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Abstract

Weakly supervised object localization has recently at-

tracted attention since it aims to identify both class labels

and locations of objects by using image-level labels. Most

previous methods utilize the activation map corresponding

to the highest activation source. Exploiting only one ac-

tivation map of the highest probability class is often bi-

ased into limited regions or sometimes even highlights back-

ground regions. To resolve these limitations, we propose to

use activation maps, named combinational class activation

maps (CCAM), which are linear combinations of activation

maps from the highest to the lowest probability class. By

using CCAM for localization, we suppress background re-

gions to help highlighting foreground objects more accu-

rately. In addition, we design the network architecture to

consider spatial relationships for localizing relevant object

regions. Specifically, we integrate non-local modules into

an existing base network at both low- and high-level layers.

Our final model, named non-local combinational class ac-

tivation maps (NL-CCAM), obtains superior performance

compared to previous methods on representative object lo-

calization benchmarks including ILSVRC 2016 and CUB-

200-2011. Furthermore, we show that the proposed method

has a great capability of generalization by visualizing other

datasets.

1. Introduction

Object localization aims to classify objects and identify

their locations in a given image, which is an essential pro-

cess of object detection and semantic segmentation [8]. Re-

cent deep learning-based methods have demonstrated the

state-of-the-art performance, especially in fully supervised

settings. However, training object localization networks in

a fully supervised setting requires heavy annotations, which

need time and effort to generate. Therefore, weakly super-

vised approaches that do not require full annotations have

recently attracted attention [23, 19, 30, 31].

Highest prob. Lowest prob.

CAM [34] NL-CCAM

Combination function

Figure 1. Illustration of our NL-CCAM and the original CAM

method. We denote the CAM method in a blue region, which uses

only the activation map of the highest probability class. It unin-

tentionally leads to highlight background regions, resulting in an

inaccurate bounding box. NL-CCAM exploits all activation maps

from the highest to the lowest probability class using a specific

combinational function. It makes the localization map suppress

background regions and highlight other parts of the object. The

bounding box generated by NL-CCAM catches the target object

more accurately. The predicted bounding boxes are in blue, and

the ground-truth boxes are in red.

Weakly Supervised Object Localization (WSOL) is a

task to identify both class labels and locations of objects

in a given image by using image-level labels. It is highly

attractive that labeling costs for WSOL are much lower

than those of fully supervised learning, which requires box-

level annotations. While many CNN-based object detectors

trained with full annotations surpass human performance,

those trained with weak annotations still require improve-

ments. In the case of WSOL, it is challenging to localize

objects since object locations are not given during training.

Zhou et al. [33, 34] demonstrate that classification networks

are inherently able to localize discriminative image regions

without location information, and they exploit this property

for WSOL. The so-called class activation maps (CAM) [34]

2941



inspired many researchers to adopt this concept to localize

discriminative parts of an object. However, deep networks

that are trained by class labels only tend to be biased on

the most discriminative parts of an object. In other words,

for an object in a given image, those networks tend to high-

light the most discriminative portions not the whole area

of the object. To overcome this limitation, recent works

for WSOL aim to highlight the whole regions of an object

evenly. Previous methods for this task can be categorized

into the following two approaches. The first approach is

to find a wide range of object parts by using spatial rela-

tionships [24, 31, 12]. These networks produce the state-

of-the-art performance not only in WSOL but also in the

weakly supervised semantic segmentation tasks. However,

they only consider local relationships on high-level feature

maps, resulting in coarser bounding boxes than their fully

supervised counterparts, and they even tend to highlight

common background regions for each class. The second ap-

proach is to erase the most discriminative parts of the object

and then find new object parts [23, 19, 30]. The erasing-

based approach can efficiently expand discriminative parts

of the object, but they often highlight regions without dis-

criminative parts, which results in localizing common back-

ground regions.

In this paper, to tackle the above-mentioned problems,

we propose to use activation maps, named combinational

class activation maps (CCAM), which are linear combina-

tions of activation maps from the highest to the lowest prob-

ability class. To the best of our knowledge, all previous

methods for WSOL exploit discriminative parts using only

the activation map of the highest probability class. In con-

trast, we incorporate the activation maps that are formed by

classes from the highest to the lowest probability. As illus-

trated in Fig. 1, the activation map of a higher probability

class highlights some parts of the object corresponding to

the class while the activation map of a lower probability

class catches background regions by suppressing discrimi-

native parts. Through empirical studies, we find that a linear

combination of class activation maps have an excellent ca-

pability for suppressing background regions, and we adopt

this property for WSOL. Furthermore, we design the net-

work architecture to consider spatial relationships by using

the non-local block [22], which captures long-range depen-

dencies via non-local operations. Specifically, unlike the

previous methods that consider spatial relationships only at

the high-level, we use non-local blocks at both low- and

high-level layers, as shown in Fig. 2. Consideration at the

low-level allows non-local use of the information such as

edges and textures to capture more parts of the object when

forming feature maps, and consideration at the high-level

makes the network find other parts of the object associ-

ated with the most discriminative parts by using spatial and

channel relations of generated feature maps.

To summarize, we apply non-local blocks to both low-

and high-level layers to find as much of the object-related

regions as possible. Then, we introduce the novel algorithm

to aim for the suppression of background regions, which

helps to highlight foreground objects more accurately. The

main contributions of this work are as follows:

• We propose a novel approach to suppress background

regions by using the combination of the activation maps

from the highest to the lowest probability class. We also

show that suppressing background regions helps to high-

light the object more accurately.

• We propose using non-local blocks to fit the WSOL

task and localize more parts of the object considering spatial

relationships of both low- and high-level feature maps.

• Our work achieves the state-of-the-art performance

on the ILSVRC 2016 dataset with the error rate of Top-1

49.83% and Top-5 39.31%, and on the CUB dataset with

the error rate of Top-1 47.60% and Top-5 34.97%.

2. Related Work

Recently, weakly supervised methods have received

great attention in various tasks [5, 16, 15, 26, 11, 9, 6]. In

this section, we review previous works by mainly focusing

on WSOL. Afterwords, we also briefly introduce the non-

local module [22] and review its usage for deep networks.

2.1. Weakly Supervised Object Localization

Weakly Supervised Object Localization (WSOL) is a

challenging task to localize objects with image-level labels

only. For the first time, Zhou et al. [34] show that the

network learned by the classification task can be used for

object localization. They obtain localization maps using

the feature maps of the CAM model, which replaces the

fully connected layers with a global average pooling layer

since the fully connected layers of the classification network

eliminate spatial information of feature maps. Most studies

on weakly supervised tasks use Zhou’s method as a baseline

architecture. However, since the CAM model is trained to

be proficient in classification, it activates the most discrim-

inative parts only. Recent studies have sought to find other

parts of the object not just the most discriminative parts by

using spatial relationships or have tried to remove the most

discriminative parts and then training a classification task

again to localize other parts of the object.

Researchers try to find a wide range of object parts by

using spatial relationships. Wei et al. [24] propose multi di-

lated convolutional blocks (MDC), which can consider spa-

tial relationships at various ratios, but not scale-invariant.

Self-produced guidance (SPG) masks proposed by Zhang

et al. [31] separate the foreground to provide the classi-

fication networks with the spatial correlation of locations,

but they only consider spatial relationships locally. Lee et
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al. [12] propose FickleNet, which considers spatial relation-

ships randomly. Although this network can take into ac-

count many combinations of spatial relationships, it does

not consider all possible relationships among every loca-

tion. These methods of considering spatial relationships

have limitations, which consider relationships locally and

only exploit relationships of the high-level features. More-

over, these methods tend to highlight common background

regions for each class, e.g., woods in a bird image or ocean

in a ship image.

Another approach is to erase the most discriminative

parts of the object and then find new object parts. Wei

et al. [23] propose the adversarial erasing (AE) network,

which erases the most discriminative regions of the image

to discover other parts of the object. However, this ap-

proach requires multiple classification networks. Similarly,

Singh and Lee [19] hide an image with random patches, and

then seek less discriminative parts of the object but it does

not consider the high-level guidance and sizes of objects.

Zhang et al. [30] propose the adversarial complementary

learning (ACoL) scheme for localizing complementary ob-

ject parts. They use two adversarial complementary classi-

fiers to discover the entire objects. Although it can locate

different object parts, it considers only two complementary

regions that belong to the object. These erasing methods

can efficiently expand discriminative parts of the object, but

they often fail for images not having sufficient discrimina-

tive regions, resulting in false positives for background re-

gions.

All of the above methods merely focus on the activation

map of the highest probability class, and some of them add

modules to improve the map’s capability. In contrast with

the previous methods, we propose to use multiple activa-

tion maps from the highest to the lowest probability class to

highlight foreground objects more accurately. We show that

using CCAM has a significant impact on WSOL task per-

formance while maintaining the complexity of the network.

2.2. Non­local Modules

Wang et al. [22] propose the non-local module that cap-

tures long-range dependencies directly by computing in-

teractions between any two positions. They use non-local

modules, which take both space and time, into a video clas-

sification network, and achieve the state-of-the-art perfor-

mance efficiently with a slight increase in network com-

plexity. Recent studies have applied non-local modules to

many tasks to account for long-range dependencies. Zhang

et al. [28] propose to apply non-local modules to GAN.

The attention mechanism using these modules grants more

capacity for both generator and discriminator to directly

model the long-range dependencies in the feature maps. As

a result, the generator in [28] can generate more realistic

images than the previous methods. Zhang et al. [32] first

use non-local modules for image restoration to make the

receptive field very large. They present very deep resid-

ual non-local attention networks using non-local modules

and achieve superior performance. Moreover, many studies

modify these modules for scene segmentation[4], medical

image processing [14], video understanding [25, 20], graph

neural network [2], and de-raining [13],

It is important to find whole parts of an object in WSOL.

Using long-range dependencies, a characteristic of non-

local modules, the network will be able to find relevant parts

of the most discriminative parts. We have applied non-local

modules to the classification network to account for long-

range dependencies. This is the first time to apply non-local

modules in the WSOL task, and we show that our model

highlights more comprehensive parts of the object than the

baseline model. Furthermore, by using the proposed non-

local module in conjunction with CCAM, we achieve the

state-of-the-art performance on WSOL.

3. Proposed Approach

In this section, we first illustrate how to obtain the acti-

vation maps from the highest to the lowest probability class.

Next, we describe our novel approach that exploits combi-

national class activation maps and the non-local module for

WSOL.

3.1. Class Activation Maps

As mentioned earlier, the previous WSOL methods only

rely on the activation map of the highest probability class.

Unlike previous studies, we observe the activation map of

a higher probability class highlights some parts of the ob-

ject, and the activation map of a lower probability class

has a considerable ability to reveal non-discriminative parts,

i.e., background regions, and we utilize these properties for

WSOL. To be specific, if we look into the activation map

of the highest probability class, the map tends to highlight

the most discriminative regions in the image. Meanwhile, if

we obtain the activation map of the lowest probability class,

it highlights the non-discriminative parts that are irrelevant

to the object. It is because the weight parameters of the

fully connected (FC) layer must be updated to include as

few discriminative parts as possible in order to obtain the

lowest probability value through the softmax layer. There-

fore, the localization map created by this class highlights

background regions or suppresses whole parts of the object.

For notational convenience, we denote the activation

map of the class with the kth highest probability as the kth

map. In the formula, the total number of the classes is K,

and we use c1, · · · , cK to denote the class from the highest

to the lowest probability in order, M ck to denote the activa-

tion map corresponding to ck. In Fig. 2, fn is the nth fea-

ture map before global average pooling (GAP). Fn denotes

the output of the GAP layer, which is the spatial average of
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Figure 2. The architecture of the proposed network. At inference time, we use not only the weights of the highest probability class but also

those of all classes to extract activation maps from the highest to the lowest probability class.

the nth feature map. Here, F ∈ RN , where N is the chan-

nel dimension of the last feature map. At inference time,

we pass the feature vector obtained by GAP to the FC layer

and find the class with the highest probability through the

softmax layer. The class label with the highest probability

c1 is given as follows:

c1 = argmaxc(
∑

n

wn,cF
n), (1)

where w ∈ RN×K indicates the weight parameter of the FC

layer. The 1st map, M c1 is obtained as follows:

M c1 =
∑

n

wn,c1f
n. (2)

In conjunction with M c1 , the kth map M ck is obtained as

follows:

M ck =
∑

n

wn,ckf
n, (3)

and the final localization map is obtained by:

M ccam =
∑

k

g(k)M ck , (4)

where g(k) is a combination function detailed in the next

section. As the final step, we resize M ccam to the original

input size by linear interpolation.

3.2. Combination Functions of Activation Maps

In Fig. 4, we visualize the activation maps from the high-

est to the lowest probability class in order. We observe that

the 1st map tends to highlight discriminative parts of the ob-

ject, and the Kth map highlights non-discriminative parts

like background regions. Note that the Kth map is the ac-

tivation map of the lowest probability class. To use these

properties effectively, we examine following two candidates

for the combination function g(k).
Polynomial function. A simple approach is to add the

activation maps that catch parts of the object and subtract

maps that highlight background regions. We make g(k) a

polynomial weight function to consider the importance of

each activation map in order of probability (g(k) has the

largest absolute value for the 1st map and the Kth map).

g(k) =

{

{ 1

1−p
(k − p)}η if k ≤ p,

(−1)η+1{ 1

p−K
(k − p)}η if k > p,

(5)

where η is a degree of function and p is the number of fore-

ground activation maps. In our experiment, we set η as 2 to

make g(k) a quadratic function, and p as K+1

2
, where is a

middle point of the number of classes.

Top-i & bottom-j function. This approach only con-

siders top-i and bottom-j class activation maps. Since not

all activation maps highlight target object parts or suppress

background regions, we consider only i activation maps of

high probability classes and j activation maps of low prob-

ability classes.

g(k) =











1 if k ≤ i,

−1 if k ≥ j,

0 otherwise.

(6)

All the previous methods only consider the activation map

of the highest probability class, so we can say that they use a

top-1 & bottom-0 combination function. In our experiment,

we use a top-1 & bottom-10 combination function.

Using CCAM has several advantages for WSOL. First,

there is no impact on network complexity because exploit-

ing CCAM involves no architectural modification. The sec-

ond is that introducing CCAM is free from degradation of

classification performance because it is not a method of re-

training a sub-network or erasing some parts when train-

ing. Existing methods [30, 34] tend to decline classification

accuracy because they see and judge remaining parts after

erasing the most discriminative parts which are suitable to

classify. Finally, it is possible to extract the localization map

in a single forward pass at inference time while some other

methods [23, 12] need multiple forward passes.
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3.3. Non­local Module for WSOL

The purpose of using spatial relationships is to look at

more comprehensive areas of an object rather than to merely

focus on the most discriminative parts only. Unlike previous

studies [24, 31, 12], which use combinations of high-level

features locally, we consider spatial relationships as a non-

local manner and take into account both low- and high-level

feature maps simultaneously. Figure 2 shows the proposed

network, and the details of composing the non-local module

is motivated by [22].

The non-local module for our work is implemented as

follows. The feature maps from a certain layer x ∈
RC×H×W are first projected into three feature spaces,

where f(x), g(x) ∈ RC′
×H×W , h(x) ∈ RC×H×W using

1 × 1 convolution layers to embed the attention of pixels

and channels. Then, we reshape f(x) and g(x) to RC′
×HW

and h(x) to RC×HW . An attention matrix is obtained as

follows:

α = Softmax(f(x)
T
g(x)), (7)

where α ∈ RHW×HW indicates the weight matrix of non-

local relationships, which considers the association of all

pixels and channels. In addition, we use 1 × 1 convolution

and batch normalization for each layer to give capacity and

non-linearity, then the final attention is given as follows:

z = BN(k(h(x)⊗ α)), (8)

where BN(·) denotes the batch normalization operation.

We add the attention layer output to the input feature map.

The final output is given as follows:

y = z + x. (9)

As illustrated in Fig. 2, we use the non-local modules

described above at both low- and high-level layers. Since

we consider spatial relationships at the low-level as well as

the high-level, we can find more comprehensive parts of an

object. Non-local blocks at the low-level help to form fea-

ture maps by combining information such as edges and tex-

tures, and those at the high-level transfer feature maps to

the activation map including relevant parts of the most dis-

criminative parts. The ablation studies in Section 4.4 show

that it is crucial to consider spatial relationships at both low-

and high-level features. Finally, our network using CCAM,

named NL-CCAM, can accurately highlight the object by

catching more relevant parts of the object by suppressing

background regions.

4. Experiments

In this section, we present details of experiment setups

and compare our novel approach with other methods.

4.1. Experiment Setup

Datasets and evaluation metrics. We compare the re-

sults of our NL-CCAM with baselines and the state-of-

the-art approaches on two object localization benchmarks,

i.e., ILSVRC 2016 [17] and CUB-200-2011 [21]. ILSVRC

2016 contains 1.2 million images of 1,000 categories for

training. We report the accuracy on the validation set which

has 50,000 images. CUB-200-2011 is a fine-grained bird

dataset of 200 categories, which contains 5,994 images for

training and 5,794 for testing. To measure performance, we

use three evaluation metrics, which are suggested by [17].

The first metric is Classification accuracy which judges the

answer as correct when the estimated class is equal to the

ground truth class. The second metric is Localization accu-

racy which counts a test image as correct when both its class

label and bounding box are correctly identified. Here, a cor-

rect bounding box indicates that a predicted bounding box

has more than 0.5 overlap with the ground truth. The third

metric is GT-known localization accuracy, which examines

the bounding box correctness only under the condition that

the ground truth label is given. In the supplementary mate-

rials, we also visualize the localization maps on STL-10 [3],

Stanford-Dogs [7], and Stanford-Cars [10] to prove our ap-

proach is applicable to any dataset.

Implementation details. We adopted the VGGnet-GAP

[34] as the backbone network and composed our VGGnet-

CCAM to have the same architecture with VGGnet-GAP

for fair comparison. In our NL-CCAM, we inserted non-

local blocks before every bottleneck layer excluding the first

bottleneck layer. The backbone network was pre-trained on

ILSVRC, and the newly added blocks are randomly ini-

tialized except for the batch normalization layers in the

non-local modules, which are initialized as zero. We fine-

tuned our network with the learning rate 0.0001, batch size

32, and 30 epochs. For fair comparison, we trained and

tested our network in the same way as the baseline meth-

ods [34, 19, 30, 31]. Specifically, for training, input images

were reshaped to 256× 256, followed by random cropping

224 × 224. At test time, we resized images to 224 × 224
directly in order to find the whole objects. To obtain the

localization map, we selected a top-1 & bottom-10 function

and a quadratic function for ILSVRC and CUB-200-2011,

respectively. We study how to choose a combination func-

tion for each dataset in section 4.3. Finally, we use the sim-

ple thresholding technique proposed by [34] to generate a

bounding box from the localization map.

4.2. Comparison with the State­of­the­Arts

We report not only NL-CCAM but also VGGnet-CCAM

to observe the effect of CCAM without non-local modules.

Classification. Table 1 shows the Top-1 classification er-

rors on the ILSVRC validation set. Since non-local modules

catch more information between locations regardless of dis-
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Image Image CAM [34]CAM [34] NL-CCAM NL-CCAM𝑀𝑐1 𝑀𝑐𝐾 𝑀𝑐1 𝑀𝑐𝐾

(a) ILSVRC (b) CUB-200-2011

Figure 3. Qualitative object localization results compared with the CAM method. Mc1 and M
cK stand for the 1st map and the Kth map ,

respectively, which are extracted by our network. The 1st map catches some parts of the object while the Kth map highlights background

regions. The predicted bounding boxes are in blue, and the ground-truth boxes are in red. In 1st and 2nd rows, NL-CCAM (5th column)

catches more parts of the object than the CAM model (2nd column), which highlights small part of the object. In 3rd and 4th rows, the

CAM method cannot suppress background regions (2nd column) and cause to generate a bounding box inaccurately. NL-CCAM, on the

other hand, suppresses background regions and hits a bounding box correctly (5th column). Best viewed in color.

Methods Top-1 err.

VGGnet-GAP [34] 33.4

VGGnet 31.2

VGGnet-ACoL [30] 32.5

VGGnet-CCAM (ours) 33.4

NL-CCAM (ours) 27.7

Table 1. Classification errors on the ILSVRC validation set.

tance, our NL-CCAM achieves better classification perfor-

mance than previous methods. As illustrated in Table 2, our

NL-CCAM achieves the Top-1 error of 26.6% on the CUB-

200-2011 dataset without using the bounding box annota-

tion. While some networks, e.g., VGGnet-GAP [34] and

VGGnet-ACoL [30], cause classification degradation by

modifying the network architecture for localization, our net-

work tends to improve classification performance by adding

non-local blocks.

Localization. Localization errors on the ILSVRC vali-

dation data is shown in Table 3. We observe that VGGnet-

CCAM outperforms VGGnet-GAP by 5.42% in the Top-1

error and shows 2.39% better performance than VGGnet-

ACoL, which uses two parallel-classifiers for discovering

complementary object regions. This result shows that only

using CCAM can catch the object more accurately than

some CAM-based novel methods. Furthermore, our NL-

CCAM achieves 49.83% of the Top-1 localization error,

which is the new state-of-the-art result. As can be seen

in the illustration of the CUB-200-2011 dataset (Table 4),

Methods Anno. Top-1 err.

GoogLeNet-GAP on full image [34] n/a 37.0

GoogLeNet-GAP on crop [34] n/a 32.2

GoogLeNet-GAP on BBox [34] BBox 29.5

VGGnet-ACoL [30] n/a 28.1

VGGnet-CCAM (ours) n/a 26.8

NL-CCAM (ours) n/a 26.6

Table 2. Classification errors on the CUB-200-2011 test set.

our methods are significantly better than the state-of-the-art

methods. VGGnet-CCAM already outperforms the other

previous methods only with the use of CCAM (i.e., with-

out using the non-local module). Our NL-CCAM performs

5.76% and 7.31% points better than SPG on Top-1 and Top-

5 errors. In conjunction with background suppression, con-

sidering non-local relationships at both low- and high-level

feature maps leads to a powerful performance in WSOL.

Furthermore, we compare the GT-known localization er-

rors to eliminate the influence caused by classification re-

sults. Table 5 shows that NL-CCAM achieves 34.77% in

the Top-1 error on the ILSVRC validation set. It means

that the proposed method generates the localization map

more accurately regardless of classification results. We also

compare the GT-known localization errors on the CUB-200-

2011 dataset in the supplementary materials.

Visualization. Figure 3 shows activation maps and

bounding boxes of the CAM method and proposed method

on ILSVRC and CUB-200-2011. We visualize a map by
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Methods Top-1 err. Top-5 err.

AlexNet-GAP [34] 67.19 52.16

Backprop on GoogLeNet [18] 61.31 50.55

GoogLeNet-GAP [34] 56.40 43.00

GoogLeNet-HaS-32 [19] 54.79 -

GoogLeNet-ACoL [30] 53.28 42.58

Backprop on VGGnet [18] 61.12 51.46

VGGnet-GAP [34] 57.20 45.14

VGGnet-ACoL [30] 54.17 40.57

SPG-plain [31] 53.71 41.81

SPG [31] 51.40 40.00

VGGnet-CCAM (ours) 51.78 40.64

NL-CCAM (ours) 49.83 39.31

Table 3. Localization errors on the ILSVRC validation set.

Methods Top-1 err. Top-5 err.

GoogLeNet-GAP [34] 59.00 -

VGGnet-ACoL [30] 54.08 43.49

SPG-plain [31] 56.33 46.47

SPG [31] 53.36 42.28

VGGnet-CCAM (ours) 49.93 36.25

NL-CCAM (ours) 47.60 34.97

Table 4. Localization errors on the CUB-200-2011 test set.

CAM and three maps extracted by our network. We first

show our proposed network catches more comprehensive

parts of the object than the CAM model (compared with

CAM and M c1 in Fig. 3). For example, in the results of

CAM, only the most discriminative parts are highlighted,

e.g., the muzzle of the gun or the face of the bird, whereas

our model can find more relevant parts, e.g., the handle of a

gun or the wings of the bird. However, both CAM and the

1st map, which use the activation map of the highest proba-

bility class, tend to highlight common background regions,

e.g., a wood or sky in a bird image. NL-CCAM suppresses

background regions thoroughly and highlights more parts of

the object. Interestingly, suppressing background regions

catches the unhighlighted portions of the 1st map, which

leads locating the object accurately.

4.3. The Choice of a Combination Function

In Fig. 4, we visualize the first three activation maps and

the last three activation maps. Based on our observation

of these activation maps, we select a specific function for

each dataset. In table 6, using a top-1 & bottom-0 combina-

tion function, which is used in all previous studies, achieves

lower performance than using other functions. First, we

show that using a top-0 & bottom-1 combination function,

which makes the localization map using only the inverted

Kth map, performs 52.30% on the ILSVRC dataset. As

a result of this experiment, we demonstrate that the Kth

map has a capability of suppressing background regions. To

take advantage of this property, we experimented with the

Methods GT-known loc. err.

AlexNet-GAP [34] 45.01

AlexNet-HaS [19] 41.25

AlexNet-GAP-ensemble [34] 42.98

AlexNet-HaS-ensemble [19] 39.67

GoogLeNet-GAP [34] 41.34

GoogLeNet-HaS-32 [19] 39.71

Deconv [27] 41.60

Feedback [1] 38.80

MWP [29] 38.70

ACoL [30] 37.04

SPG-plain [31] 37.32

SPG [31] 35.31

VGGnet-CCAM (ours) 36.42

NL-CCAM (ours) 34.77

Table 5. GT-known localization errors on the ILSVRC validation

set.

A combination function ILSVRC CUB-200-2011

top-1 & bottom-0 54.17 50.55

top-0 & bottom-1 52.30 52.71

top-1 & bottom-1 50.77 49.19

top-1 & bottom-10 49.83 48.07

top-1 & bottom-20 49.90 48.41

Constant (η = 0) 52.91 47.77

Linear (η = 1) 52.71 47.64

Quadratic (η = 2) 52.57 47.60

Cubic (η = 3) 52.21 47.64

Table 6. The effect of a combination function.

simplest case, top-1 & bottom-1, which uses only the 1st

map and the Kth map. It already outperforms the previous

state-of-the-art method by 0.63% and 4.17% on ILSVRC

and CUB-200-2011. On the ILSVRC dataset, using a top-

1 & bottom-10 function achieves the best performance as

49.83%, but using polynomial combination functions that

exploit all activation maps achieves relatively low perfor-

mance. It is because the activation map of a high probabil-

ity class highlights object parts corresponding to that class

not the target class. For example, the 2nd map in Fig. 1

highlights parts of a hand, which do not belong to the target

object. Therefore using multiple activation maps of high

probability classes may cause degradation of localization

accuracy by highlighting other objects. On the contrary, us-

ing polynomial combination functions leads to a great per-

formance on the CUB-200-2011 dataset. This is because

this dataset consists of 200 classes of birds, which are rele-

vant to each other. In this case, as illustrated in Fig. 4, the

activation maps of higher probability classes highlight some

parts of the bird and the combination of all activation maps

helps to localize the object entirely.
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Highest prob. Lowest prob.

Image NL-CCAM

Figure 4. The activation maps of the proposed method on ILSVRC and CUB-200-2011. The first two rows are the activation maps on

ILSVRC, and the last two rows are the activation maps on CUB-200-2011. For each image, we illustrate the first three maps and the last

three maps (middle column) and NL-CCAM (last column). The activation maps of higher probability classes tend to catch the parts of the

object, and the maps of lower probability classes tend to highlight the background regions. The predicted bounding boxes are in blue, and

the ground-truth boxes are in red.

Non-local Non-local CCAM Top-1 err.

at the low-level at the high-level

✗ ✗ ✗ 57.84

✓ ✗ ✗ 55.13

✗ ✓ ✗ 56.94

✓ ✓ ✗ 50.55

✗ ✗ ✓ 49.93

✓ ✗ ✓ 48.41

✗ ✓ ✓ 49.19

✓ ✓ ✓ 47.60

Table 7. Ablation studies on the CUB-200-2011 test set.

4.4. Ablation Studies

To better understand the effectiveness of each proposed

module, we conducted several ablation studies.

Non-local modules. The results of our ablation stud-

ies for the Top-1 error on CUB-200-2011 are illustrated in

Table 7. We observe that using non-local modules at both

low- and high-level layers leads to a big boost as almost 5%

compared to using them only at the low-level or at the high-

level. This result shows that the non-local relationships at

the low-level help to localize more parts of the object when

considering the non-local relationships at the high-level to

form feature maps.

Single (CAM) vs. multiple (CCAM) activation maps.

The use of CCAM shows substantial performance improve-

ments without additional networks. In particular, the perfor-

mance is increased by 7.91% compared to the baseline by

only using CCAM. Furthermore, regardless of where non-

local modules are used, exploiting CCAM performs better

than original models. In this result, the localization map us-

ing CCAM can suppress background regions well, and we

show that background suppression is as essential as finding

the whole parts of the object.

5. Conclusion

In this paper, we have proposed NL-CCAM for local-

izing object regions in WSOL. We first adapt non-local

modules to WSOL and improve classification and localiza-

tion performance on ILSVRC 2016 and CUB-200-2011.

Moreover, we observe the activation maps from the highest

to the lowest probability class and the combination of these

maps having a great ability to reveal non-discriminative

parts. We utilize this property to suppress background

regions, resulting in precise localization of the object.

Extensive experiments show that the proposed method

can localize more object regions on multiple datasets and

outperform the previous state-of-the-art methods.
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