
Improved Embeddings with Easy Positive Triplet Mining

Hong Xuan, Abby Stylianou and Robert Pless

George Washington University

{xuanhong|astylianou|pless}@gwu.edu

Abstract

Deep metric learning seeks to define an embedding where

semantically similar images are embedded to nearby locations,

and semantically dissimilar images are embedded to distant

locations. Substantial work has focused on loss functions and

strategies to learn these embeddings by pushing images from

the same class as close together in the embedding space as

possible. In this paper, we propose an alternative, loosened

embedding strategy that requires the embedding function only

map each training image to the most similar examples from

the same class, an approach we call “Easy Positive” min-

ing. We provide a collection of experiments and visualizations

that highlight that this Easy Positive mining leads to embed-

dings that are more flexible and generalize better to new un-

seen data. This simple mining strategy yields recall perfor-

mance that exceeds state of the art approaches (including those

with complicated loss functions and ensemble methods) on im-

age retrieval datasets including CUB, Stanford Online Prod-

ucts, In-Shop Clothes and Hotels-50K. Code is available at:

https://github.com/littleredxh/EasyPositiveHardNegative

1. Introduction

Deep metric learning seeks to define an embedding where

semantically similar images are embedded to nearby locations,

and semantically dissimilar images are embedded to distant

locations. A number of approaches have been proposed for this

problem, but many of them learn this embedding by considering

triplets of images: an anchor image, a positive image from

the same class, and a negative image from a different class.

The network is trained to minimize a loss function that

penalizes cases where the anchor-positive image distance is not

substantially smaller than the anchor-negative image distance.

When these embedding spaces are learned for the purpose

of classification, the evaluation for test data has several steps.

First, images from all classes of interest are mapped into the

embedding space. When a query arrives, it too is mapped into

the embedding space. The classification result is the class of

whichever image the query was mapped closest too.

There have been a variety of triplet selection approaches

(a) Random (b) All Positives

All Negatives

(c) Easiest Positive

Hardest Negative

(d) Ten images of the ‘cardinal’ class (id=17) from CUB-200.

Figure 1: Illustration of different triplet selection strategies

for an anchor image (blue circle) in a batch. Generic triplet

loss (a) randomly selects a positive example (green circle,

solid line) and a negative example (red square, dashed line).

Batch All [18] (b) considers all possible positive and negative

examples. Our approach (c) considers the most similar positive

and most similar negative example. The focus on the most

similar positive example aligns with the embedding query

criteria, where a query example need not be close to all possible

examples from the class, but only the most visually similar

example. This is motivated by the images in (d), which are all

from the ‘cardinal’ class in the CUB [22] dataset, but many of

which have significantly different visual appearances.

proposed to maximize accuracy on this classification from

embedding task. The general triplet selection model (Figure 1a)

chooses random anchor-positive pairs, while another ap-

proach [18] considers all possible triplets in a batch (Figure 1b).

These strategies align with the common goal of metric learning,

which is to cluster all images from the same class as closely

as possible in the embedding space.

This does not align with the query criteria on some high

2474

intra-class variance datasets such as CUB-200 [22], where a

query image need not be close to all examples in its class, but

rather only close to some example of the class. This suggests

that we should optimize the embedding so that images are

close to some exemplar of their class, but perhaps not all

exemplars. Thus we present the idea of “Easy Positive” triplet

mining (Figure 1c), where, for a given anchor image, we find

the closest positive example, and optimize to make sure it is

closer than negative examples. Figure 1d motivates this strategy,

showing ten images from the ‘cardinal’ class in the CUB-200

dataset [22]. Many of these images are significantly visually

dissimilar, most obviously based on the differences in coloring,

but also in background and orientation. Our approach allows

these visually dissimilar members of the class to form manifold

in the embedding instead of forcing the members to project to

the same place in the embedding.

Our specific contributions are:

• Introducing the idea of Easy Positive mining for metric

learning and visualizations of the representational

flexibility this supports;

• Experimental comparisons of Easy Positive with other

triplet selection or aggregation approaches; and

• Results that demonstrate substantial improvement over

other triplet based learning methods, and which improve

the state of the art for CARS, CUB, SOP, Fashion, and

Hotels-50K compared to all known methods including

much more complicated approaches.

2. Background

There is a large body of work in distance metric learning

and its associated loss functions for deep learning, including

contrastive loss [5], triplet loss [2, 15, 21, 18], and quadruplet

loss [1], as well as more complex variants of triplet loss [24, 3],

approaches that optimize to project all images from a class to

a known location in the embedding space [10], and ensemble

approaches that combine the output of multiple networks or

approaches [8, 11, 23]. In this paper we specifically focus

on triplet loss and the related N-pair loss [17], and different

approaches for selecting examples within a batch.

2.1. Triplet loss

Triplet loss is trained with triplets of images, (xa,xp,xn),
where xa is an anchor image, xp is a positive image of the same

class as the anchor, and xn is a negative image of a different

class, and the convolutional neural network, f(·), embeds the

images on a unit sphere, (f(xa),f(xp),f(xn)). The target is

to learn an embedding such that the anchor-positive pair are

at least closer together than the anchor-negative pair by some

margin: dap−dan>margin, where dap=‖f(xa)−f(xp)‖2.

The loss is then defined as:

L=max(0,dap−dan+margin)

2.2. N­pair and NCA Loss

N-pair loss [17] adds more negative examples into triplets

and turns the triplet into an N-tuplet, (xa,xp,xn1
,...,xni

). The

convolution neural network embeds the images on a unit sphere,

(f(xa), f(xp), f(xn1
), ..., f(xni

)). The authors additionally

modify the standard triplet loss function from a margin based

loss to an NCA loss [4], avoiding the selection of the margin

hyper-parameter and more efficiently pushing positives and

negative to be far apart. The loss is defined as:

L=−log
exp(f(xa)

⊺f(xp))

exp(f(xa)⊺f(xp))+
∑

iexp(f(xa)
⊺f(xni

))

2.3. Triplet Mining

In order to construct a triplet for a particular anchor image

xa, we must select a positive image, xp, from the same class

and a negative image, xn, from a different class. In a dataset

set with N training images, there are O(N3) possible triplets,

many of which do not help the training converge (e.g., triplets

where dan >> dap). It is important for fast convergence of

the triplet based networks to then construct only the most

useful triplets. This triplet construction can either occur offline,

selecting triplets from the entire training dataset after each

training snapshot, or online, selecting triplets from within each

batch in the training. The details of triplet mining will be

discussed in further detail in Section 3.

2.4. Drawbacks of Existing Approaches

One of the key problems with many existing metric learning

approaches is that, when trained only with class labels for super-

vision, they learn an embedding that pushes together all exam-

ples of a class regardless of their semantic similarity. A natural

way to embed those examples is to project them on several clus-

ters or a manifold instead of a point to tolerant the semantic dif-

ferences within a class, as seen in Figure 1d, or mislabeled data.

The most significant work to address this issue of over-

clustering in deep metric learning introduced the concept of

‘magnet loss’ [13], where classes are split into clusters using k-

means, and points within a cluster are pushed together, but clus-

ters within a class are allowed to spread out. This approach, how-

ever, requires the computation and book-keeping of the clusters,

and requires regular pauses during training to offline re-compute

the clusters within a class using the current representation.

In this paper, we show that our simple, online triplet selection

approach focusing on only the most similar positive example

is tolerant to high intra-class variance, forming manifold

embedding, avoiding over-clustering of the embedding space,

and generalizes well to unseen classes.

3. Strategies for Triplet Selection

In our training, each batch of N images contains n examples

from c classes, randomly selected from the training data.

2475

Figure 2: The distribution of similarities between all pairs from

the same class in the training data. Batch All (BA), N-Pair, and

Hard Positive (HP) all tightly cluster the training data, while

the Easy Positive approaches cluster much less tightly.

Throughout the paper, we refer to the n examples per class as

a group. We review different possible online mining strategies

to select the most useful examples within a batch both from

the same class and from different classes to an anchor image.

3.1. Hard Negative Mining

Hard negative examples are the most similar images which

have a different label from the anchor image.

xhn= argmin
x:C(x)6=C(xa)

d(f(xa),f(x))

Many works have discussed the benefit of hard negative

mining in constructing triplets that produce useful gradients and

therefore help triplet loss networks converge quickly [7, 15, 16].

In [15], the authors additionally propose the concept of

Semi-Hard Negative mining, which chooses a anchor-negative

pair that is farther than the anchor-positive pair, but within the

margin, and so still contributes a positive loss. They demon-

strate that using these Semi-Hard Negatives achieves superior

performance to networks trained with random or hard negatives.

In this paper, given the feature for an anchor image xa and its

positive example xp, we define their Semi-Hard Negative:

xshn= argmin

x:
C(x)6=C(xa)

d(f(xa),f(x))>d(f(xa),f(xp))

d(f(xa),f(x))

3.2. Easy Negative Mining

Easy negative examples are the least similar images which

have the different label from the anchor image.

xen= argmax
x:C(x)6=C(xa)

d(f(xa),f(x))

This condition is not useful in triplet construction, as it will

not produce useful gradients for updating the model.

Figure 3: The distribution of similarities between points in

the test dataset and their closest point in the training dataset.

Batch All (BA), N-Pair, and Hard Positive (HP) all learn an

embedding where testing points from new, unseen classes are

mapped closely to training data, indicating that they have not

learned a representation that differentiates well between training

data and unseen testing data. By comparison, all of the Easy

Positive approaches map test data much less closely particular

training examples.

3.3. Hard Positive Mining

Hard positive examples are the least similar images which

have the same label to as anchor image.

xhp= argmax
x:C(x)=C(xa)

d(f(xa),f(x))

In [7], the authors show that hard positive examples

increase clustering within a class. The authors also empirically

demonstrate that hard positive mining is not universally suitable

for all datasets. In Section 6, we show that the primary problem

with hard positive mining is actually related to the number

of images per class in the batch (if there is a large number of

examples per class in a batch, the likelihood that the hardest

anchor-positive pair in a batch are very dissimilar increases).

3.4. Easy Positive Mining

Our solution to address the over-clustering of the embedding

space and to keep intra-class variance in real data is to compute

the loss using the easiest positive pair per class in the batch.

The easy positive examples are the most similar images that

have the same label as the anchor image:

xep= argmin
x:C(x)=C(xa)

d(f(xa),f(x))

This selection will more likely to push two close positives

together and less likely to push two far away positives together.

Therefore, it can maintain the intra-class variance and allow

classes to have manifold structure in the embedding space

2476

and and help reduce the over-clustering problem when an

embedding must map dramatically different images to the same

place. Figure 2 shows that training data is less clustered using

the easy-positive mining than when using existing approaches

and Figure 6 shows that training examples are embedded on

flexible manifold instead of points.

Additionally, this approach seems to generalize better to

unseen data than the other approaches. Figure 3 shows where

testing data embeds with respect to the closest points in the

training data. Existing approaches tend to embed test data from

new classes close to where training data was embedded, which

Easy Positive approaches spread the new data out more.

4. Easy Positive Triplet Loss

Given the Easy Positive mining described above, we can

derive our loss function when selecting easy positive examples

and different strategies for selecting negative examples. In our

approach we follow the standard practice of mapping the output

of our convolutional neural network onto a unit sphere. Then

we can compute the similarity of a feature vector for an anchor

image f(xa) and its closest positive f(xep) as the dot product

of these vectors: f(xa)
⊤f(xep)

Given an anchor image and its feature vector f(xa), we

find both the easy positive f(xEP) in the batch and all possible

negative examples, and define the Easy Positive (EP) loss as:

LEP =−log
exp(f(xa)

⊺f(xep))

exp(f(xa)⊺f(xep))+
∑

iexp(f(xa)
⊺f(xni

))

We can also find the Easy Positive f(xep), Hard Negative

f(xhn) and Semi-Hard Negative f(xshn) examples for f(xa)
and define the Easy Positive Hard Negative (EPHN) loss and

Easy Positive Semi-Hard Negative (EPSHN) loss as:

LEPHN =−log
exp(f(xa)

⊺f(xep))

exp(f(xa)
⊺

f(xep))+exp(f(xa)
⊺

f(xhn))

LEPSHN =−log
exp(f(xa)

⊺f(xep))

exp(f(xa)
⊺

f(xep))+exp(f(xa)
⊺

f(xshn))

We can additionally compare our Easy Positive triplet losses

with the hard positive mining approaches. In these cases, the

loss functions, defined as Hard Positive (HP) and Hard Positive

Hard Negative (HPHN) are computed as follows:

LHP =−log
exp(f(xa)

⊺f(xhp))

exp(f(xa)⊺f(xhp))+
∑

iexp(f(xa)
⊺f(xni

))

LHPHN =−log
exp(f(xa)

⊺f(xhp))

exp(f(xa)
⊺

f(xhp))+exp(f(xa)
⊺

f(xhn))

When the group size is 2, Easy Positive and Hard Positive

become random Positive, making LEP and LHP equivalent

to N-pair loss.

Figure 4: Comparison of Recall@1 for different triplet mining

strategies as a function of group-size, n (the number of images

from the same class in a batch).

5. Experiment

We calculate Recall@K to measure retrieval quality. To com-

pute Recall@K, we first embed all query set and gallery set im-

ages to the unit hyper-sphere and calculate pair-wise cosine simi-

larity between these two sets. For each query image, we retrieve

the images with the K highest similarity scores from the gallery

set. A recall score is 1 if at least one image of the K retrieved

images have the same label as the query image, and 0 if none of

the K retrieved images have the same label as the query image.

Recall@K is the average of the recall score for all queries.

5.1. Implementation

All tests are run on the PyTorch platform [12], using the

GoogleNet [20] and ResNet18 and ResNet50 [6] architectures,

pre-trained on ILSVRC 2012-CLS data [14]. Training images

are re-sized to 256 by 256 pixels. We adopt a standard data

augmentation scheme (random horizontal flip and random

crops padded by 10 pixels on each side). For pre-processing,

we normalize the images using the channel means and standard

deviations. All networks are trained using stochastic gradient

descent (SGD) with 40 epoches. We set initial learning rate

0.0005 for CAR, SOP and In-shop cloth dataset and 0.0001 for

CUB dataset, and divided by 10 after 20 and 30 epochs. The

loss function is based on NCA which has a single parameter,

temperature [25], and in all cases we set this parameter to 0.1.

On all datasets we train using a batch size of 128. Batches are

constructed with a fixed number n examples per class by adding

classes until the batch is full. When a class has fewer than n

examples, we use all the examples from the class. If this leads

to a case where the last class in the batch does not have space

for n images, we just include enough images to fill the batch.

2477

5.2. Datasets

The CUB200 dataset [22] contains 200 classes of birds with

11,788 images. We split the first 100 classes for training (5,864

images) and the rest of the classes for testing (5,924 images).

In the training set, the maximum, minimum, mean and standard

deviation of the number of images in each class is 60, 41, 58.6

and 3.5.

The CAR196 dataset [9] contains 196 classes of cars with

16,185 images. We use the standard split with the first 98

classes for training (8,054 images) and the rest of the classes

for testing (8,131 images). In the training set, the maximum,

minimum, mean and standard deviation of the number of

images in each class is 97, 59, 82.2 and 7.2.

The In-Shop Clothes Retrieval (In-Shop) dataset [26]

contains 11,735 classes of clothing items with 54,642 images.

Following the settings in [26], only 7,982 classes of clothing

items with 52,712 images are used for training and testing.

3,997 classes are for training (25,882 images) and 3,985 classes

are for testing (28,760 images). The test set are partitioned

to query set and gallery set, where query set contains 14,218

images of 3,985 classes and gallery set contains 12,612 images

of 3,985 classes. In the training set, the maximum, minimum,

mean and standard deviation of the number of images in each

class is 162, 1, 6.5 and 6.4.

The Stanford online products (SOP) dataset [18] contains

22,634 classes with 120,053 product images. We use 11,318

classes for training (59,551 images) and other 11,316 classes are

for testing (60,502 images). In the training set, the maximum,

minimum, mean and standard deviation of the number of

images in each class is 12, 2, 5.3 and 3.0.

The Hotel-50K (Hotel) training dataset [19] contains

50,000 hotel classes with 1,027,871 images of hotel rooms

within each hotel. In the training set, the maximum, minimum,

mean and standard deviation of image size in each class is 266,

2, 20.5, 13.6. The testing dataset consists of 17,954 images

from 5,000 hotels represented in the training set.

In the CUB, CAR and SOP datasets, both the query set and

gallery set refer to the testing set. During the query process, the

top-K retrieved images exclude the query image itself. In the

In-Shop dataset, the query set and gallery set are predefined

by the original paper. In the Hotel dataset, the training set is

used as the gallery for all query images in the test set.

6. Results

We show three classes of experiments. The first gives an

extensive comparison between different mining approaches on

the CAR dataset, comparing different parameter settings and

showing visualizations that offer intuitions about how different

mining strategies affect the embedding. The second set of

experiments shows comparisons between different algorithm

performance for different network architectures. The third

experiment compares our algorithm to a wider variety of

algorithms on a larger collection of datasets.

6.1. Comparative Study Using the CAR Dataset

In the first set of experiments we explore different mining

strategies using the CAR dataset [9], and specific explore the

effect of the number of images per class in each batch. The

CAR dataset has a large number of examples per class making

it possible to test with large numbers of images per class.

Impact of Group Size. We train an embedding network on

the CAR dataset, using a ResNet-18 architecture for 6 different

mining strategies. In all cases, we train with a batch size of 128.

Figure 4 shows the impact of the group size, n (the number of

examples per class that is included per batch) on the Recall@1

performance.

When n= 2, Easy Positive (EP), Hard Positive (HP) and

Batch All (BA) have only 2 representatives per class, and each

of these approaches use all negatives in the batch, so these three

approaches are all the same in this case (and are the equivalent

to the standard N-pair approach). Similarly, Hard Positive Hard

Negative (HPHN) is the same as Easy Positive Hard Negative

(EPHN) when there are only two examples per class.

When n increases, the number of examples per class grows,

so the easiest positive image is likely to become more similar

and the hardest positive is likely to become less similar. Our

results show an increase in performance for all the Easy Positive

approaches and a decrease for the hard positive approaches.

When n > 16 the performance drops for most methods; we

believe this is because for large n there are relatively few

different classes per batch, and when all negatives examples

are drawn from fewer classes they have less variation.

The Hard Positive and Batch All approaches explicitly focus

on creating constraints to pull together all examples in a group,

which has the impact of forcing all the points in the class to be

close. In contrast, EP, EPHN and EPSHN only constrain the

most similar examples per group, and do not force all elements

of the class into a cluster.

For the remainder of this section we drop results about about

Hard Positive Hard Negative and just use the results from the

group size of 16. We also include the N-pair approach, which

is equivalent to the best version of Batch All and Hard Positive

(group size=2).

Usage of the Embedding Space. Figure 2 illustrates the

impact of Easy Positive mining by showing the distribution

of similarities between points from the same class. The points

from the same class are much more spread out when the

embedding is based on the Easy Positive mining, while the

other approaches create tight clusters where all points from the

same class are very similar.

For these six algorithms, Figure 5 gives another visualization

of how the points are distributed, showing for each data point the

similarity to the most similar image from the same class and the

2478

Figure 5: A visual summary of the embedding structure for Batch All (BA), Hard Positive (HP), N-Pairs, and 3 approaches that

focus on Easy Positives. Each figure shows the similarity (in embeddings space) of the closest same class image (on the x-axis) and

the closest different class image (on the y-axis). It is especially interesting to note that N-Pairs is very good on training data (similarity

to closest same class image is mostly greater than 0.9), but this does not generalize to embedding unseen classes. Embeddings trained

with easy-positives are more spread out (the closest positives are not as close), but generalize better to new classes.

most similar image from a different class. The structure of this

plot is that if a point is below the y=x line, then to most similar

image is from the same class, and would be classified correctly if

it was a query image, and we have color coded those points blue.

The left side of this plot includes Batch All, N-pair and Hard

Positive mining. These algorithms give tight clusters and this

is visible in these plots for training data (the left-most column

of the plot), where all points are very similar to images from

the same class, or far to the right on the x-axis. In contrast, the

Easy Positive approaches (the right-side of the figure) are more

spread out.

On testing data, Batch All, N-pair and Hard Positive mining

all have significantly larger distances to the closest example

than in the training data (there points are less concentrated on

the far right along the x-axis).

In contrast, while the Easy Positive approaches have lower

similarities to the closest training points, the embedding

generalizes better for new classes, giving distributions on test

data of distances to nearby positive and negative examples that

are similar to the training distributions; we believe this is why

we get better results.

Visualization of Embedding Space. Finally, Figure 6 shows

a t-SNE embedding comparing N-pair with Easy Positive

Semi-Hard Negative. Embedding the training points with

N-pair leads to tight clusters, while the Easy Positive Semi-Hard

Negative embeds classes to be more spread out and even

sometimes disjoint (addressing the fact that sometimes classes

have multiple modes, like the birds in Figure 1d).

The embedding of test data points is also interesting. On

the right side of Figure 6, we show the testing and training

2479

(a) N-pair training embedding (b) N-pair testing + training embedding

(c) EPSHN training embedding (d) EPSHN testing + training embedding

Figure 6: A t-SNE visualization of N-pair loss and EPSHN, showing the embedding of the training categories to highlight their

structure (left) and a joint embedding of the training and the testing classes to highlight where test data is embedded compared to

training data (right). The EPSHN approach only requires that nearby points are similar, so the classes are not embedding as tightly

as clusters compared to the N-Pair approach. Additionally, with EPSHN, new data is better spread out and mapped less directly

on top of a training category, compared the N-pair embedding.

embedding at the same time; the red points are the embedded

training data (that were shown on the left), and the blue points

are the embedded testing data. On the EPSHN data the testing

points are more spread out, and clusters are rarely mapped on

top of the training clusters; while the N-pair training points

are less spread out and often mapped exactly on top of training

categories. While this does not necessarily impact testing

accuracy, it indicates that the embedding has not learned a

representation that generalizes to new classes.

6.2. Comparison Across Architectures

In the second set of experiments, we train embedding

networks on the CUB and CAR dataset and compare our Easy

Positive Semi-Hard Negative approach with triplet, N-pair

and Proxy loss, using an output embedding dimension size

of 64. We compare the results of these approaches across the

GoogleNet, Resnet18 and Resnet50 network architectures in

Table 1, demonstrating the superiority of our approach to these

other comparably simple embedding approaches across all

networks for CUB, and for both Resnet architectures for CAR.

6.3. Comparison with State of the Art

In the third set of experiments, we compare the the best

reported results for several more complex state of the art

embedding approaches, including more complex triplet loss

approaches [24, 3] and ensemble based approaches [11, 8, 23].

Our embeddings are trained with ResNet50 and an output em-

bedding size of 512. For CUB and CAR, the optimal group size

is 16, while the SOP and In-shop datasets have fewer examples

per class, and therefore perform best with a group size of 4.

In Table 2, the Easy Positive Semi-Hard Negative approach

achieves a new record on the CUB dataset, which contains high

intra-class variance as seen in Figure 1d, improving over even

significantly more complex ensemble methods such as ABE [8]

2480

Model GoogleNet Resnet18 Resnet50

CUB

Method R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

TRIPLET64 42.6 55.0 66.4 77.2 - - - - - - - -

N-PAIR64 45.4 58.4 69.5 79.5 52.4 65.7 76.8 84.6 53.2 65.3 76.0 84.8

PROXY64 49.2 61.9 67.9 72.4 51.5 63.8 74.6 84.0 55.5 67.7 78.2 86.2

EPSHN64 51.7 64.1 75.3 83.9 54.2 66.6 77.4 86.0 57.3 68.9 79.3 87.2

CAR

Method R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

TRIPLET64 51.5 63.8 73.5 81.4 - - - - - - - -

N-PAIR64 53.9 66.8 77.8 86.4 55.7 67.4 77.0 84.5 58.3 69.5 78.3 86.4

PROXY64 73.2 82.4 86.4 88.7 62.2 73.0 81.6 87.9 66.2 76.9 84.9 90.5

EPSHN64 66.4 76.8 85.2 90.7 73.2 82.5 88.6 93.0 75.5 84.2 90.3 94.2

Table 1: Retrieval Performance on the CUB and CAR dataset.

Dataset CUB CAR SOP In-shop

Method R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20

HDC384 53.6 65.7 77.0 73.2 82.4 86.4 69.5 84.4 92.8 62.1 84.9 89.0

BIER512 55.3 67.2 76.9 78.0 85.8 91.1 72.7 86.5 94.0 76.9 92.8 95.2

HTL512 57.1 68.8 78.7 81.4 88.0 92.7 74.8 88.3 94.8 - - -

ABE512 60.6 71.5 79.8 85.2 90.5 94.0 76.3 88.4 94.8 87.3 96.7 97.9

DREML576 63.9 75.0 83.1 86.0 91.7 95.0 - - - - - -

EPSHN512 64.9 75.3 83.5 82.7 89.3 93.0 78.3 90.7 96.3 87.8 95.7 96.8

Table 2: Retrieval Performance on the CUB, CAR, SOP and In-shop datasets comparing to the best reported results for more complex

approaches and/or ensembles.

Hotels-50K

Method R@1 R@10 R@100

BATCH-ALL256 8.1 17.6 34.8

EPSHN256 16.3 30.5 49.9

Table 3: Retrieval performance on the Hotels-50K dataset [19],

comparing to the author’s original results trained with Resnet-50

and Batch All triplet loss.

and DREML [23]. On the CAR dataset, our result is compa-

rable to the ensemble methods. We additionally achieve state of

the art results for In-shop and Hotels-50K, and achieve the best

reported Recall@1 for the SOP dataset. In the original Hotels-

50K [19] paper, the authors specifically cite high intra-class

variance as a challenge of their dataset. Our EPSHN method

doubles the accuracy of their original approach, which uses the

Batch All triplet selection strategy and is trained with ResNet50.

7. Discussion

The standard definition of distance metric learning is to

create a function so that all images from class are mapped to

similar locations and images from different classes are judged

to be different.

This criteria does not align well with data from natural

classes; for example, Figure 1d shows the Cardinal category in

the cub dataset that has at least two semantic clusters (colorful

male birds and brown females). Even within those semantic

classes, there may be value in explicitly matching to birds on a

branch or birds on the ground. We posit that there is value in

a distance metric learning approach that matches images to the

most semantically similar examples, without needing all images

to be similar. At query-time, recall accuracy typically depends

only on the label of the most similar image, so a metric learning

approach that optimizes for this condition fits better than a metric

learning approach that requires all images in a class to be similar.

In this paper we show that the simple change of concen-

trating on easy positive examples within a batch improves

performance across a wide range of datasets and outperforms

all published results on large datasets (Stanford Online Products,

In-shop Clothes, and Hotels-50K), including quite recent and

interesting ensemble based methods.

2481

References

[1] W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond triplet loss:

a deep quadruplet network for person re-identification. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), volume 2, 2017. 2

[2] S. Ding, L. Lin, G. Wang, and H. Chao. Deep feature learning

with relative distance comparison for person re-identification.

Pattern Recognition, 48(10):2993–3003, Oct. 2015. 2

[3] W. Ge. Deep metric learning with hierarchical triplet loss.

In Proc. European Conference on Computer Vision (ECCV),

September 2018. 2, 7

[4] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhut-

dinov. Neighbourhood components analysis. In L. K. Saul,

Y. Weiss, and L. Bottou, editors, Advances in Neural Information

Processing Systems 17, pages 513–520. MIT Press, 2005. 2

[5] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction

by learning an invariant mapping. In Proc. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), volume 2,

pages 1735–1742. IEEE, 2006. 2

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 4

[7] A. Hermans*, L. Beyer*, and B. Leibe. In Defense of the

Triplet Loss for Person Re-Identification. arXiv preprint

arXiv:1703.07737, 2017. 3

[8] W. Kim, B. Goyal, K. Chawla, J. Lee, and K. Kwon. Attention-

based ensemble for deep metric learning. In Proc. European

Conference on Computer Vision (ECCV), September 2018. 2, 7

[9] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object represen-

tations for fine-grained categorization. In 4th International IEEE

Workshop on 3D Representation and Recognition (3dRR-13),

Sydney, Australia, 2013. 5

[10] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and

S. Singh. No fuss distance metric learning using proxies. In Proc.

International Conference on Computer Vision (ICCV), Oct 2017.

2

[11] M. Opitz, G. Waltner, H. Possegger, and H. Bischof. Bier - boost-

ing independent embeddings robustly. In Proc. International

Conference on Computer Vision (ICCV), Oct 2017. 2, 7

[12] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,

Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017. 4

[13] O. Rippel, M. Paluri, P. Dollar, and L. Bourdev. Metric learning

with adaptive density discrimination. International Conference

on Learning Representations, 2016. 2

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,

and L. Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. 4

[15] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified

embedding for face recognition and clustering. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015. 2, 3

[16] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convolutional

feature point descriptors. In Proc. International Conference

on Computer Vision (ICCV), pages 118–126. IEEE Computer

Society, 2015. 3

[17] K. Sohn. Improved deep metric learning with multi-class

n-pair loss objective. In D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural

Information Processing Systems 29, pages 1857–1865. Curran

Associates, Inc., 2016. 2

[18] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 1, 2, 5

[19] A. Stylianou, H. Xuan, M. Shende, J. Brandt, R. Souvenir, and

R. Pless. Hotels-50k: A global hotel recognition dataset. In

AAAI Conference on Artificial Intelligence, 2019. 5, 8

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with

convolutions. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015. 4

[21] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric

learning for large margin nearest neighbor classification. In

Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Advances in

Neural Information Processing Systems 18, pages 1473–1480.

MIT Press, 2006. 2

[22] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,

and P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-

TR-2010-001, California Institute of Technology, 2010. 1, 2, 5

[23] H. Xuan, R. Souvenir, and R. Pless. Deep randomized ensembles

for metric learning. In Proc. European Conference on Computer

Vision (ECCV), September 2018. 2, 7, 8

[24] Y. Yuan, K. Yang, and C. Zhang. Hard-aware deeply cascaded

embedding. In Proc. International Conference on Computer

Vision (ICCV), Oct 2017. 2, 7

[25] X. Zhang, F. X. Yu, S. Karaman, W. Zhang, and S. Chang.

Heated-up softmax embedding. CoRR, abs/1809.04157, 2018. 4

[26] S. Q. X. W. Ziwei Liu, Ping Luo and X. Tang. Deepfashion:

Powering robust clothes recognition and retrieval with rich

annotations. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016. 5

2482

