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Abstract

In this paper we propose integrating a priori knowledge

into both design and training of convolutional neural net-

works (CNNs) to learn object representations that are in-

variant to affine transformations (i.e. translation, scale, ro-

tation). Accordingly we propose a novel multi-scale maxout

CNN and train it end-to-end with a novel rotation-invariant

regularizer. This regularizer aims to enforce the weights

in each 2D spatial filter to approximate circular patterns.

In this way, we manage to handle affine transformations in

training using convolution, multi-scale maxout, and circu-

lar filters. Empirically we demonstrate that such knowledge

can significantly improve the data-efficiency as well as gen-

eralization and robustness of learned models. For instance,

on the Traffic Sign data set and trained with only 10 images

per class, our method can achieve 84.15% that outperforms

the state-of-the-art by 29.80% in terms of test accuracy.

1. Introduction

Recently Sabour et al. [34] proposed a new network ar-

chitecture, CapsNet, and a dynamic routing training algo-

rithm to connect the capsules [17], a new type of neurons

that output vectors rather than scalars in conventional neu-

rons, in two adjacent layers and group similar features in

higher layers. Later on Hinton et al. [16] proposed an-

other EM-based routing-by-agreement algorithm for train-

ing CapsNet. In contrast to CNNs, the intuition behind

CapsNet is to achieve “viewpoint invariance” in recogniz-

ing objects for better generalization which is inspired by in-

verse graphics [15]. Technically, CapsNet not only predicts

classes but also encodes extra information such as geometry

of objects, leading to richer representation. For instance, in

[16], 4 × 4 pose matrices are estimated to capture the spa-

tial relations between the detected parts and a whole. Unlike

CNNs the performance of CapsNet on real and more com-

∗Work was done during an internship at MERL.

plex data has not been verified yet, partially due to the high

computation that prevents it from being applicable widely.

In fact exploring such invariant representations for ob-

ject recognition has a long history in the literature of both

neural science and computer vision. For instance, in [21]

Isik et al. observed that object recognition in the human vi-

sual system is developed in stages with invariance to smaller

transformations arising before invariance to larger transfor-

mations, which supports the design of feed-forward hier-

archical models of invariant object recognition. In com-

puter vision part-based representation (e.g. [11]) is one of

the most popular invariant object representations that con-

siders an object as a graph where each node represents an

object part and each edge represents the (spatial) relation

between the parts. Conceptually part-based representation

is view-invariant in 3D and affine-invariant (i.e. invariant to

translation, scale, and rotation) in 2D. Although the com-

plexity of part-based models in inference on general graphs

could be very high [7], for tree structures such as star graphs

this complexity can be linear to the number of parts [10].

Girshick et al. [12] has shown that such star graph part-

based models can be interpreted as CNNs.

In this paper we aim to study the following problem: Can

we design and train CNNs to learn affine-invariant repre-

sentations efficiently, effectively, and robustly?

Motivation. Besides CapsNet, we are also partially mo-

tivated by the works such as [2, 50] that utilize a priori

knowledge as guidance to design and train neural networks

efficiently and effectively. For instance, [2] proposed the

notion of “neural module” to conduct certain semantic func-

tionality using deep learning for visual question answer-

ing. Such modules can be reusable to comprise complex

networks to perform certain tasks. The semantics and the

network design here come from the compositional linguis-

tic structure of questions. Thanks to these modules, the

network design is much more understandable by checking

whether the outputs of a module follow what we expect.

[50] proposed encoding network weights as well as the ar-

chitecture into a Tikhonov regularizer by lifting the ReLU
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activations, and accordingly developed a block coordinate

descent algorithm for fast training of deep models.

In contrast to a posteriori knowledge such as visualiza-

tion of learned filters in [47], a priori knowledge based ap-

proaches are more likely to be model-driven so that one can

derive by reasoning alone, rather than being data-driven,

in terms of building automatic systems such as neural net-

works. In this way, the networks with a priori knowledge

are expected to be much easier to be understood by human,

and their performance is more predictable and robust.

Contributions. Thanks to the convolution, CNNs are trans-

lation equivariant. This capability has contributed signifi-

cantly to their widespread success. They, however, are not

efficient or effective to capture the scaled or rotated objects,

and thus enhancing CNNs with the capability of learning

scale-invariant and rotation-invariant features is very chal-

lenging but appealing.

In this paper we design a novel deep multi-scale max-

out [13] CNN to learn scale-invariant representations. We

then propose training this network end-to-end with a novel

rotation-invariant regularizer. To our best knowledge, we

are the first to propose such regularization for handling ro-

tation in deep learning. Note that we take the multi-scale

maxout block and the regularizer as a priori knowledge for

learning affine-invariant representations. Empirically we

demonstrate the benefit of integrating such knowledge with

network design and training, leading to better generaliza-

tion, data-efficiency, and robustness of deep models than the

state-of-the-art in learning affine-invariant representations.

2. Related Work

Scale-Invariant Networks. One simple way to handle

the scale issue is using image pyramid in deep learning

[31]. Some works [44, 24, 38] are particularly interested

in extracting scale-invariant features from the networks.

More broadly, multi-scale convolutional filters (or multi-

kernels) are employed in networks [30, 39, 3, 28]. The

inception module in GoogLeNet [37] is able to capture

multi-scale information with maxout units. A similar idea

has been explored in TI-Pooling [26]. ResNet [14] man-

ages to capture multi-scale information using skip connec-

tion. Multi-scale DenseNet [19] proposes using a two-

dimensional multi-scale convolutional network architecture

that maintains coarse-level and fine-level features through-

out the network. Note that with the increase of the number

of hidden layers all the CNNs tend to extract deep features

within multiple scales to a certain degree.

Rotation-Invariant Networks. Recently quite a few works

focus on learning rotation-invariant features using deep net-

works. Cohen and Welling [6] proposed Group equivari-

ant CNNs (GCNN) by exploiting larger groups of symme-

tries, including rotations and reflections, in the convolu-

tional layers. Worrall et al. [42] proposed Harmonic Net-

works by replacing regular CNN filters with circular har-

monics and returning a maximal response and orientation

for every receptive field patch. Both works argue that ro-

tating the data point is equivalent to rotating the filters.

Therefore, they manage to learn rotation-invariant filters in

a continuous space. In contrast, some other works such as

[51, 49, 32, 18, 48, 33, 40] propose learning the filters in

a discretized space by quantizing the rotation angles with

predefined numbers (e.g. from 0 to 2π, step by π
4 ) so that

the final features encode the rotation information. For in-

stance, Rotation Equivariant Vector Field Networks (RotE-

qNet) [33] was proposed by applying each convolutional fil-

ter at multiple orientations and returning a vector field that

represents magnitude and angle of the highest scoring ori-

entation at every spatial location.

Interpretable Networks with A Priori Knowledge. An-

dreas et al. [2] proposed neural modules to mimic some

basic semantic functionality using deep neural networks,

based on which larger networks are constructed for specific

tasks using the knowledge from natural language processing

(NLP) such as grammar graphs as guidance. Belbute-Peres

et al. [9] proposed embedding structured physics knowl-

edge into larger systems as a differentiable physics engine

that can be integrated as module in deep neural networks

for end-to-end learning. Amos et al. [1] proposed using

Model Predictive Control (MPC) as a differentiable policy

class for reinforcement learning in continuous state and ac-

tion spaces that leverages and combines the advantages of

model-free and model-based approaches. They also showed

that their MPC policies are significantly more data-efficient

than a generic neural network.

Other Related Networks. Dilated convolution [45] sup-

ports exponential expansion of the receptive field (i.e. win-

dow) without loss of resolution or coverage and thus can

help networks capture multi-scale information. Deformable

Convolutional Networks (DCN) [8] proposed a more flex-

ible convolutional operator that introduces pixel-level de-

formation, estimated by another network, into 2D convolu-

tion. Spatial Transformer Networks (STN) [22] learn affine-

invariant representations by sequential applications of a lo-

calization network, a parameterized grid generator and a

sampler. Dynamic Filter Networks (DFN) [23, 43] was pro-

posed to learn to generate (local) filters dynamically condi-

tioned on an input that potentially can be affine-invariant.

Data Augmentation. It is a well-known technique in deep

learning for reducing the filter bias during learning by gen-

erating more (fake) data samples based on some predefined

rules (or transformations) such as translation, scaling, rota-

tion and random cropping. Trained with such augmented

data, one can expect that the networks may be more robust

to the transformations. For instance, TI-Pooling [26] assem-
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Figure 1. To learn affine-invariant representations, we propose (a) a multi-

scale maxout convolutional network block to handle translation and scale,

and (b) a regularizer to handle rotation. We use (a) for constructing our

network, and embed (b) into our learning.

bles all the transformed instances from the same data point

in a pool and takes the maximal response for classification.

STN [22] learns to predict a transformation matrix for each

observation that can be used to augment data.

Loss Functions. From the perspective of the feature space,

affine-invariant representations for an object under different

transformations with translation, scale, and rotation should

be mapped into a single point in the feature space ideally,

or a compact cluster. To achieve this, several loss functions

were proposed. For instance, the center loss [41] enforces

the features from the same class to be close to the corre-

sponding cluster center. Similar ideas have been explored

in few-shot learning with neural networks [35] as well. In

fact well-designed networks can generate compactly clus-

tered features for each class with good discrimination, even

if trained without such specific losses. Also such losses do

not aim to learn affine-invariant features, explicitly or im-

plicitly. Empirically we do not observe any improvement

using the center loss over the cross-entropy loss, and thus

we do not report the performance using the center loss.

In contrast to these previous works, we handle scale and

rotation jointly in CNNs for learning affine-invariant repre-

sentations. We introduce a priori knowledge into network

design and training as interpretability in deep models. We

demonstrate better generalization, data-efficiency, and ro-

bustness of our approach than the state-of-the-art networks.

3. Our Approach

Overview. To achieve translation and scale invariance, we

propose a multi-scale maxout block as shown in Fig. 1(a),

a set of filters with different predefined sizes are applied to

images with convolution, and then the maxout operator is

used to locate the maximum response per pixel among the

filters. Mathematically this block can be formulated as

max
ω∈Ω

{ω ⊗ Iij} , ∀(i, j), (1)

where ⊗ denotes the convolution operator, ω ∈ Ω denotes

a 2D spatial filter, I denotes an image, and ω ⊗ Iij denotes

the scalar output of the convolution at pixel (i, j).

In contrast to rotation-invariant networks such as RotE-

qNet, there is no rotation constraint on the design of net-

work architectures including filters. Instead, we impose

such constraint on learning with our rotation-invariant regu-

larizer. Similar to other regularizers, ours encodes the prior

knowledge of filters that we would like to learn (denoted as

the template in Fig. 1(b)). Inspired by Harmonic Networks,

ideally the learned filters should be symmetric along all pos-

sible directions, like circles. Due to the discretization of im-

ages, however, we propose an alternative to represent such

symmetry that can be learned efficiently and effectively.

Learning Problem. In this paper we consider the following

optimization problem:

min
ω∈Ω,θ∈Θ

∑

i

ℓ
(

yi, φ(xi, ω)
)

+ λ1R1(ω) + λ2R2(ω, θ),

(2)

where {xi, yi} ⊆ X × Y denotes the training data with

image xi ∈ X , ∀i and its class label yi ∈ Y , ω ∈ Ω de-

notes the parameters for the network defined by function

φ : X × Ω → Y , θ ∈ Θ denotes the templates in the fea-

sible space Θ that ω should match with, ℓ : Y × Y → R

denotes the loss function, R1 denotes the weight decay with

ℓ2 norm, R2 : Ω×Θ → R denotes the regularizer that mea-

sures the difference between ω and θ, and λ1, λ2 ≥ 0 are

predefined constants. Different from conventional CNNs,

here we propose learning not only the network weights ω

but also the matching templates θ within the feasible space

Θ that encodes certain constraints on the templates such as

symmetry. In the sequel we will explain how to effectively

design a scale-invariant network φ, and how to efficiently

construct a rotation-invariant regularizer R2.

3.1. Network Architecture

We illustrate our network in Fig. 2, where all the oper-

ations are basic and widely used in CNNs such as batch

normalization (BN) [20], and “+” denotes one operation

followed by the other. Due to the small image sizes (e.g.

32 × 32 pixels) in our experiments, we conduct downsam-

pling for three times only using max-pooling. In each block

the first convolutional layer is responsible for mapping the

inputs into a higher dimensional space, e.g. 3 → 32, and the

other two convolutional layers learn the (linear) transforma-

tion in the same space, e.g. 32 → 32. For grayscale images,

the input dimension is changed from 3 to 1.

Different from existing networks such as GoogLeNet

and TI-Pooling, we propose extracting features within dif-

ferent scales using a sequence of convolutional operations.

Considering the trade-off between computational efficiency

and accuracy, we only exploit three scales, i.e. 3 × 3, 5 ×
5, 7×7, using fixed filter size of 3×3 in each convolutional

layer, and use maxout to select a scale with the maximum

response. This scale is taken as the best one to fit for the
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Figure 2. Illustration of the network we use in our experiments for learn-

ing affine-invariant features. Each dashed block is a multi-scale maxout

block accounting for scale invariance, and the numbers here denote the

default dimensions of inputs for the corresponding blocks and layers.

object. In fact we use two and three 3 × 3 convolutions to

approximate the responses with filter sizes of 5×5 and 7×7,

respectively, for efficient computation. With the increase of

the network depth, information within larger scales (i.e. re-

ceptive field) can be extracted as well.

We also find that the network depth is more important

than the network width w.r.t. the accuracy. It has been

demonstrated in Wide Residual Networks (WRN) [46] that

wider networks can improve the performance. In contrast

to the parallel mechanism in WRN, in each block we apply

convolutions sequentially. Note that the proposed mecha-

nism can be integrated with other networks as well.

3.2. Training with Rotation­Invariant Regularizer

3.2.1 General Formulation

As illustrated in Fig. 1(b), in order to enforce the filters to

satisfy certain spatial properties such as rotation invariance,

the templates here need to be constructed in certain way to

encode such properties. Therefore, we propose the follow-

ing general formulation for rotation-invariant regularizers:

R2(ω, θ) (3)

= Ek∼K

[

pk
∑

m=−pk

qk
∑

n=−qk

d
(

ωk(m,n), θk(h(m,n))
)

]

,

where k ∈ K denotes the index of a 2D spatial filter, Ek∼K

denotes the expectation over all 2D spatial filters, (m,n)

(a) (b)

Figure 3. Examples of weight patterns, defined by hash function h, that

can be used to approximate circular patterns for rotation invariance. In

each subfigure the same color denotes the same weight.

denotes the 2D-index of a weight in the k-th filter with size

(Mk, Nk), pk =
⌈

Mk

2

⌉

, qk =
⌈

Nk

2

⌉

, ⌈·⌉ denotes the ceil-

ing function, d : R × R → R denotes a distance function,

h : R × R → R denotes a hash function that determines

the weight pattern in the templates for matching, and corre-

spondingly θ : R → R is a learnable function.

Choices of Distance Function d. In general we do not have

any explicit requirement on d. For instance, it can be ℓ1-

norm, ℓ2-norm, or group sparsity norm such as ℓ2,1-norm.

Moreover, this distance measure can be conducted in not

only Euclidean but also non-Euclidean spaces such as man-

ifold regularization [4], which will be appreciated in geo-

metric deep learning [5].

Choices of Hash Function h. For rotation invariance, ide-

ally it should be a circular pattern defined by h(m,n) =

(m2+n2)
1

2 in a continuous space. Due to the discretization

of images, however, it hardly forms circles in filters with-

out interpolation which will significantly increase the com-

putational complexity in convolution. Instead, we propose

learning some simpler patterns that can be used to approx-

imate circles. For instance, we illustrate two exemplar pat-

terns for filters with size 3× 3 in Fig. 3, where the patterns

in (a) and (b) are defined by h(m,n) =
⌊

(m2 + n2)
1

2

⌋

and

h(m,n) =
⌈

(m2 + n2)
1

2

⌉

, respectively, and ⌊·⌋ is the floor

function. Other hash functions may be also applicable here,

but finding the best one is outside the scope of this paper.

3.2.2 An Empirical Showcase

In this section we will show a specific regularizer that we

use in our experiments later. For the simplicity and effi-

ciency, we decide to employ the least square loss for d and

the pattern in Fig. 3(a) for h without fine-tuning the accu-

racy on the data sets.

Specifically we define our empirical rotation-invariant

regularizer as follows:

R2(ω, θ) (4)

= Ek∼K





∑

m,n 6=0

(

ωk(m,n)−

∑

m′,n′ 6=0 ωk(m
′, n′)

pkqk − 1

)2


 ,

where θk(h(m,n)) =
∑

m′,n′ 6=0
ωk(m

′,n′)

pkqk−1 is a scalar.
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Similar to the center loss in [41], here we aims to re-

duce the variance among the weights in each 2D spatial fil-

ter with 3 × 3 pixels, on average. Meanwhile, the patterns

in the templates are updated automatically with the mean of

the weights. In this way we can learn filters that can better

approximate 2D spatial circular patterns for rotation invari-

ance. In backpropagation, since R2(ω, θ) in Eq. 4 is always

differentiable w.r.t. ωk, ∀k, any deep learning solver such as

stochastic gradient descent (SGD) can be used to train the

network with our rotation-invariant regularizer.

Discussion. Recall that Fig. 3 essentially encodes the struc-

tural patterns that we expect for learned filters to handle ro-

tation. One may argue that we can enforce such structures

into learning strictly by converting the regularizer R2 in

Eq. 2 into constraints and solving a constrained nonconvex

optimization problem. We decide not to do so because po-

tentially the new problem will be much harder to be solved

than the one in Eq. 2. Besides since the structures in Fig. 3

are already the approximation of the circular structure, we

do not necessarily guarantee that all the weights with the

same color are identical. More freedom as in regularization

may lead to a compensation for the loss of the structural

approximation in terms of accuracy.

4. Experiments

4.1. Benchmark Data with Affine Transformations

4.1.1 Experimental Setup

Data Sets. We test our approach on three benchmark data

sets, affNIST [34], MNIST-rot [27], and Traffic Sign [36].

affNIST is created by applying random small affine

transformations to each 28× 28 grayscale image in MNIST

[29] (10 classes). It is designed for testing the tolerance of

an algorithm to such transformations. There are 60K train-

ing and validation samples and 10K test samples in affNIST

with size 40× 40 pixels. To facilitate the data processing in

training, we resize all the images to 32× 32 pixels.

MNIST-rot [27] is another variant of MNIST, where a

random rotation between 0◦ and 360◦ is applied to each im-

age. It has 10K/2K/50K training/validation/test samples. To

facilitate the data processing in training, we again resize all

the grayscale images to 32× 32 pixels.

Traffic Sign contains 43 classes with unbalanced class

frequencies, 34799 training RGB images, and 12630 testing

RGB images with size of 32×32 pixels. It reflects the strong

variations in visual appearance of signs due to distance, il-

lumination, weather conditions, partial occlusions, and ro-

tations, leading to a very challenging recognition problem.

Networks. We compare our approach with some state-of-

the-art networks with similar model complexity to ours,

i.e. RotEqNet [33]1, Harmonics [42]2, TI-Pooling [26]3,

GCNN [6]4, STN [22]5, ResNet-32 [14]6, CapsNet [34]7,

GoogLeNet [37]8, and DCN [8]9. Specifically TI-Pooling

is designed for scale invariance, RotEqNet, Harmonics, and

GCNN are designed for rotation invariance. We use the

public code for our comparison.

We implement our default network using Tensorflow and

following the architecture in Fig. 2 with the default numbers

of channels. Note that the implementation of the networks

in our comparison may be different, (i.e. GCNN→Chainer;

GoogLeNet, DCN→Keras; CapsNet, TI-Pooling, Harmon-

ics, STN, ResNet-32→Tensorflow; RotEqNet→Pytorch)

which may lead to various computational efficiency.

Training Protocols. We tune each network to report its best

performance on the data sets. By default we train the net-

works for 42000 iterations with mini-batch size 100, weight

decay λ1 = 0.0005, and momentum 0.9. The global learn-

ing rate is set to 0.01 or 0.0001 when trained using all or a

few training images per class, respectively, and it is reduced

by 0.1 twice at the 20000 iteration and the 30000 iteration

as well. For each network the hyper-parameter tuning starts

with the default setting, and the best setting may be slightly

different from the default. We follow this default setting

in all the experiments and set λ2 = 150. The numbers re-

ported here are the average over three trials.

To do fair comparison, we follow the settings for data

augmentation in the publications of most of the competitors.

Specifically, by default on affNIST and Traffic Sign we do

not employ data augmentation, but on MNIST-rot we do.

4.1.2 Results

Better Generalization, Data-Efficiency, & Robustness.

We summarize the test accuracy comparison in Table 1. As

we see, using either all or 10 random training/validation

images per class, our method consistently outperforms the

competitors on the three data sets with a margin of 1.96%

or 30.37%. Using the full set the stds of all the methods are

small and similar, and thus we do not show the numbers.

To better demonstrate the data-efficiency, we illus-

trate test accuracy comparison using few random train-

1https://github.com/COGMAR/RotEqNet
2https://github.com/deworrall92/

harmonicConvolutions
3https://github.com/dlaptev/TI-pooling
4https://github.com/tscohen/gconv_experiments
5https://github.com/kevinzakka/

spatial-transformer-network
6https://github.com/tensorflow/models/tree/

master/research/resnet
7https://github.com/naturomics/

CapsNet-Tensorflow
8https://github.com/flyyufelix/cnn_finetune/

blob/master/googlenet
9https://github.com/felixlaumon/deform-conv
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Table 1. Test accuracy (%) comparison on different datasets under two training settings: (F) with all the images, and (10) with 10 random images per class.

Ours RotEqNet Harmonics TI-Pooling GCNN STN ResNet-32 CapsNet GoogLeNet DCN

aff. (F) 99.08 94.81 94.20 94.72 95.43 98.24 95.76 97.30 98.12 87.70

rot (F) 98.92 98.91 98.31 98.80 97.72 97.12 95.96 96.73 98.29 92.69

T. S. (F) 98.87 94.79 94.02 97.47 91.47 40.87 88.35 95.15 91.16 68.29

Ave. (F) 98.95 96.17 95.51 96.99 94.87 78.74 93.36 96.39 95.85 82.75

aff. (10) 85.06±0.90 45.91±3.85 56.41±3.66 34.40±1.54 25.67±1.99 23.85±0.12 18.56±0.27 19.74±0.39 50.77±0.20 10.74±0.52

rot (10) 87.49±0.56 84.18±2.17 54.67±2.65 83.86±0.88 45.12±2.48 66.72±0.72 49.31±0.30 81.17±0.17 82.20±0.35 49.69±0.33

T. S. (10) 84.15±0.48 26.43±0.85 27.57±0.94 47.31±1.37 29.66±0.63 27.72±1.74 28.20±2.06 54.35±0.56 32.49±0.29 28.52±0.26

Ave. (10) 85.56 52.17 46.21 55.19 33.48 39.43 32.02 51.75 55.15 29.65
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(b) MNIST-rot
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(c) Traffic Sign
Figure 4. Test accuracy comparison of different networks on the three data sets. “Full” here indicates that we use all the training images. Our approach

significantly outperforms the state-of-the-art, especially with small numbers of training images.
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Figure 5. Data augmentation comparison on Traffic Sign.

ing/validation images per class in Fig. 4. Overall, our

method works significantly better than the competitors with

large margins. Note that on MNIST-rot our performance is

worse than some of the competitors when using 1 or 2 im-

ages per class for training. A possible reason may come

from data augmentation. Another reason is that some of

the networks are designed specifically for rotation invari-

ance and this data set just fits for this purpose. With the

increase of the numbers of training samples, however, our

method again beats all the competitors. It is worth mention-

ing that in Harmonics Networks [42], similar experiments

on MNIST-rot were conducted to show data-efficiency and

robustness of the approach. Using 1
6 of the full train-

ing/validation data Harmonics lost about 3%. Here we com-

Table 2. Effect on test accuracy (%) of different multi-scale settings,

where our default setting is 3×[Conv+BN].

2×[Conv+BN] 3×[Conv+BN] 4×[Conv+BN]

affNIST (F) 99.04 99.08 98.69

MNIST-rot (F) 98.72 98.92 98.97

Traffic Sign (F) 98.42 98.87 98.42

Average 98.73 98.95 98.69

pare different networks using less than 1

120
to show the su-

periority of our method over the others. Empirically we ob-

serve that our method can work very robustly with standard

deviation of less than 1%, in general.

In addition, we can further improve our performance us-

ing data augmentation. In Fig. 5 we illustrate the perfor-

mance comparison on Traffic Sign with or without data aug-

mentation. As we see, using 10 random training images per

class we can achieve 87.84% with 3.69% improvement.

Training & Testing Behavior. We illustrate the training

and test accuracy behavior of each network on affNIST with

the full training set in Fig. 6. As we see all the networks

are well trained with convergence. In the testing stage our

network converge faster than most of the competitors with

better accuracy. Similar observations can be made in train-

ing as well. We make similar observations on the other two

data sets. From this perspective, we can also demonstrate

that our method has better generalization.

Effect of Multi-Scale Maxout. In Table 2 we list the test

accuracy using different multi-scale settings, while fixing

the parameter λ2 = 150. As we see the changes be-

tween different settings are really marginal, which again
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Figure 6. Illustration of training/testing behavior of different networks on affNIST.

Full

10

Figure 7. Illustration of the effect of λ2 in Eq. 2 on test accuracy.

demonstrates the good generalization and robustness of our

method. Considering the trade-off between accuracy and

computational efficiency, we choose 3×[Conv+BN] as our

default setting used in Fig. 2.

Effect of Rotation-Invariant Regularization. We illus-

trate such effect in Fig. 7 while using the default multi-

scale maxout setting. With different values where λ2 = 0
means no our regularizer, we can see that using the full set

for training our performances are almost identical. This is

probably because the number of training images is suffi-

ciently large to capture the scaling and rotation information

already. Using a few training images, e.g. 10 per class, the

benefit of using our rotation-invariant regularizer becomes

much clearer, especially on affNIST. Using λ2 = 150 as

default, there is 1.52%, on average, improvement over that

without our regularizer.

We also observe that our rotation-invariant regularizer

can achieve very small numbers empirically. For instance,

on affNIST the value is 2.94 × 10−7, indicating that our

learned filters are very close to the spatial circular patterns.

Behavior with Different Numbers of Parameters. We

reduce the number of parameters in our network by

channel-wise shrinking. Specifically in ascending or-

der of number of parameters, the corresponding network

channels are set as follows: [4,4,4,4,4], [16,16,16,16,16],

[32,32,32,32,32], [32,64,64,64,64], [32,64,128,128,128],

[32,64,128,256,256], [32,64,128,256,512], followed by an

FC of 1024 nodes and another FC for classification.

We first compare our performance using different num-

bers with the competitors in Fig. 8. We can see that after

about 200K parameters the improvement of our approach

becomes slow, while before 200K our performance drops

significantly with the decrease of numbers of parameters. In

the figure 200K corresponds to the setting [32,64,64,64,64],

whose performance is, or on par with, the best already.

We then compare the running time per iteration in both

training and testing stages in Fig. 9. We run all the code

on the same machine with a Titan XP GPU. In training the

running time includes the feedforward calculation and back-

propagation inference (dominating training time), while in

testing the running time only includes the feedforward cal-

culation. As we see, in both training and testing our com-

putational complexity grows exponentially, in general, with

the number of parameters (note that the y-axis is in log-

scale). Although some codes are written in different deep

learning environments, we can still do a fair comparison

with Harmonics and STN. Harmonics has fewer parameters,

leading to faster backpropagation and thus shorter training

time. The operations in Harmonic, however, is more com-

plex than ours, and thus with a similar number of parame-

ters our method is faster in testing. The operations in STN

are much simpler than both Harmonics and ours, leading to

faster running speed in both training and testing. Note that

in order to further improve our computational efficiency, we

can simply remove one Conv+BN in the multi-scale maxout

block that can achieve similar accuracy (see Table 2).

4.2. Comparison on CIFAR­100 [25]

Beyond the benchmark data sets with affine transforma-

tions, we also test our method on “natural” images. For in-

stance, we illustrate our comparison results on CIFAR-100

in Fig. 10. CIFAR-100 contains 60,000 32 × 32 color im-

ages in 100 different classes, 500/100 training/testing im-

ages per class. Following the same training protocol, we

randomly sample a few images per class to further demon-

strate our superiority, especially on data-efficiency.
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Figure 8. Test accuracy comparison with the others using different numbers of parameters. Best viewed in color.
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Figure 9. Training/Test time comparison with the others using different numbers of parameters. Best viewed in color.
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Figure 10. Test accuracy comparison of different networks on CIFAR-

100. “Full” here indicates that we use all the training images. Again

our approach significantly outperforms the state-of-the-art, especially with

small numbers of training images.

As we see in Fig. 10, our method significantly and con-

sistently outperforms the competitors with a few training

samples. For instance, using 100 samples per class ours

achieves 52.67% test accuracy with the improvement of al-

most 10% over ResNet-32 (the second best). Using the full

training set, ours achieves 78.33% that is slightly lower than

WRN-28-10 (80.75%), but higher than ResNet-32 (76.7%)

and GoogleNet (78.03%), and dramatically higher than the

other networks that learn the scale or rotation invariant rep-

resentations such as TI-Pooling (31.77%).

5. Conclusion

In this paper we propose a novel multi-scale maxout

deep CNN and a novel rotation-invariant regularizer to learn

affine-invariant representations for object recognition in im-

ages. Multi-scale convolution with maxout can handle

translation and scale, and enforcing 2D filters to approxi-

mate circular patterns by our regularization can manage to

induce invariance to rotation. By taking these as a priori

knowledge, we can easily interpret our network architec-

ture as well as its training procedure. We test our method on

three benchmark data sets as well as CIFAR-100 to demon-

strate its superiority over the state-of-the-art in terms of gen-

eralization, data-efficiency, and robustness. Especially, with

a few training samples our method can work significantly

better, leading to the hypothesis that the introduction of a

priori knowledge into deep learning can effectively reduce

the amount of data to accomplish the tasks. We are planning

to explore more on this topic in our future work.
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