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Abstract

Multi-modality (talking face video and audio) informa-

tion helps improve speech recognition performance com-

pared to the single modality. In noisy environments, the ef-

fect of audio modality is weakened, which further affects the

performance of multi-modality speech recognition (MSR).

Most of the MSR methods use noisy audio signal as input of

the audio modality without any enhancement (filtering the

noisy components in the audio signal). In this paper, we

propose an audio-enhanced multi-modality speech recog-

nition model. In particular, the proposed model consists

of two sub-networks, one is the visual speech enhancement

(VE) sub-network and the other is the multi-modality speech

recognition (MSR) sub-network. The VE sub-network is

able to separate a speaker’s voice from background noises

when given the corresponding talking face to enhance au-

dio modality. Then the audio modality together with video

modality are fed into the MSR sub-network to produce char-

acters. We introduce a pseudo-3D residual network (P3D)-

based visual front-end to extract more advantageous vi-

sual features. The MSR sub-network is built on top of

the Element-wise-Attention Gated Recurrent Unit (EleAtt-

GRU) architecture which is more effective than Transformer

in long sequences. We demonstrate the effectiveness of au-

dio enhancement for MSR by extensive experiments. The

proposed method surpasses the state-of-the-art MSR mod-

els on the LRS3-TED dataset and the LRW dataset.

1. Introduction

Lip reading is an approach to interpret what people say

by looking at the movements of lips when they are talk-

ing [21, 33, 46]. Some people with hearing impairments

use this technique to communicate with others [7, 16]. Lip

reading is a difficult skill for human to grasp and requires

numerous practice [19, 41]. The concept of visual speech

recognition based on lip reading is proposed by Sumby in

1954 [42], where visual observation of the speaker’s lip
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Figure 1: a) Outline of multi-modality speech recognition

(MSR) pipeline used in [2, 14]. b) Outline of the visual

speech enhancement driven multi-modality speech recogni-

tion (VE-MSR) pipeline. We add VE sub-network (inside

the red box) which can separate target audio signal from

background noises to enhance audio modality. Enhanced

audio modality can also improve the performance of MSR.

We use pseudo-3d residual network (P3D) [36] as visual

front-end instead of 3D CNN and 2D ResNet. The P3D

network has more advantages on extracting spatio-temporal

features from videos.

movements is examined as a indicator to test oral speech

intelligibility. Subsequently, several machine lip reading

models are proposed [17, 31, 34], but they suffer difficul-

ties on extracting spatio-temporal features from the video.

In recent years, lip reading automation becomes possible

to achieve due to rapid development of deep neural network,

especially in computer vision [30, 40, 44]. Large scale train-
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ing datasets also accelerate the development of lip reading

in deep learning [14, 15, 17, 18, 38, 47]. In addition to

serving as a power solution to hearing impairment, lip read-

ing can also contribute to audio speech recognition (ASR)

in audio adversary environments, such as high noise level

where human speaking is inaudible. Multi-modality (video

and audio) is more effective than single modality (video

or audio) in terms of robustness and performance. Vi-

sual speech enhancement (VE) and multi-modality speech

recognition (MSR) are two main extended applications of

multi-modality. In [2] there is a significant deterioration in

performance for MSR in noisy environments. Compared

to audio modality in a clean voice environment, the one

in noisy environment improves less on the performance of

MSR. For example in [2], the word error rate (WER) is

reduced from 59.9% for only video modality to 8.0% for

multi-modality, equivalent to more than 50% reduction. In

noisy environment of 0 dB SNR, the WER is 44.3% for

multi-modality, only reduced by 15.6%. The results demon-

strate that the noisy level of audio modality directly affects

the performance improvement of MSR.

VE is able to strengthen the audio signal which only con-

tains the target speaker’s voice with the contribution of lip

reading information (video modality). Then the enhanced

audio single is used to recognize speech [3]. Our pro-

posed method is to separate target audio signal from back-

ground noises before MSR. By combining VE and MSR,

our method is more advantageous in terms of robustness

and performance than any other MSR method currently pro-

posed.

In this paper we propose a deep neural network model

named visual speech enhancement driven multi-modality

speech recognition (VE-MSR) for MSR, combining VE

sub-network and MSR sub-network. Before being fed into

the MSR sub-network, audio modality is enhanced by sep-

arating voice of target speaker from background noises

through the VE sub-network. The architecture of our VE

network is proposed based on [6]. Instead of 3D CNN

and 2D ResNet, we use the pseudo-3D residual network

(P3D) [36] as visual front-end which can extract more effec-

tive visual feature representations. We replace the encoder

layer of Bi-LSTM [39] with an Element-wise-Attention

Gated Recurrent Unit (EleAtt-GRU) layer [48], which can

adaptively modulate the input as a fine granularity, paying

different of attention to different elements, resulting higher

performance in spatio-temporal tasks than the recurrent

neural networks (RNN) [37] and its variants [27, 39, 12].

The MSR sub-network is also built on top of EleAtt-GRU.

The enhanced audio stream and its corresponding video

stream are then fed into the MSR sub-network, outputting

speech predictions.

Overall, the contributions of this paper are:

• We propose a new multi-modality speech recognition

model, which reconstructs cleaner audio modality by

incorporating visual features to improve the perfor-

mance of MSR.

• We introduce the P3D as visual front-end to extract

more advantageous visual feature representations and

EleAtt-GRU to adaptively encode the spatio-temporal

information in VE and MSR sub-networks, benefiting

performance of VE and MSR.

• By extensive experiments, we demonstrate that VE-

MSR surpasses state-of-the-art MSR model [2] both in

audio clean and noisy environments on the Lip Read-

ing Sentences 3 (LRS3-TED) dataset [5]. The word

classification model we build based on P3D outper-

forms the word-level state-of-the-art [41] on the Lip

Reading in the Wild (LRW) dataset [15].

2. Related works

In this section, we introduce some related works about

visual speech enhancement (VE) and multi-modality speech

recognition (MSR).

2.1. Visual speech enhancement

Various works have proposed to enhance audio speech

with the help of visual information. Gabbay et al. use

a trained silent-video-to-speech model [20] to generate

speech predictions as a mask on the noisy input audio [22].

The noisy audio is not used in the pipeline of speech en-

hancement. [28] proposed a VE network based on convo-

lution neural networks (CNNs) and fully connected (FC)

layers to generate enhanced speech and reconstruct lip im-

age frames. Aviv et al. also use CNNs to encode multi-

modality features, which unify the embedding between au-

dio and video before audio decoder [23]. They use trans-

posed convolution in audio decoder to enhance mel-scale

spectrograms. Afouras et al. use 1D ResNet temporal con-

volution networks to encode audio and video data individ-

ually, then concatenate multi-modality features [3]. They

also use temporal convolution networks to decode multi-

modality features into a mask to remove noisy components

in the audio. Subsequently they proposed a new approach

that replaces the multi-modality feature decoder with Bi-

LSTM [6].

2.2. Multimodality speech recognition

MSR is the integration of lip reading and audio speech

recognition (ASR). Lip reading can contribute to ASR re-

sults, especially in noisy environments. Reciprocally, ASR

can strengthen the lip reading and benefit people with hear-

ing impairments.

Various methods in deep learning have been proposed

for lip reading [49]. [7] proposed LipNet, an end-to-

end model making use of spatio-temporal convolutions,
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Figure 2: Architecture of the VE-MSR network. The network consists of two sub-networks, VE and MSR. a) VE sub-

network: the mouth ROI image sequence is fed into a spatio-temporal network to extract the visual features and the audio

features are extracted though STFT to audio signal. We use video stream and audio stream to produce visual and audio feature

vectors, and the multi-modality vectors are combined and fed into the EleAttGRU layer which outputs a multiplicative mask

that filters the noisy spectrograms. V– video feature vectors, A– enhanced audio feature vectors. b) Encoder: the enhanced

magnitude spectrogram is fed into an audio stream to extract enhanced audio features. The enhanced audio features and the

visual features extracted by the visual spatio-temporal network are combined and encoded by the EleAttGRU encoder of the

MSR sub-network. c) Decoder: the decoder of MSR sub-network consists of two EleAttGRU layers and produces character

probabilities. The output of previous decoding step is fed back into decoder to process the next decoding step.

LSTM [27] and connectionist temporal classification (CTC)

loss on variable-length sequence of video frames. Lip-

Net [7] achieves 95.2% accuracy in sentence-level on the

GRID corpus [32]. [41] proposes an architecture by com-

bining spatio-temporal convolution, residual and Bi-LSTM,

they achieved 83.0% accuracy in word-level on LRW

dataset [15].

Encoder-to-decoder (enc2dec) architecture has been de-

veloped for speech recognition and machine translation [9,

10, 24, 25, 43, 45]. Chung et al. use a dual sequence-to-

sequence model with enc2dec (attention) mechanism, one

for the video frame features and the other for the audio fea-

tures [14]. Combining audio and visual information, they

achieve 97.0% accuracy on GRID and 76.2% accuracy on

LRW [15]. Afouras et al. propose a sequence-to-sequence

model based on transformer self-attention architecture [2].

They also use encoder-to-decoder mechanism and concate-

nate the context vectors produced by multiple modalities af-

ter multi-head attention in decoder stage. The model tran-

scribing spoken sentences to characters, by using sequence-

to-sequence loss achieves 7.2% word error rates (WER) on

LRS3-TED dataset and 8.5% WER on LRS2 dataset. With

noisy audio signal it achieves 42.5% WER on LRS3-TED

dataset and 34.2% WER on LRS2 dataset. Obviously, with-

out prior speech enhancement, the results of MSR are not

ideal, this is the main reason why we propose the method

of VE-MSR. In this paper, we qualitatively evaluate perfor-

mance of the VE-MSR model for speech recognition in the

noisy environments.

3. Architectures

The visual speech enhancement driven multi-modality

speech recognition (VE-MSR) network architecture con-

sists of visual speech enhancement (VE) sub-network and

multi-modality speech recognition (MSR) sub-network.

The model architecture is shown in detail in Figure 2. We

propose a VE sub-network for separating the speech of tar-

get speaker from background noises. The network contains
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Figure 3: Examples of mouth crop. Face Landmarks are ex-

tracted by the Dlib toolkit and the mouth region of interest

(ROI) inside the red squares are achieved by four specified

reference landmarks.

two inputs (video frames and original audio spectrogram)

and outputs a spectrogram of the enhanced speech. Video

feature and enhanced speech spectrogram are then fed into

the multi-modality speech recognition (MSR) sub-network

to recognize to full words or sentences.

3.1. Video features

As shown in Figure 3, we use 4 (red points) out of 68 fa-

cial landmarks (red and green points) extracted by Dlib [29]

and crop image frames to 112 × 112 pixels pitch includ-

ing the mouth as region of interest (ROI). Instead of using

ResNet [26]-based video feature extraction networks men-

tioned in many other lip-reading papers [2, 3, 4, 6, 14, 41],

we use a pseudo-3D (P3D) [36] network to produce a more

powerful visual spatio-temporal representation.

A few studies [41, 2, 3, 35, 6] have shown that perform-

ing 3D convolutions is a beneficial method to capture both

temporal and spatial dimensions in videos. However, the

computation cost and memory demand of a deep 3D CNN

is very expensive. P3D alleviates this situation by simulat-

ing N ×N ×N convolutions with 1× 3× 3 convolutions

filters on spatial domain (like 2D CNN) plus 3× 1× 1 con-

volutions to extract temporal information on adjacent fea-

tures along time. [36] devises three variants of bottleneck

building blocks in a residual framework and achieves su-

perior performances over several state-of-the-art techniques

in several different tasks. The three block version is illus-

trated in Figure 4. We implement a 50-layer P3D network

by mixing the three units, as illustrated in Figure 4d.

The spatio-temporal convolution network consists of a

3D convolution layer with 64 filters of kernel size 5×7×7,

followed by batch normalization, ReLU units and max-

pooling layers. And then the max-pooling is followed by a

50-layer P3D ResNet that gradually decreases the spatial di-

mensions with depth while remaining the temporal dimen-

sion. For an input of T ×H ×W frames, the output of the

sub-network is a T × 512 tensor (in the final stage, the fea-

ture is average-pooled in spatial dimension and processed as

1×1×1 conv

1×3×3 conv

3×1×1 conv

1×1×1 conv

+

(a) P3D-A

1×1×1 conv

1×3×3 conv 3×1×1 conv

1×1×1 conv

+

+

(b) P3D-B

1×1×1 conv

1×3×3 conv

3×1×1 conv

1×1×1 conv

+

+

(c) P3D-C

P3D-A

P3D-B

P3D-C

P3D-C

P3D-A

P3D-B

(d) P3D-ResNet

Figure 4: Bottleneck building blocks of the Pseudo-3D

(P3D) and P3D ResNet network. P3D ResNet is produced

by interleaving P3D-A, P3D-B and P3D-C.

a 512-dimensional vector representing each video frame).

3.2. Audio features

We use Short Time Fourier Transform (STFT) to extract

magnitude spectrogram from the waveform signal at a sam-

ple rate of 16kHz. To align with the video frame rate at

25fps, we set the STFT window length to 40ms and hop

length to 10ms when sample rate is 16kHz. We convert

the resulting magnitude with frequency bins of 321 (repre-

senting frequencies ranging from 0 to 8 kHz) into mel-scale

magnitude spectrogram with mel-frequency bins of 80. The

magnitude spectrogram and corresponding video feature are

then fed into VE sub-network.

3.3. Visual speech enhancement network

Previous studies have demonstrated the effect of audio

signals with different noise levels on MSR. VE can improve

not only the performance of ASR, but also the performance
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Figure 5: The 1D ResNet block. The 1D ResNet is built

based on the temporal convolution block. DS: Depthwise

separable [13]; BN: Batch Normalization [8]; US: Up-

sample; AP: Average Pooling [26]. The non-upsample con-

volution layers are all depthwise separable. BN, ReLU ac-

tivation and identity skip connection are added after every

convolution layer.

of MSR. As shown in Figure 2a, the video feature vec-

tors are processed by a 1D temporal ResNet network (video

stream), which consists of 10 convolution blocks of the 1D

ResNet. The 1D ResNet block is proposed by [6] and its

architecture is shown in Figure 5. Two of the intermediate

blocks containing transposed convolution layers upsample

the video features by 4 to match the temporal dimension of

the audio feature vectors (4T ). Similarly, the noisy mag-

nitude spectrograms are fed into a residual network (audio

stream) which consists of 5 convolution blocks of the 1D

ResNet and outputs audio feature vectors. Then the audio

feature vectors and the video feature vectors are fused in

a fusion layer by simply concatenated over the channel di-

mension. The fused multi-modality vector is then fed into

a one-layer EleAtt-GRU encoder followed by 2 fully con-

nected layers. We use sigmoid as activation to produce a tar-

get enhancement mask (values range from 0 to 1). EleAtt-

GRU is demonstrated more effective than other RNN vari-

ants in spatio-temporal tasks and its detail is introduced in

section 3.4. The enhanced magnitude is produced by mul-

tiplying the original magnitude spectrogram with the target

enhancement mask element-wise:

M̂ = σ
(

WT
mEleAtt(fav)

)

⊙Mn (1)

where σ denotes the activation function of Sigmoid. fav is

the fused multi-modality vector output by the fusion layer.

EleAtt denotes the one-layer EleAtt-GRU encoder and

WT
m denotes the weight matrices of two FC layers followed

the encoder. Mn denotes the original magnitude spectro-

gram and M̂ denotes the enhanced magnitude spectrogram.

An illustration of the VE sub-network is shown in Sup-

σ σ

1-

σtanh

+

EleAttG at

Reset gate rt

ht
~

xt

ht-1

Update gate zt

ht

xt~

Figure 6: Illustration of Element-wise-Attention Gate

(EleAttG) for a GRU block. A GRU block consists of a

group of (e.g., N ) GRU neurons. In the diagram, each black

line carries a vector. Yellow boxes – the units of the orig-

inal GRU with the output dimension of N . Blue circle –

element-wise operation and the brown circle denotes vector

addition operation. Red box – EleAttG with an output di-

mension of D, which is the same as the dimension of the

input xt.

plementary Material. Enhancement of audio modality can

improve both the performance of audio speech recognition

(ASR) and the performance of MSR.

3.4. Multimodality speech recognition network

MSR sub-network uses encoder-to-decoder (enc2dec)

mechanism. As shown in Figure 2, the enhanced magnitude

spectrogram is extracted from the ‘noise-free’ audio stream

(details shown in Supplementary Material) to produce en-

hanced audio features. These two 1D-ResNet blocks of the

new audio stream with stride 2 down-sample the temporal

dimension of the audio features by 4 to match the temporal

dimension of video features (T ).

Transformer [45] is a self-attention model recently used

in the area of lip reading [4] and MSR [2]. It has a nice per-

formance on LRS2-BBC [2] and LRS3-TED [5] datasets.

Although transformer is a powerful model emerging in lip

reading [2, 4], it builds character relationships within lim-

ited length. RNN is more effective with long sequences

than Transformer. Considering this situation, we intro-

duce a recent proposed RNN variant model which named

Gated recurrent unit with element-wise-attention (EleAtt-

GRU) [48]. Compared with an RNN block (GRU, LSTM

and other RNN variants in a layer), EleAtt-GRU is equipped

with an element-wise-attention gate (EleAttG) that empow-

ers an RNN neuron to have the attentive capacity. In this

way, an EleAttG has the ability to modulate the input adap-

tively by assigning different importance levels, i.e., atten-

tion, to each element or dimension of the input. Illustration

of EleAttG for a GRU block is shown in Figure 6 and cor-
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responding computations are as follows:

x̃t = at ⊙ xt

rt = σ (Wxrx̃t +Whrht−1 + br)

zt = σ (Wxzx̃t +Whzht−1 + bz) (2)

ht
′ = tanh (Wxhx̃t +Whh (rt ⊙ ht−1) + bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ ht
′

where σ denotes the activation function of Sigmoid. The

attention response of an EleAttG is a vector at with the

same dimension as the input xt of GRU. at modulates xt

to the updated input x̃t. rt and zt denote the reset gate

and update gate of GRU. ht and ht−1 are the output vec-

tors of the hidden state and the previous hidden state. Wαβ

denotes the weight matrix related with α and β, where

α ∈ {x, h} and β ∈ {r, z, h}. bγ is the bias vector, where

γ ∈ {r, z, h}. In a GRU block/layer, all neurons share the

same EleAttG, which reduces the cost of computation com-

plexity and number of parameters.

As shown in Figure 2, we build an sequence-to-sequence

EleAtt-GRU network (EA-GRU-seq2seq) for MSR, using

two EleAtt-GRU (EA-GRU) layers as the kernel of encoder

and the other two EleAtt-GRU layers as the kernel of de-

coder. The video features extracted by P3D network are fed

into the encoder along with the audio features. The number

of unit of EleAtt-GRU in both encoder and decoder is 128.

The decoder outputs character probabilities which are di-

rectly matched to the ground truth labels and trained with a

cross-entropy loss. The MSR sub-network can also be used

when only single modality (audio or visual) is available.

3.5. Loss function

The VE sub-network is trained by minimizing the L1

loss between the predicted magnitude spectrogram and the

ground truth. For sequence prediction task, we use a

sequence-to-sequence (seq2seq) loss [12, 43]. For single

label inference task, we use cross entropy loss.

4. Experiment

4.1. Datasets

The proposed network is trained and evaluated on

LRW [15] and LRS3-TED [5] datasets. LRW is a very

large-scale lip reading dataset in the wild, it consists of

short clips (29 frames) from British television broadcasts,

including news and talk shows. The dataset consists of up

to 1000 utterances of 500 different words, spoken by more

than 1000 speakers. We use LRW dataset to pre-train the

P3D spatio-temporal front-end based on a word-level clas-

sification network of lip reading, similar to [41].

LRS3-TED is the largest available dataset in the field of

lip reading (visual speech recognition). It consists of face

tracks from over 400 hours of TED and TEDx videos, and

Transcription WER %

GT We can prevent the worst case scenario

V We can put and worst case scenario 34

A We can prevent the worst case tcario 8

AV We can prevent the worst case scenario 0

Noisy

GT what would that change about how we live

V wouldn’t at chance whole a life 53

A that would I try all we live 50

AV that would I chance all how we live 25

E-A what would that change about how we live 0

Noisy

GT human relationships are not efficient

V you man relation share are now efficient 38

A man went left now fit 73

AV you man today are now efficient 43

E-A human relations are now efficient 14

E-AV human relationships are not efficient 0

Table 1: Examples of MSR and VE-MSR results. GT:

Ground truth; V: video modality only; A: audio modal-

ity only; AV: multi-modality (audio-visual); E-A: enhanced

audio; E-AV: enhanced audio and visual.

organized into three sets: pre-train, train-val and test. We

train the VE sub-network and the MSR sub-network on the

LRS3-TED dataset.

4.2. Evaluation protocol

For the word-level lip reading experiment, the train, val-

idation and test sets are provided with the LRW dataset. We

report word accuracy for classification in 500 word classes

of LRW. For sentence-level recognition experiments, we

report the Word Error Rate (WER). WER is defined as

WER = (S + D + I)/N , where S is the number of sub-

stitution, D is the number of deletions, I is the number of

insertions to get from the reference to the hypothesis, and

N is the number of words in the reference [14].

4.3. Training

The spatio-temporal visual front-end of P3D is pre-

trained on a word-level classification network of lip reading

with LRW dataset for 500 word classes and we adopt a two-

steps training strategy. In the first step, video frames are fed

into a 3D convolution, which is followed by a P3D, and the

back-end is based on one dense layer. In the second step, to

improve the effectiveness of the model we replace the dense

layer with two layers of EleAtt-GRU, followed by a linear

and a SoftMax layer. With the visual front-end frozen, we

extract and save video features, as well as magnitude spec-

trograms for both original audio and the mix-noise one.

To demonstrate the gain of our model, we follow the

noise mix method of [2], the babble noise with 0dB SNR

is added to audio stream with probability pn = 0.25 and the
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Methods Word accuracy

Chung and Zisserman [14] 76.2%

Stafylakis and Tzimiropoulos [41] 83.0%

Ours 84.8%

Table 2: Word accuracy of different word-level classifica-

tion networks on the LRW dataset.

Method

SNR
clean 0 5 10

M WER

Google S2T API [11] A 10.4% 70.3% - -

TM-seq2seq [2] A 9.0% 60.5% - -

TM-seq2seq V 59.9% - - -

TM-seq2seq AV 8.0% 44.3% - -

EA-GRU-seq2seq A 7.2% 58.2% 42.6% 35.5%

EA-GRU-seq2seq V 57.8% - - -

EA-GRU-seq2seq AV 6.8% 41.1% 36.8% 32.2%

EA-GRU-seq2seq∗ A - 36.6% 32.7% 24.2%

EA-GRU-seq2seq∗ AV - 28.5% 26.3% 23.5%

Table 3: Word error rates (WER) on the LRS3-TED dataset.

V, A and AV denote video modality only, audio modality

only and multi-modality (audio and video) inputs respec-

tively. * means the VE driven ASR and VE-MSR models.

babble noise samples are synthesized by mixing the signals

of 30 different audio samples from LRS3-TED dataset.

We first train the visual speech enhancement (VE) sub-

network. Simultaneously, the multi-modality speech recog-

nition (MSR) sub-network is trained with video features

and clean (original audio) magnitude spectrogram as inputs.

Then we freeze the enhancement sub-network and train the

MSR sub-network with video features and enhanced magni-

tude output by the VE sub-network. Instead of immediately

training on full sentences, we follow a curriculum learning

training method [2]. The training starts with single word

samples, and then the length of the training sequence grad-

ually grows. This curriculum method not only improves

the rate of convergence on the training set, but also reduces

overfitting significantly.

The output size of decoder is 41, accounting for the 26

characters in the alphabet, the 10 digits, and tokens for

[PAD], [EOS], [BOS] and [SPACE]. We also use teacher

forcing method, in which the ground truth of the previous

decoding step serves as input to the decoder.

The implementation of the network is based on the Ten-

sorFlow library [1] and trained on a single P100 GPU with

16GB memory. We use the ADAM optimiser to train the

network with dropout and label smoothing. An initial learn-

ing rate is set to 10−4, and decreased by a factor of 2 every

time if the training error did not improve, the final learn-

(a) Clean audio magnitude

(b) Noisy audio magnitude

(c) Enhanced audio magnitude

Figure 7: Comparison of magnitude spectrograms: a) the

clean (original) utterance; b) we obtain this noisy utterance

by adding babble noise to the 100 central audio frames; c)

the enhanced audio utterance, which shows the effect of VE

when compared to b).

ing rate is 5×10−6. Training of the entire network takes

approximately 10 days, including the training of two sub-

networks separately and the subsequent joint training.

4.4. Results

Video modality only. Lip reading (video modality

only) experiments are performed both on word-level and

sentence-level. We train the word-level lip reading network

on the LRW dataset to classify 500 word classes. We report

word accuracy as evaluation metric. As shown in Table 2,

our result exceeds the current state-of-the-art [41] on LRW.

It demonstrates the superiority of our spatio-temporal visual

front-end network in extracting video features compared to

the one used in [2]. Our MSR (EA-GRU-seq2seq) network

with only video modality achieves a WER of 57.8%, where

it improves by 2.1% compared to the previous 59.9% of

state-of-the-art [2] without language model in decoder.

MSR. We perform audio modality only and MSR ex-

periments with both clean and noisy audio signal in the

MSR sub-network. Noisy utterances are obtained by adding

babble noise to the clean audio frames. The results in Ta-

ble 3 demonstrate that MSR outperforms one single modal-

ity (audio or video) both in audio clean and noisy environ-
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Figure 8: a) Word error rate (WER) for the audio modality

speech recognition (A), MSR (AV) and VE-MSR (E-AV)

networks in different SNR noisy environments. As show in

the figure, multi-modality information can improve the per-

formance of speech recognition and enhanced audio modal-

ity makes further improvements on MSR. b) Line chart of

WER for the four kinds of speech recognition methods with

different SNR audio inputs. E-A denotes the VE driven

ASR. Shown in the diagram, with higher SNR audio in-

puts, video modality information can improve more both in

speech enhancement and speech recognition performance.

ments. The results also demonstrate that video modality can

improve ASR performance, particularly in high SNR noisy

environment. For example, the WER is reduced from 7.2%

for single modality of audio to 6.8% with clean audio sig-

nal; the WER is reduced from 35.5% for single modality

of audio to 32.2% with 10dB audio signal and the WER is

reduced from 58.2% for single modality of audio to 41.1%

with 0dB SNR audio signal. As shown in Figure 8(b), with

higher SNR audio inputs, video modality information can

help more in speech recognition task. Table 3 shows quan-

titative gain of our MSR network performance compared

to the previous MSR state-of-the-art [2] without extra lan-

guage model. Table 1 shows some of the many examples

where the single modality (video or audio alone) fails to

predict the correct sentences, but these sentences are cor-

rectly deciphered by applying both modalities. It also shows

that, in some noisy environment the MSR model also fails

to produce the right sentence.

VE-MSR. Enhancement of one modality can contribute

to the improvement of MSR performance. ASR in noisy en-

vironment is extremely challenging, so enhancement of au-

dio can separate target voice from background noise and im-

prove performance of ASR. As shown in Figure 7, we add

babble noise to the 100 central audio frames to obtain noisy

utterance. Comparing Figure 7b and c, it apparently shows

the effectiveness of VE sub-network. For example, after be-

ing enhanced by our VE sub-network, the WER is reduced

from 58.2% to 36.6% for ASR with 0dB SNR audio sig-

nal, improving speech recognition performance more than

multi-modality, which achieves a WER of 41.1%. The re-

sults in Table 3 show that our enhancement of audio modal-

ity can further benefit the performance of MSR. For exam-

ple, the WER is reduced from 41.1% to 28.5% for MSR

with 0dB SNR audio signal. Our VE-MSR network shows

significant advantage in terms of performance when com-

pared to the state of the art [2], the WER is reduced by

15.8% with 0dB SNR audio signal. Table 1 shows some of

the many examples where the multi-modality model fails to

predict the correct sentences, but the VE driven ASR model

and multi-modality model decipher the words successfully

in some noisy environments.

5. Conclusion

In this paper, we introduce the visual speech enhance-

ment driven multi-modality speech recognition (VE-MSR)

network, which reconstructs cleaner audio modality by in-

corporating visual features to benefit the performance of

MSR. In VE-MSR network, the VE sub-network is pro-

posed to separate magnitude spectrogram of target speaker

from noisy background or other speakers’ voices by lever-

aging visual information of target speaker’s lips. The en-

hanced audio modality together with video modality are

then fed into the MSR sub-network to yield characters. We

build the visual front-end of VE-MSR based on a pseudo-

3D residual network (P3D) to extract more effective vi-

sual features. We introduce EleAtt-GRU to adaptively en-

code the spatio-temporal information in VE and MSR sub-

networks, benefiting performance of VE and MSR. By ex-

tensive experiments, we demonstrate multi-modality infor-

mation that helps improve speech recognition performance

compared to only single modality. In noisy environment,

the enhanced audio further leads to a significant perfor-

mance gain on MSR.
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