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Abstract

Style transfer produces a transferred image which is a

rendering of a content image in the manner of a style image.

We seek to understand how to improve style transfer.

To do so requires quantitative evaluation procedures, but

current evaluation is qualitative, mostly involving user stud-

ies. We describe a novel quantitative evaluation procedure.

Our procedure relies on two statistics: the Effectiveness

(E) statistic measures the extent that a given style has been

transferred to the target, and the Coherence (C) statistic

measures the extent to which the original image’s content

is preserved. Our statistics are calibrated to human pref-

erence: targets with larger values of E and C will reliably

be preferred by human subjects in comparisons of style and

content, respectively.

We use these statistics to investigate relative perfor-

mance of a number of Neural Style Transfer (NST) methods,

revealing a number of intriguing properties. Admissible

methods lie on a Pareto frontier (i.e. improving E reduces

C, or vice versa). Three methods are admissible: Universal

style transfer produces very good C but weak E; modifying

the optimization used for Gatys’ loss produces a method

with strong E and strong C; and a modified cross-layer

method has slightly better E at strong cost in C. While the

histogram loss improves the E statistics of Gatys’ method,

it does not make the method admissible. Surprisingly, style

weights have relatively little effect in improving EC scores,

and most variability in transfer is explained by the style it-

self (meaning experimenters can be misguided by selecting

styles). Our GitHub Link is available. 1

1. Introduction

In this paper, we seek to identify factors that lead to bet-

ter style transfers. To do so, we construct a comprehensive

quantitative evaluation procedure for style transfer meth-

ods. We evaluate style transfers on two criteria. Effective-

ness (E) measures whether transferred images have the de-

sired style, using divergence between Convolutional Neural

∗First two authors have equal contribution
1https://github.com/stringtron/quantative style

Figure 1: A grid of stylized images visualizing the

Effectiveness-Coherence space. From left to right, each

row shows style image, XLCM, GAL, Universial and con-

tent image (see method details in Sec.5.1) qualitative results

for the same style-content pair. Note for the three example

transfer methods, from left to right, the Effectiveness scores

decrease and the Coherence scores increase. Also note all

images are sampled near their method’s EC mean which is

on ”Pareto-optimal curve” of all compared transfer meth-

ods.

Network (CNN) feature layer distributions of the synthe-

sized image and original image. Coherence (C) measures

whether the synthesized images respect the underlying de-

composition of the content image into objects, using estab-

lished contour detection procedures together with the col-

ored natural images from BSDS500 dataset [1]. Both our E

and C measures are calibrated by user studies in Sec. 4.

Our qualitative metric mainly focuses on the analysis of

Parametric Neural Methods (under the taxonomy of NST

techniques) [16]. The non-Parametric Methods may gener-

ate a largely different feature statistics from original style

image due to the pattern fitting to the content image, which

are intrinsically different from Parametric ones. Therefore,
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it is not necessary to evaluate two types of transfer methods

by the same quantitative metric at this stage.

Contributions: We present E and C measures of style

transferred images (see Fig. 1). Our measures are highly

effective at predicting user preferences. We use our mea-

sures to compare several style transfer methods quantita-

tively. Our study suggests that controlling cross-layer loss

is helpful, particularly if one uses the cross-layer covariance

matrix (rather than Gram matrix). Our study suggests that,

despite the analysis of Risser et al. [29], the main prob-

lem with Gatys’ method is optimization rather than symme-

try; modifying the optimization leads to an extremely strong

method. Gatys’ method is unstable with high style weights,

and we construct explicit models of the symmetry groups

for Gatys’ style loss and the cross-layer style loss (improv-

ing over Risser et al. , who could not construct the groups),

which may explain this effect. Our study suggests that, even

for the best methods we investigated, the effect of choice of

style image is strong, meaning that it is dangerous for ex-

perimenters to select style images when reporting results.

2. Related work

Style transfer: bilinear models [26] , non-parametric

methods [8], image analogies [13] and adjusting filter

statistics [2, 25] are capable of image style transfer and

yield texture synthesis. Gatys et al. demonstrated that

producing neural network layers with particular summary

statistics (i.e. Gram matrices) yielded effective texture syn-

thesis [9]. Gatys et al. achieved style transfer by searching

for an image that satisfies both style texture summary statis-

tics and content constraints [10]. This work has been much

elaborated [17, 28, 5, 7, 27, 14, 18, 19, 6, 24, 22, 11, 20, 4,

15]. Novak and Nikulin noticed that cross-layer Gram ma-

trices reliably produce improvement on style transfer ([23]).

However, their work was an exploration of variants of style

transfer rather than a thorough study to gain insights on

style summary statistics; since then, the method has been

ignored in the literature.

Style transfer evaluation: style transfer methods are

currently evaluated mostly by visual inspection on a small

set of different styles and content image pairs. To our

knowledge, there are no quantitative protocols to evaluate

the competence of style transfer apart from user studies

[19] (who also investigate edge coherence between content

and stylized images).

Gram matrices symmetry in a style transfer loss func-

tion occur when there is a transformation available that

changes the style transferred image without changing the

value of the loss function. Risser et al. note instability in

Gatys’ method; symptoms are: poor and good style trans-

fers of the same style to the same content with about the

same loss value [29]. They supply evidence that this be-

havior can be controlled by adding a histogram loss, which

breaks the symmetry. They do not write out the symmetry

group as too complicated ( [29], p 4-6). Gupta et al. [12]

link instability in Gaty’s method to the size of the trace of

the Gram matrix.

2.1. Gatys Method and Notation

We review the original work of Gatys et al. [10] in detail

to introduce notation. Gatys finds an image where early

layers of convolutional features match the lower layers of

the style image and higher layers match the higher layers

of a content image. Write Is for the style, Ic, In for the

content and the new image, respectively, and α for some

parameters balancing style and content losses (Ls and Lc

respectively). Occasionally, we will write Imn (Ic, Is) for the

image resulting from style transfer using method m applied

to the arguments. We obtain In by finding

argmin
In

Lc(In, Ic) + αLs(In, Is) (1)

Losses are computed on a network representation, with L
convolutional layers, where the l’th layer produces a fea-

ture map f l of size H l × W l × Cl for height, width, and

channel number, respectively. We partition the layers into

three groups (style, content and target). Then we reindex

the spatial variables (height and width) and write f l
k,p for

the response of the k’th channel at the p’th location in the

l’th convolutional layer. The content loss Lc is

Lc(In, Ic) =
1

2

∑

c

∑

k,p

∥

∥

∥
f c
k,p(In)− f c

k,p(Ic)
∥

∥

∥

2

(2)

(where c ranges over content layers). The within-layer

Gram matrix for the l’th layer is

Gl
ij(I) =

∑

p

[

f l
i,p(I)

] [

f l
j,p(I)

]T

(3)

Write wl for the weight applied to the l’th layer. Then

Ll
s(In, Is) =

1

4N l2M l2

∑

s

wl

∑

i,j

∥

∥

∥
Gs

ij(In)−Gs
ij(Is)

∥

∥

∥

2

(4)

where s ranges over style layers. Gatys et al. use Relu1 1,

Relu2 1, Relu3 1, Relu4 1, and Relu5 1 as style layers, and

layer Relu4 2 for the content loss, and search for In using

L-BFGS [21]. From now on, we write R51 for Relu5 1, etc.

2.2. Crosslayer style loss

We consider a style loss that takes into account between

layer statistics. The cross-layer, additive (XL) loss is ob-

tained as follows. Consider layer l and m, both style layers,

3161



with decreasing spatial resolution. Write ↑ fm for an up-

sampling of fm to H l ×W l × Cm, and consider

Gl,m
ij (I) =

∑

p

[

f l
i,p(I)

] [

↑ fm
j,p(I)

]T

(5)

as the cross-layer gram matrix, We can form a style loss

Ls(I, Is) =
∑

(l,m)∈L

wl
∑

ij

∥

∥

∥
Gl,m

ij (I)−Gl,m
ij (Is)

∥

∥

∥

2

(6)

(where L is a set of pairs of style layers). We can substitute

this loss into the original style loss, and minimize as before.

All results here used a pairwise descending strategy, where

one constrains each layer and its successor (i.e. (R51, R41);

(R41, R31); etc). Alternatives include an all distinct pairs

strategy, where one constrains all pairs of distinct layers.

Carefully controlling weights for each layer’s style loss is

not necessary in cross-layer gram matrix scenario.

3. Base Statistics for Quantitative Evaluation

Style transfer methods should meet at least two require-

ments: (1) the method produces images in the desired style

– E statistics; (2) the resulting image respects the decom-

position of content image into objects – C statistics.

Base E statistics: We want to measure similarity of two

distributions, one derived from the style image, the other

from the transferred image. At each layer, e.g. R41 fea-

ture map, we first project both style image’s and transferred

image’s summary statistics to a low-dimensional represen-

tation. Then we assume these representations are parame-

ters of Gaussian distributions and a standard KL divergence

is applied to measure the distance. The same procedure is

repeated for other layers, e.g. R11,R21,R31 and R51.

Specifically, the projection matrix at each layer is dis-

covered as such: we first find a set of content images (we

use 200 test images from BSDS500[1]) IN = {I1, ..., In},

and obtain their convolutional feature covariance matrices

from a pretrained VGG model. Similar to the Gram matrix,

a feature covariance matrix is computed by:

Covlij(In) =
∑

p

[

f l
i,p(In)− f̄i

l
(In)

] [

f l
j,p(In)− f̄j

l
(In)

]T

(7)

where f̄i
l
(In) , f̄j

l
(In) are the i’th and j’th element of

channel-wise feature mean f̄ l(In) at level l. Then, the av-

erage covariance matrix Covlavg is computed by element-

wise average over all images of IN ’s Covaraiance matri-

ces at layer l. We apply singular value decomposition on

Covlavg and keep t eigenvectors corresponding the largest t
eigenvalues. These eigenvectors form our projection basis

P l which is fixed. Given an image I , I /∈ IN , it’s low-

dimensional summary statistics at level l becomes:

Meanl
proj(I) =

ˆf l(I)P l;Covlproj(I) = P lTCovl(I)P l

(8)

We treat Meanl
proj(I) and Covlproj(I) as the param-

eters µ and Σ of t-dimensional Gaussian distribution

N (µ,Σ). Ei denotes the negative log KL divergence of

i’th layers between the transferred image I0 and the style

image I1, the KL distance is expressed as follow:

DKL

(

N0||N1

)

= 1
2

(

tr
(

Σ−1
1 Σ0

)

+(µ1 − µ0)
T
Σ−1

1 (µ1 − µ0)− t+ ln
(

detΣ1

detΣ0

)

)

(9)

We reduce dimensions for two reasons: first, we believe

that image channels in feature maps are heavily correlated;

second, a full dimension estimate of KL divergence is likely

to be dominated by variance effects, which are particularly

severe when some eigenvalues of the covariance may be

very close to zero. For layers R11, R21, R31, R41, R51

we use dimensions 18, 100, 128, 280, 256 respectively.

We believe that an estimate of the projection obtained

from a sufficiently large sample of a sufficiently rich family

of images will be close to canonical (i.e. changing the sam-

ple or the family will produce little change in projection).

This means one might reasonably estimate projection matri-

ces using the style images as well. We chose to use content

images because that means the projection is not adapted to

the choice of styles (which might not be sufficiently rich).

Base C statistics measure the extend to which style

transfer methods preserve ”objectness” in the content im-

age. Object boundaries are a vital cue for human percep-

tion, and we hypothesize that a transferred image that better

preserves object boundaries will better reflect the content of

the original image. To measure this property, we use the off-

the-shelf contour detection method by Arbelaez et al. [1],

which estimates Pb from an image. We use the standard

metric,(the F-score, which is a harmonic mean of precision

and recall between Pb and human-drawn contour map). The

final contour detection score is the Maximum F-score of a

precision-recall curve. We compute the final contour de-

tection scores with the transferred images’ Pb and ground

truth contours from the content images. The resulting con-

tour detection scores are the base C statistics. We think this

is fair because standard contour detection methods were not

developed with transferred images in the scope. For source

content images and human annotated ground truth contour

maps we choose 200 test images from BSDS500[1].

4. Calibrated Measures from Base Statistics

Our base EC statistics offer a quantitative measurement

to style transfer methods and provide an insight in search-
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ing better style transfer methods. Yet one should calibrate

with actual user preference over transferred images. Two

surveys (E-test for style and C-test for content, Fig. 2) can

help calibrating EC statistics.

In both surveys, users are presented with a pair of trans-

ferred images which only differ by style transfer methods

or the same method but optimization parameters (e.g. style

weights, optimization iterations), while the content and the

style images are the same. In the E-test, users are asked to

choose the transferred image that better captures the style.

The transferred images are randomly selected from trans-

ferred results of the same style-content pair. Similarly, in

the content study, users are asked to choose the image that

more resemble to the content image, but the provided im-

age pairs are chosen to have relatively high E statistics (de-

tails below). This selection is manual to ensure only seemly

plausible style transferred images are used for C-test.

4.1. Calibration with User Studies

Calibration method: Our calibration method is mainly

based on logistic regression from the base EC statistics (de-

fined in the previous section) to the target human preference

of user study. Once the calibration is done, each synthesized

image can have a corresponding preference score. The dif-

ference of the scores between the two transferred images (

referred as image 1 and 2) is used to predict that one is pre-

ferred by the user over the other, e.g. if image 1 has score

s1 and image 2 has s2, then the probability that image 1 will

be preferred by a user is predicted by es1/(es1 + es2). We

seek one such score for effectiveness (which should predict

the results of the style user study) and another for coherence

(which should predict the results of the content user study).

Scores and logistic models: Given an image pair, we

have a random variable y says if the image is preferred by

human for a E-test or C-test, we also have a vector of fea-

tures x chosen from some combination of the base C statis-

tic and the 5 base E statistics. Given a pair of images (x1

for image 1, etc.), we can fit the logistic regression model

logP (y1 = 1|θ,x1,x2)

logP (y1 = 0|θ,x1,x2)
= θT (x1 − x2) (10)

which yields a per-image score s = θTx. The choice of the

admissible logistic model for user calibration is important:

(a) the model should predict human preferences accurately;

(b) the model should have positive weights for every base

E statistics. Note that a negative weight on some feature

means the model predicts that if image 1 has a larger value

of that feature than image 2, image 2 should be preferred;

but our base features have the property that an increasing

value of the feature should imply a better transfer. As a

result, we believe models with negative weights cannot be

trusted, and so we require condition b.

E-Model Admissible Cross-validated accuracy

1 yes .856 (3e-3)

2 yes .867 (2e-3)

3 yes .873 (3e-3)

4 no .871 (3e-3)

5 no .873 (2e-3)

Table 1: Cross validated accuracy for our E-model predic-

tions of human preference in the style experiment (parens

give standard error of cross-validated accuracy). Model 4

and 5 are not admissible due to violating condition (b), see

model description in Sec.4.1.

C-Model Admissible Cross-validated accuracy

C yes .692 (8e-3)

1 yes .694 (8e-3)

2 no .710 (7e-3)

3 no .756 (7e-3)

4 no .759 (7e-3)

5 no .767 (7e-3)

Table 2: Cross validated accuracy for our C-model predic-

tions of human preference in the content experiment (parens

give standard error of cross-validated accuracy). Model

2,3,4 and 5 are not admissible due to violating condition

(b), see model description in Sec.4.1.

Calibrating E statistic: We investigated five E-models,

where the r’th uses {E1 . . . Er} to obtain preference scores

from E-test. Table 1 shows the cross-validated accuracy of

the models and whether they are admissible or not. We use

the admissible model with r = 3, which has highest cross-

validated accuracy; note from the standard error statistics

that accuracy differences are significant (p < 0.05).

Calibrating C statistic: We investigated six C-models,

where the first only uses C, the rest use C and the r’th uses

{E1 . . . Er}. Table 2 shows the cross-validated accuracy of

the models and whether they are admissible or not. There

is no significant difference in accuracy between the two ad-

missible models; we choose the larger model r = 1.

Visualizing calibration results: We visualize predic-

tions of user preference as a function of difference between

scores from selected E-model and C-model in Fig. 3. In

both plots scattered points are true user observations of

style-content pairs. In the C-test each pair has 9 observa-

tions, in the E-test each pair has 16 or more observations.

4.2. User Study Details

We do two rounds of user studies. The first round had

300 image pairs for E-test and 150 image pairs for C-test,

each of which was generated using Gatys method[10]. In

the second round, to calibrate E regardless of transfer meth-

ods, we used a mixture of 939 image pairs generated from
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