodes the struc-
tural patterns that we expect for learned filters to handle ro-
tation. One may argue that we can enforce such structures
into learning strictly by converting the regularizer Ry in
Eq. 2 into constraints and solving a constrained nonconvex
optimization problem. We decide not to do so because po-
tentially the new problem will be much harder to be solved
than the one in Eq. 2. Besides since the structures in Fig. 3
are already the approximation of the circular structure, we
do not necessarily guarantee that all the weights with the
same color are identical. More freedom as in regularization
may lead to a compensation for the loss of the structural
approximation in terms of accuracy.

4. Experiments
4.1. Benchmark Data with Affine Transformations

4.1.1 Experimental Setup

Data Sets. We test our approach on three benchmark data
sets, affNIST [34], MNIST-rot [27], and Traffic Sign [36].

affNIST is created by applying random small affine
transformations to each 28 x 28 grayscale image in MNIST
[29] (10 classes). It is designed for testing the tolerance of
an algorithm to such transformations. There are 60K train-
ing and validation samples and 10K test samples in affNIST
with size 40 x 40 pixels. To facilitate the data processing in
training, we resize all the images to 32 x 32 pixels.

MNIST-rot [27] is another variant of MNIST, where a
random rotation between 0° and 360° is applied to each im-
age. It has 10K/2K/50K training/validation/test samples. To
facilitate the data processing in training, we again resize all
the grayscale images to 32 x 32 pixels.

Traffic Sign contains 43 classes with unbalanced class
frequencies, 34799 training RGB images, and 12630 testing
RGB images with size of 32x 32 pixels. It reflects the strong
variations in visual appearance of signs due to distance, il-
lumination, weather conditions, partial occlusions, and ro-
tations, leading to a very challenging recognition problem.

Networks. We compare our approach with some state-of-
the-art networks with similar model complexity to ours,

i.e. RotEqNet [33]', Harmonics [42]*, TI-Pooling [26]°,
GCNN [6]%, STN [22]°, ResNet-32 [14]°, CapsNet [34],
GoogLeNet [37]%, and DCN [8]°. Specifically TI-Pooling
is designed for scale invariance, RotEqNet, Harmonics, and
GCNN are designed for rotation invariance. We use the
public code for our comparison.

We implement our default network using Tensorflow and
following the architecture in Fig. 2 with the default numbers
of channels. Note that the implementation of the networks
in our comparison may be different, (i.e. GCNN—Chainer;
GooglLeNet, DCN—Keras; CapsNet, TI-Pooling, Harmon-
ics, STN, ResNet-32—Tensorflow; RotEqNet—Pytorch)
which may lead to various computational efficiency.

Training Protocols. We tune each network to report its best
performance on the data sets. By default we train the net-
works for 42000 iterations with mini-batch size 100, weight
decay A; = 0.0005, and momentum 0.9. The global learn-
ing rate is set to 0.01 or 0.0001 when trained using all or a
few training images per class, respectively, and it is reduced
by 0.1 twice at the 20000 iteration and the 30000 iteration
as well. For each network the hyper-parameter tuning starts
with the default setting, and the best setting may be slightly
different from the default. We follow this default setting
in all the experiments and set A, = 150. The numbers re-
ported here are the average over three trials.

To do fair comparison, we follow the settings for data
augmentation in the publications of most of the competitors.
Specifically, by default on affNIST and Traffic Sign we do
not employ data augmentation, but on MNIST-rot we do.

4.1.2 Results

Better Generalization, Data-Efficiency, & Robustness.
We summarize the test accuracy comparison in Table 1. As
we see, using either all or 10 random training/validation
images per class, our method consistently outperforms the
competitors on the three data sets with a margin of 1.96 %
or 30.37% . Using the full set the stds of all the methods are
small and similar, and thus we do not show the numbers.
To better demonstrate the data-efficiency, we illus-
trate test accuracy comparison using few random train-

lhttps://qithub.com/COGMAR/RotEqut
2https://github.com/deworrall92/
harmonicConvolutions
3https://github.com/dlaptev/TI-pooling
4https://github.com/tscohen/gconv_experiments
Shttps://github.com/kevinzakka/
spatial-transformer—-network
Shttps://github.com/tensorflow/models/tree/
master/research/resnet
Thttps://github.com/naturomics/
CapsNet-Tensorflow
8https://github.com/flyyufelix/cnn_finetune/
blob/master/googlenet
9https://qithub.com/felixlaumon/deform—conv
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Table 1. Test accuracy (%) comparison on different datasets under two training settings: (F) with all the images, and (10) with 10 random images per class.

Ours RotEqNet | Harmonics | TI-Pooling| GCNN STN ResNet-32 | CapsNet |[GoogleNet| DCN
aff. (F) 99.08 94.81 94.20 94.72 95.43 98.24 95.76 97.30 98.12 87.70
rot (F) 98.92 98.91 98.31 98.80 97.72 97.12 95.96 96.73 98.29 92.69
T.S. (F) 98.87 94.79 94.02 97.47 91.47 40.87 88.35 95.15 91.16 68.29
Ave. (F) 98.95 96.17 95.51 96.99 94.87 78.74 93.36 96.39 95.85 82.75
aff. (10) ||85.0640.90[45.9143.85|56.411+3.66|34.40+1.54(25.67+1.99(23.85+0.12{18.5640.27(19.7440.39|50.774+0.20{10.741+0.52
rot (10) ||87.49+0.56(84.184+2.17|54.67+2.65|83.8640.88(45.12+2.48|66.724+0.72(49.31£0.30|81.174+0.17(82.20+0.35|49.69+0.33
T. S. (10)||84.15+0.48|26.434+0.85(27.57+£0.94|47.31+1.37(29.66+0.63|27.724+1.74|28.2042.06/54.35+0.56|32.4940.29|28.52+0.26
Ave. (10) 85.56 52.17 46.21 55.19 33.48 39.43 32.02 51.75 55.15 29.65
Fou Fodf = =l g
1 : ¢ 4# Trasiningalma;es Pesr CIaZs " Fu” ! : ? 4# Tr;mngelma;es Pesr C\a:s " ! ! : ¢ 4# Tr;inings\mag;s P:r Clazs ° o
(a) affNIST (b) MNIST-rot (c) Traffic Sign

Figure 4. Test accuracy comparison of different networks on the three data sets. “Full” here indicates that we use all the training images. Our approach
significantly outperforms the state-of-the-art, especially with small numbers of training images.

—w/0 data augmentation
—with data augmentation

1 2 83 4 5 6 7 8 9
# Training Images Per Class

10

Figure 5. Data augmentation comparison on Traffic Sign.

ing/validation images per class in Fig. 4. Overall, our
method works significantly better than the competitors with
large margins. Note that on MNIST-rot our performance is
worse than some of the competitors when using 1 or 2 im-
ages per class for training. A possible reason may come
from data augmentation. Another reason is that some of
the networks are designed specifically for rotation invari-
ance and this data set just fits for this purpose. With the
increase of the numbers of training samples, however, our
method again beats all the competitors. It is worth mention-
ing that in Harmonics Networks [42], similar experiments
on MNIST-rot were conducted to show data-efficiency and
robustness of the approach. Using % of the full train-
ing/validation data Harmonics lost about 3%. Here we com-

Table 2. Effect on test accuracy (%) of different multi-scale settings,
where our default setting is 3 X [Conv+BN].

2x[Conv+BN]|3x[Conv+BN] |4 x [Conv+BN]
affNIST (F) 99.04 99.08 98.69
MNIST-rot (F) 98.72 98.92 98.97
Traffic Sign (F) 98.42 98.87 98.42
Average 98.73 98.95 98.69
1

pare different networks using less than 155 to show the su-
periority of our method over the others. Empirically we ob-
serve that our method can work very robustly with standard
deviation of less than 1%, in general.

In addition, we can further improve our performance us-
ing data augmentation. In Fig. 5 we illustrate the perfor-
mance comparison on Traffic Sign with or without data aug-
mentation. As we see, using 10 random training images per
class we can achieve 87.84% with 3.69% improvement.

Training & Testing Behavior. We illustrate the training
and test accuracy behavior of each network on affNIST with
the full training set in Fig. 6. As we see all the networks
are well trained with convergence. In the testing stage our
network converge faster than most of the competitors with
better accuracy. Similar observations can be made in train-
ing as well. We make similar observations on the other two
data sets. From this perspective, we can also demonstrate
that our method has better generalization.

Effect of Multi-Scale Maxout. In Table 2 we list the test
accuracy using different multi-scale settings, while fixing
the parameter Ao 150. As we see the changes be-
tween different settings are really marginal, which again
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Figure 6. Illustration of training/testing behavior of different networks on affNIST.
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Figure 7. Illustration of the effect of A2 in Eq. 2 on test accuracy.

demonstrates the good generalization and robustness of our
method. Considering the trade-off between accuracy and
computational efficiency, we choose 3 x[Conv+BN] as our
default setting used in Fig. 2.

Effect of Rotation-Invariant Regularization. We illus-
trate such effect in Fig. 7 while using the default multi-
scale maxout setting. With different values where Ao = 0
means no our regularizer, we can see that using the full set
for training our performances are almost identical. This is
probably because the number of training images is suffi-
ciently large to capture the scaling and rotation information
already. Using a few training images, e.g. 10 per class, the
benefit of using our rotation-invariant regularizer becomes
much clearer, especially on affNIST. Using Ao = 150 as
default, there is 1.52%, on average, improvement over that
without our regularizer.

We also observe that our rotation-invariant regularizer
can achieve very small numbers empirically. For instance,
on affNIST the value is 2.94 x 1077, indicating that our
learned filters are very close to the spatial circular patterns.

Behavior with Different Numbers of Parameters. We
reduce the number of parameters in our network by
channel-wise shrinking.  Specifically in ascending or-
der of number of parameters, the corresponding network
channels are set as follows: [4,4,4,4,4], [16,16,16,16,16],
[32,32,32,32,32], [32,64,64,64,64], [32,64,128,128,128],
[32,64,128,256,256], [32,64,128,256,512], followed by an
FC of 1024 nodes and another FC for classification.

We first compare our performance using different num-
bers with the competitors in Fig. 8. We can see that after
about 200K parameters the improvement of our approach
becomes slow, while before 200K our performance drops
significantly with the decrease of numbers of parameters. In
the figure 200K corresponds to the setting [32,64,64,64,64],
whose performance is, or on par with, the best already.

We then compare the running time per iteration in both
training and testing stages in Fig. 9. We run all the code
on the same machine with a Titan XP GPU. In training the
running time includes the feedforward calculation and back-
propagation inference (dominating training time), while in
testing the running time only includes the feedforward cal-
culation. As we see, in both training and testing our com-
putational complexity grows exponentially, in general, with
the number of parameters (note that the y-axis is in log-
scale). Although some codes are written in different deep
learning environments, we can still do a fair comparison
with Harmonics and STN. Harmonics has fewer parameters,
leading to faster backpropagation and thus shorter training
time. The operations in Harmonic, however, is more com-
plex than ours, and thus with a similar number of parame-
ters our method is faster in testing. The operations in STN
are much simpler than both Harmonics and ours, leading to
faster running speed in both training and testing. Note that
in order to further improve our computational efficiency, we
can simply remove one Conv+BN in the multi-scale maxout
block that can achieve similar accuracy (see Table 2).

4.2. Comparison on CIFAR-100 [25]

Beyond the benchmark data sets with affine transforma-
tions, we also test our method on “natural” images. For in-
stance, we illustrate our comparison results on CIFAR-100
in Fig. 10. CIFAR-100 contains 60,000 32 x 32 color im-
ages in 100 different classes, 500/100 training/testing im-
ages per class. Following the same training protocol, we
randomly sample a few images per class to further demon-
strate our superiority, especially on data-efficiency.
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our approach significantly outperforms the state-of-the-art, especially with
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As we see in Fig. 10, our method significantly and con-
sistently outperforms the competitors with a few training
samples. For instance, using 100 samples per class ours
achieves 52.67% test accuracy with the improvement of al-
most 10% over ResNet-32 (the second best). Using the full
training set, ours achieves 78.33% that is slightly lower than
WRN-28-10 (80.75%), but higher than ResNet-32 (76.7%)

mate circular patterns by our regularization can manage to
induce invariance to rotation. By taking these as a priori
knowledge, we can easily interpret our network architec-
ture as well as its training procedure. We test our method on
three benchmark data sets as well as CIFAR-100 to demon-
strate its superiority over the state-of-the-art in terms of gen-
eralization, data-efficiency, and robustness. Especially, with
a few training samples our method can work significantly
better, leading to the hypothesis that the introduction of a
priori knowledge into deep learning can effectively reduce
the amount of data to accomplish the tasks. We are planning
to explore more on this topic in our future work.
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