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Abstract

Visual object detection has achieved unprecedented ad-

vance with the rise of deep convolutional neural networks.

However, detecting tiny objects (for example tiny per-

sons less than 20 pixels) in large-scale images remains

not well investigated. The extremely small objects raise

a grand challenge about feature representation while the

massive and complex backgrounds aggregate the risk of

false alarms. In this paper, we introduce a new benchmark,

referred to as TinyPerson, opening up a promising direction

for tiny object detection in a long distance and with mas-

sive backgrounds. We experimentally find that the scale mis-

match between the dataset for network pre-training and the

dataset for detector learning could deteriorate the feature

representation and the detectors. Accordingly, we propose

a simple yet effective Scale Match approach to align the

object scales between the two datasets for favorable tiny-

object representation. Experiments show the significant

performance gain of our proposed approach over state-of-

the-art detectors, and the challenging aspects of TinyPerson

related to real-world scenarios. The TinyPerson benchmark

and the code for our approach will be publicly available1.

1. Introduction

Person/pedestrian detection is an important topic in the

computer vision community [5] [4] [8] [27] [18] [26], with

wide applications including surveillance, driving assistance,

mobile robotics, and maritime quick rescue. With the rise

of deep convolutional neural networks, pedestrian detection

has achieved an unprecedented progress. Nevertheless, de-

tecting tiny persons remains far from well explored.

The reason about the delay of the tiny-person detection

research is lack of significant benchmarks. The scenarios of

existing person/pedestrian benchmarks [2][6][24][5][4][8]

e.g., CityPersons [27], are mainly in a near or middle dis-

tance. They are not applicable to the scenarios where per-

sons are in a large area and in a very long distance, e.g.,

∗corresponding author
1https://github.com/ucas-vg/TinyBenchmark
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Figure 1. Comparison of TinyPerson with other datasets. Top: Im-

age examples from TinyPerson show the great challenges (Please

zoom in for details). Bottom: Statistics about absolute size and

relative size of objects.

marine search and rescue on a helicopter platform.

Different from objects in proper scales, the tiny objects

are much more challenging due to the extreme small object

size and low signal noise ratio, as shown in Figure 1. Af-

ter the video encoding/decoding procedure, the image blur

causes the tiny objects mixed with the backgrounds, which

makes it require great human efforts when preparing the

benchmark. The low signal noise ratio can seriously de-

teriorate the feature representation and thereby challenges

the state-of-the-art object detectors.
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To detect the tiny persons, we propose a simple yet ef-

fective approach, named Scale Match. The intuition of our

approach is to align the object scales of the dataset for pre-

training and the one for detector training. The nature behind

Scale Match is that it can better investigate and utilize the

information in tiny scale, and make the convolutional neural

networks (CNNs) more sophisticated for tiny object repre-

sentation. The main contributions of our work include:

1. We introduce TinyPerson, under the background of

maritime quick rescue, and raise a grand challenge about

tiny object detection in the wild. To our best knowledge,

this is the first benchmark for person detection in a long

distance and with massive backgrounds. The train/val. an-

notations will be made publicly and an online benchmark

will be setup for algorithm evaluation.

2. We comprehensively analyze the challenges about

tiny persons and propose the Scale Match approach, with

the purpose of aligning the feature distribution between the

dataset for network pre-training and the dataset for detector

learning.

3. The proposed Scale Match approach improves the de-

tection performance over the state-of-the-art detector (FPN)

with a significant margin ( 5%).

2. Related Work

Dataset for person detection: Pedestrian detection has al-

ways been a hot issue in computer vision. Larger capacity,

richer scenes and better annotated pedestrian datasets,such

as INRIA [2], ETH [6], TudBrussels [24], Daimler [5],

Caltech-USA [4], KITTI [8] and CityPersons [27] represent

the pursuit of more robust algorithms and better datasets.

The data in some datasets were collected in city scenes and

sampled from annotated frames of video sequences. De-

spite the pedestrians in those datasets are in a relatively high

resolution and the size of the pedestrians is large, this situa-

tion is not suitable for tiny object detection.

TinyPerson represents the person in a quite low reso-

lution, mainly less than 20 pixles, in maritime and beach

scenes. Such diversity enables models trained on TinyPer-

son to well generalize to more scenes, e.g., Long-distance

human target detection and then rescue.

Several small target datasets including WiderFace [25]

and TinyNet [19] have been reported. TinyNet involves re-

mote sensing target detection in a long distance. However,

the dataset is not publicly available. WiderFace mainly fo-

cused on face detection, as shown in Figure 1. The faces

hold a similar distribution of absolute size with the TinyPer-

son, but have a higher resolution and larger relative sizes, as

shown in Figure 1.

CNN-based person detection: In recent years, with the de-

velopment of Convolutional neural networks (CNNs), the

performance of classification, detection and segmentation

on some classical datasets, such as ImageNet [3], Pascal

[7], MS COCO [16], has far exceeded that of traditional

machine learning algorithms.Region convolutional neural

network (R-CNN) [10] has become the popular detection

architecture. OverFeat adopted a Conv-Net as a sliding

window detector on an image pyramid. R-CNN adopted

a region proposal-based method based on selective search

and then used a Conv-Net to classify the scale normalized

proposals. Spatial pyramid pooling (SPP) [11] adopted R-

CNN on feature maps extracted on a single image scale,

which demonstrated that such region-based detectors could

be applied much more efficiently. Fast R-CNN [9] and

Faster R-CNN [21] made a unified object detector in a mul-

titask manner. Dai et al. [1] proposed R-FCN, which uses

position-sensitive RoI pooling to get a faster and better de-

tector.

While the region-based methods are complex and time-

consuming, single-stage detectors, such as YOLO [20] and

SSD [17], are proposed to accelerate the processing speed

but with a performance drop, especially in tiny objects.

Tiny object detection: Along with the rapid development

of CNNs, researchers search frameworks for tiny object de-

tection specifically. Lin et al. [14] proposed feature pyra-

mid networks that use the top-down architecture with lat-

eral connections as an elegant multi-scale feature warping

method. Zhang et al. [28] proposed a scale-equitable face

detection framework to handle different scales of faces well.

Then J Li et al. [13] proposed DSFD for face detection,

which is SOTA open-source face detector. Hu et al. [12]

showed that the context is crucial and defines the templates

that make use of massively large receptive fields. Zhao et

al. [30] proposed a pyramid scene-parsing network that em-

ploys the context reasonable. Shrivastava et al. [22] pro-

posed an online hard example mining method that can im-

prove the performance of small objects significantly.

3. Tiny Person Benchmark

In this paper, the size of object is defined as the square

root of the object’s bounding box area. We use Gij =
(xij , yij , wij , hij) to describe the j-th object’s bounding

box of i-th image Ii in dataset, where (xij , yij) denotes the

coordinate of the left-top point, and wij , hij are the width

and height of the bounding box. Wi, Hi denote the width

and height of Ii, respectively. Then the absolute size and

relative size of a object are calculated as:

AS(Gij) =
√

wij ∗ hij . (1)

RS(Gij) =

√

wij ∗ hij

Wi ∗Hi

. (2)

For the size of objects we mentioned in the following,

we use the objects’ absolute size by default.
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dataset absolute size relative size aspect ratio

TinyPerson 18.0±17.4 0.012±0.010 0.676±0.416

COCO 99.5±107.5 0.190±0.203 1.214±1.339

Wider face 32.8±52.7 0.036±0.052 0.801±0.168

CityPersons 79.8±67.5 0.055±0.046 0.410±0.008

Table 1. Mean and standard deviation of absolute size, relative size

and aspect ratio of the datasets: TinyPerson, MS COCO, Wider

Face and CityPersons.

3.1. Benchmark description

Dataset Collection: The images in TinyPerson are col-

lected from Internet. Firstly, videos with a high resolution

are collected from different websites. Secondly, we sample

images from video every 50 frames. Then we delete images

with a certain repetition (homogeneity). We annotate 72651

objects with bounding boxes by hand.

Dataset Properties: 1) The persons in TinyPerson are quite

tiny compared with other representative datasets, shown in

Figure 1 and Table 1, which is the main characteristics of

TinyPerson; 2) The aspect ratio of persons in TinyPerson

has a large variance, given in Talbe 1. Since the various

poses and viewpoints of persons in TinyPerson, it brings

more complex diversity of the persons, and leads to the

detection more difficult. In addition, TinyPerson can also

make a effective supplement to the existing datasets in the

diversity of poses and views aspect; 3) In TinyPerson, we

mainly focus on person around seaside, which can be used

for quick maritime rescue and defense around sea; 4)

There are many images with dense objects (more than 200

persons per image) in TinyPerson. Therefore, the TinyPer-

son also can be used for other tasks, e.g. person counting.

Annotation rules: In TinyPerson, we classify persons as

“sea person” (persons in the sea) or “earth person” (persons

on the land). We define four rules to determine which the

label a person belongs to: 1) Persons on boat are treated

as “sea person”; 2) Persons lying in the water are treated

as “sea person”; 3) Persons with more than half body in

water are treated as “sea person”; 4) others are treated as

“earth person”. In TinyPerson, there are three conditions

where persons are labeled as “ignore”: 1) Crowds, which

we can recognize as persons. But the crowds are hard to

separate one by one when labeled with standard rectangles;

2) Ambiguous regions, which are hard to clearly distinguish

whether there is one or more persons, and 3) Reflections in

Water. In TinyPerson, some objects are hard to be recog-

nized as human beings, we directly labeled them as “uncer-

tain”. Some annotation examples are given in Figure 2.

Evaluation: We use both AP (average precision) and MR

(miss rate) for performance evaluation. For more detailed

experimental comparisons, the size range is divided into 3

intervals: tiny[2, 20], small[20, 32] and all[2, inf]. And for

tiny[2, 20], it is partitioned into 3 sub-intervals: tiny1[2, 8],

Figure 2. The annotation examples. “sea person”, “earth person”,

“uncertain sea person”, “uncertain earth person”, ignore region are

represented with red, green, blue, yellow, purple rectangle, respec-

tively. The regions are zoomed in and shown on right.

TinyPerson Train set valid set sum

#image 794 816 1610

#annotations 42197 30454 72651

#normal 18433 13787 32120

#ignore 3369 1989 5358

#uncertain 3486 2832 6318

#dense 16909 11946 28855

#sea 26331 15925 42256

#earth 15867 14530 30397

#ignore 3369 1989 5358

Table 2. Statistic information in details for TinyPerson. The

TinyPerson can be divided into “normal”, “ignore”, “uncertain”,

“dense” based on the attributes and “sea”, “earth”, “ignore” by the

classes, which is described as annotation rules in section 3.1.

tiny2[8, 12], tiny3[12, 20]. And the IOU threshold is set to

0.5 for performance evaluation. Due to many applications

of tiny person detection concerning more about finding per-

sons than locating precisely (e.g., shipwreck search and res-

cue), the IOU threshold 0.25 is also used for evaluation.

For Caltech or CityPersons, IOU criteria is adopted for

performance evaluation. The size of most of Ignore region

in Caltech and CityPersons are same as that of a pedestrian.

However in TinyPerson, most of ignore regions are much

larger than that of a person. Therefore, we change IOU cri-

teria to IOD for ignore regions (IOD criteria only applies

to ignore region, for other classes still use IOU criteria),as

shown in Figure 3. In this paper, we also treat uncertain

same as ignore while training and testing.

Training&Test Set: The training and test sets are con-

structed by randomly splitting the images equally into two
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Figure 3. IOU (insertion of union) and IOD (insertion of detec-

tion). IOD is for ignored regions for evaluation. The outline (in

violet) box represents a labeled ignored region and the dash boxes

are unlabeled and ignored persons. The red box is a detection’s

result box that has high IOU with one of ignored person.

subsets, while images from same video can not split to same

subset.

Focusing on the person detection task, we treat “sea

person” and “earth person” as one same class (person). And

for detection task, we only use these images which have

less than 200 valid persons. What’s more, the TinyPerson

can be used for more tasks as motioned before based on the

different configuration of the TinyPerson manually.

3.2. Dataset Challenges

Tiny absolute size: For a tiny object dataset, extreme small

size is one of the key characteristics and one of the main

challenges. To quantify the effect of absolute size reduc-

tion on performance, we down-sample CityPersons by 4*4

to construct tiny CityPersons, where mean of objects’ ab-

solute size is same as that of TinyPerson. Then we train a

detector for CityPersons and tiny Citypersons, respectively,

the performance is shown in Table 4. The performance

drops significantly while the object’s size becomes tiny. In

Table 4, the MRtiny
50 of tiny CityPersons is 40% lower than

that of CityPersons. Tiny objects’ size really brings a great

challenge in detection, which is also the main concern in

this paper.

The FPN pre-trained with MS COCO can learn more

about the objects with the representative size in MS COCO,

however, it is not sophisticated with the object in tiny size.

The big difference of the size distribution brings in a sig-

nificant reduction in performance. In addition, as for tiny

object, it will become blurry, resulting in the poor semantic

information of the object. The performance of deep neural

network is further greatly affected.

Tiny relative size: Although tiny CityPersons holds the

similar absolute size with TinyPerson. Due to the whole

image reduction, the relative size keeps no change when

down-sampling. Different from tiny CityPersons, the im-

ages in TinyPerson are captured far away in the real scene.

dataset MRtiny
50 AP tiny

50

tiny Citypersons 75.44 19.08

3*3 tiny Citypersons 45.49 35.39

TinyPerson 85.71 47.29

3*3 TinyPerson 83.21 52.47

Table 3. The performance of the tiny CityPersons, TinyPerson and

their 3*3 up-sampled datasets (Due to out of memory caused by

the 4*4 upsampling strategy for TinyPerson, here we just use the

3*3 up-sampling strategy as an alternative).

The objects’ relative size of TinyPerson is smaller than that

of CityPersons as shown in bottom-right of the Figure 1.

To better quantify the effect of the tiny relative size,

we obtain two new datasets 3*3 tiny CityPersons and 3*3

TinyPerson by directly 3*3 up-sampling tiny CityPersons

and TinyPerson, respectively. Then FPN detectors are

trained for 3*3 tiny CityPersons and 3*3 TinyPerson.

The performance results are shown in table 3. For tiny

CityPersons, simply up-sampling improved MR
tiny
50 and

AP
tiny
50 by 29.95 and 16.31 points respectively, which are

closer to the original CityPersons’s performance. However,

for TinyPerson, the same up-sampling strategy obtains

limited performance improvement. The tiny relative size

results in more false positives and serious imbalance of

positive/negative, due to massive and complex backgrounds

are introduced in a real scenario. The tiny relative size also

greatly challenges the detection task.

4. Tiny Person Detection

It is known that the more data used for training, the better

performance will be. However, the cost of collecting data

for a specified task is very high. A commonly approah is

training a model on the extra datasets as pre-trained model,

and then fine-tune it on a task-specified dataset. Due to the

huge data volume of these datasets, the pre-trained model

sometimes boost the performance to some extent. However,

the performance improvement is limited, when the domain

of these extra datasets differs greatly from that of the task-

specified dataset. How can we use extra public datasets with

lots of data to help training model for specified tasks, e.g.,
tiny person detection?

The publicly available datasets are quite different from

TinyPerson in object type and scale distribution, as shown

in Figure 1. Inspired by the Human Cognitive Process that

human will be sophisticated with some scale-related tasks

when they learn more about the objects with the similar

scale, we propose an easy but efficient scale transformation

approach for tiny person detection by keeping the scale con-

sistency between the TinyPerson and the extra dataset.

For dataset X , we define the probability density function

of objects’ size s in X as Psize(s;X). Then we define a
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Scale Match

𝑃𝑠𝑖𝑧𝑒(𝑠; 𝐸) 𝑃𝑠𝑖𝑧𝑒 𝑠; 𝑇(𝐸)

𝑃𝑠𝑖𝑧𝑒(𝑠; 𝐷𝑡𝑟𝑎𝑖𝑛)
𝑇: 𝑃𝑠𝑖𝑧𝑒(𝑠; 𝑇(𝐸)) ≈ 𝑃𝑠𝑖𝑧𝑒 (𝑠; 𝐷)

𝑃𝑠𝑖𝑧𝑒(𝑠; 𝐷𝑡𝑒𝑠𝑡)

Train

Policy

Evaluation

Model

Figure 4. The framework of Scale Match for detection. With the distributions of E and Dtrain dataset, the proposed Scale Match T (·) is

adopted to adjust the Psize(s;E) to Psize(s;Dtrain). Various training policy can be used here, such as joint training or pre-training.

dataset MRtiny1
50 MRtiny2

50 MRtiny3
50 MRtiny

50 MRsmall
50

CityPersons 56.40 24.29 8.93 35.65 7.43

tiny CityPersons 94.04 72.56 49.37 75.44 23.70

Table 4. The performance of CityPersons and tiny CityPersons. To guarantee the objectivity and fairness, MRtiny
50 , MRtiny1

50 , MRtiny2
50 ,

MRtiny3
50 , MRsmall

50 are calculated with size in range [2, 20], [2, 8], [8, 12], [12, 20], [20, 32] for tiny CityPersons and in range [8, 80],

[8, 32] [32, 48], [48, 80], [80, 128] for CityPersons, respectively.

scale transform T , which is used to transform the probabil-

ity distribution of objects’ size in extra dataset E to that in

the targeted dataset D (TinyPerson), given in Eq.(3):

Psize(s;T (E)) ≈ Psize(s;D). (3)

In this paper, without losing generality, MS COCO is

used as extra dataset, and Scale Match is used for the scale

transformation T .

4.1. Scale Match

Gij = (xij , yij , wij , hij) represents j-th object in image

Ii of dataset E. The Scale Match approach can be simply

described as three steps:

1. Sample ŝ ∼ Psize(s;D);

2. Calculate scale ratio c = ŝ
AS(Gij)

;

3. Resize object with scale ratio c , then Ĝij ← (xij ∗

c, yij ∗ c, wij ∗ c, hij ∗ c);

where Ĝij is the result after Scale Match. Scale Match will

be applied to all objects in E to get T (E), when there are a

large number of targets in E, Psize(s;T (E)) will be close

to Psize(s;D). Details of Scale Match algorithm are shown

in Algorithm 1.

Estimate Psize(s;D): In Scale Match, we first estimate

Psize(s;D), following a basic assumption in machine learn-

ing: the distribution of randomly sampled training dataset

Algorithm 1 Scale Match (SM) for Detection

linenosize= INPUT: Dtrain (train set of D)

INPUT: K (integer, number of bin in histogram which use to

estimate Psize(s;Dtrain))
INPUT: E (extra labeled dataset)

OUTPUT: Ê (note as T (E) before.)

NOTE: H is the histogram for estimating Psize(s;Dtrain); R is

the size’s range of each histogram bin; Ii is i-th image in dataset

E; Gi represents all ground-truth boxes set in Ii; ScaleImage
is a function to resize image and gorund-truth boxes with a given

scale.

1: Ê ← ∅
2: // to obtain approximate Psize(s;Dtrain).
3: (H ,Sizes)← RectifiedHistogram(Dtrain ,K)
4: for (Ii, Gi) in E do

5: // calculate mean size of box in Gi

6: s←Mean((Gi))
7: // sample a bin index of H by the probability value

8: sample k ∼ H
9: sample ŝ ∼ Uniform(R[k]−, R[k]+)

10: c← ŝ/s
11: Îi, Ĝi ← ScaleImage(Ii, Gi, c)
12: Ê ← Ê ∪ (Îi, Ĝi)
13: end for

is close to actual distribution. Therefore, the training set

Psize(s;Dtrain) is used to approximate Psize(s;D).
Rectified Histogram: The discrete histogram (H,R)
is used to approximate Psize(s;Dtrain) for calculation,

R[k]− and R[k]+ are size boundary of k-th bin in his-

togram, K is the number of bins in histogram, N is the
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number of objects in Dtrain, Gij(Dtrain)is j-th object in

i-th image of dataset Dtrain, and H[k] is probability of k-th

bin given in Eq (4):

H[k] =
|{Gij(Dtrain)|R[k]− ≤ AS(Gij(Dtrain)) < R[k]+}|

N
.

(4)

However, the long tail of dataset distribution (shown in

Figure 4) makes histogram fitting inefficient, which means

that many bins’ probability is close to 0. Therefore, a more

efficient rectified histogram (as show in Algorithm 2) is pro-

posed. And SR (sparse rate), calculating how many bins’

probability are close to 0 in all bins, is defined as the mea-

sure of H’s fitting effectiveness:

SR =
|{k|H[k] ≤ 1/(α ∗K) and k = 1, 2...,K|

K
. (5)

where K is defined as the bin number of the H and is set

to 100, α is set to 10 for SR, and 1/(α ∗ K) is used as

a threshold. With rectified histogram, SR is down to 0.33

from 0.67 for TinyPerson. The rectified histogram H pays

less attention on long tail part which has less contribution

to distribution.

Image-level scaling: For all objects in extra dataset E, we

need sample a ŝ respect to Psize(s;Dtrain) and resize the

object to ŝ. In this paper, instead of resizing the object, we

resize the image which hold the object to make the object’s

size reach ŝ. Due to only resizing these objects will destroy

the image structure. However there are maybe more than

one object with different size in one image. We thus sample

one ŝ per image and guarantees the mean size of objects in

this image to ŝ.

Sample ŝ: We firstly sample a bin’s index respect to prob-

ability of H , and secondly sample ŝ respect to a uniform

probability distribution with min and max size equal to

R[k]− and R[k]+. The first step ensures that the distribu-

tion of ŝ is close to that of Psize(s;Dtrain). For the second

step, a uniform sampling algorithm is used.

4.2. Monotone Scale Match (MSM) for Detection

Scale Match can transform the distribution of size to task-

specified dataset, as shown in Figure 5. Nevertheless, Scale

Match may make the original size out of order: a very small

object could sample a very big size and vice versa. The

Monotone Scale Match, which can keep the monotonicity

of size, is further proposed for scale transformation.

It is known that the histogram Equalization and Match-

ing algorithms for image enhancement keep the monotonic

changes of pixel values. We follow this idea monotoni-

cally change the size, as shown in Figure 6. Mapping ob-

ject’s size s in dataset E to ŝ with a monotone function f ,

Algorithm 2 Rectified Histogram

linenosize= INPUT: Dtrain (train dataset of D)

INPUT: K (integer, K > 2)

OUTPUT: H (probability of each bin in the histogram for esti-

mating Psize(s;Dtrain))
OUTPUT: R (size’s range of each bin in histogram)

NOTE: N (the number of objects in dataset D); Gij(Dtrain) is

j-th object in i-th image of dataset Dtrain.

1: Array R[K], H[K]
2: // collect all boxes’ size in Dtrain as Sall

3: Sall ← (..., AS(Gij(Dtrain)), ...)
4: // ascending sort

5: Ssort ← sorted(Sall)
6:

7: // rectify part to solve long tail

8: p← 1
K

9: N ← |Ssort|
10: // first tail small boxes’ size are merge to first bin

11: tail← ceil(N ∗ p)
12: R[1]− ← min(Ssort)
13: R[1]+ ← Ssort[tail + 1]
14: H[1]← tail

N

15: // last tail big boxes’ size are merge to last bin

16: R[K]− ← Ssort[N − tail]
17: R[K]+ ← max(Ssort)
18: H[K]← tail

N

19:

20: Smiddle ← Ssort[tail + 1 : N − tail]
21: // calculate histogram with uniform size step and have K −

2 bins for Smiddle to get H[2], H[3], ..., H[K − 1] and

R[2], R[3], ..., R[K − 1].

22: d← max(Smiddle )−min(Smiddle )
K−2

23: for k in 2, 3, ...,K − 1 do

24: R[k]− ← min(Smiddle) + (k − 2) ∗ d
25: R[k]+ ← min(Smiddle) + (k − 1) ∗ d

26: H[k] =
|{Gij(Dtrain)|R[k]−≤AS(Gij(Dtrain))<R[k]+}|

N

27: end for

makes the distribution of ŝ same as Psize(ŝ, Dtrain). For

any s0 ∈ [min(s),max(s)], it is calculated as:

∫ s0

min(s)

Psize(s;E)ds =

∫ f(s0)

f(min(s))

Psize(ŝ;Dtrain)dŝ. (6)

where min(s) and max(s) represent the minimum and

maximum size of objects in E, respectively.

5. Experiments

5.1. Experiments Setting

Ignore region: In TinyPerson, we must handle ignore re-

gions in training set. Since the ignore region is always a

group of persons (not a single person) or something else
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Figure 5. Psize(s;X) of COCO, TinyPerson and COCO after

Scale Match to TinyPerson, for better view, we limit the max ob-

ject’s size to 200 instead of 500.

Figure 6. The flowchart of Monotone Scale Match, mapping the

object’s size s in E to ŝ in Ê with a monotone function.

which can neither be treated as foreground (positive sam-

ple) nor background (negative sample). There are two ways

for processing the ignore regions while training: 1) Replace

the ignore region with mean value of the images in train-

ing set; 2) Do not back-propagate the gradient which comes

from ignore region. In this paper, we just simply adopt the

first way for ignore regions.

Image cutting: Most of images in TinyPerson are with

large size, results in the GPU out of memory. Therefore,

we cut the origin images into some sub-images with over-

lapping during training and test. Then the NMS strategy is

used to merge all results of the sub-images in one same im-

age for evaluation. Although the image cutting can make

better use of GPU resources, there are two flaws:1) For

FPN, pure background images (no object in this image) will

not be used for training. Due to image cutting, many sub-

images will become the pure background images, which

are not well utilized; 2) In some conditions, NMS can not

merge the results in overlapping regions well.

Training detail: The codes are based on facebook

maskrcnn-benchmark. We choose ResNet50 as backbone.

If no specified, Faster RCNN-FPN are chose as detector.

Training 12 epochs, and base learning rate is set to 0.01,

decay 0.1 after 6 epochs and 10 epochs. We train and eval-

uate on two 2080Ti GPUs. Anchor size is set to (8.31, 12.5,

18.55, 30.23, 60.41), aspect ratio is set to (0.5, 1.3, 2) by

clustering. Since some images are with dense objects in

TinyPerson, DETECTIONS PER IMG (the max number of

detectors output result boxes per image) is set to 200.

Data Augmentation: Only flip horizontal is adopted to

augment the data for training. Different from other FPN

based detectors, which resize all images to the same size,

we use the origin image/sub-image size without any zoom-

ing.

5.2. Baseline for TinyPerson Detection

For TinyPerson, the RetinaNet[15], FCOS[23], Faster

RCNN-FPN, which are the representatives of one stage an-

chor base detector, anchor free detector and two stage an-

chor base detector respectively, are selected for experimen-

tal comparisons. To guarantee the convergence, we use half

learning rate of Faster RCNN-FPN for RetinaNet and quar-

ter for FCOS. For adaptive FreeAnchor[29], we use same

learning rate and backbone setting of Adaptive RetinaNet,

and others are keep same as FreeAnchor’s default setting.

In Figure 1, WIDER Face holds a similar absolute scale

distribution to TinyPerson. Therefore, the state-of-the-art of

DSFD detector [13], which is specified for tiny face detec-

tion, has been included for comparison on TinyPerson.

Poor localization: As shown in Table 5 and Table 6,

the performance drops significantly while IOU threshold

changes from 0.25 to 0.75. It’s hard to have high location

precision in TinyPerson due to the tiny objects’ absolute and

relative size.

Spatial information: Due to the size of the tiny object,

spatial information maybe more important than deeper net-

work model. Therefore, we use P2, P3, P4, P5, P6 of

FPN instead of P3, P4, P5, P6, P7 for RetinaNet, which is

similar to Faster RCNN-FPN. We named the adjusted ver-

sion as Adaptive RetinaNet. It achieves better performance

(10.43% improvement of AP tiny
50 ) than the RetinaNet.

Best detector: With MS COCO, RetinaNet and FreeAn-

chor achieves better performance than Faster RCNN-FPN.

One stage detector can also go beyond two stage detector

if sample imbalance is well solved [15]. The anchor-free

based detector FCOS achieves the better performance com-

pared with RetinaNet and Faster RCNN-FPN. However,

when objects’ size become tiny such as objects in TinyPer-

son, the performance of all detectors drop a lot. And the

RetinaNet and FCOS performs worse, as shown in Table 5

and Table 6. For tiny objects, two stage detector shows ad-

vantages over one stage detector. Li et al. [13] proposed
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detector MRtiny1
50 MRtiny2

50 MRtiny3
50 MRtiny

50 MRsmall
50 MRtiny

25 MRtiny
75

FCOS [23] 99.10 96.39 91.31 96.12 84.14 89.56 99.56

RetinaNet [15] 95.05 88.34 86.04 92.40 81.75 81.56 99.11

DSFD [13] 96.41 88.02 86.84 93.47 78.72 78.02 99.48

Adaptive RetinaNet 89.48 82.29 82.40 89.19 74.29 77.83 98.63

Adaptive FreeAnchor [29] 90.26 82.01 81.74 88.97 73.67 77.62 98.7

Faster RCNN-FPN [14] 88.40 81.99 80.17 87.78 71.31 77.35 98.40

Table 5. Comparisons of MRs on TinyPerson.

detector AP tiny1
50 AP tiny2

50 AP tiny3
50 AP tiny

50 AP small
50 AP tiny

25 AP tiny
75

FCOS [23] 3.39 12.39 29.25 16.9 35.75 40.49 1.45

RetinaNet [15] 11.47 36.36 43.32 30.82 43.38 57.33 2.64

DSFD [13] 14.00 35.12 46.30 31.15 51.64 59.58 1.99

Adaptive RetinaNet 25.49 47.89 51.28 41.25 53.64 63.94 4.22

Adaptive FreeAnchor [29] 24.92 48.01 51.23 41.36 53.36 63.73 4.0

Faster RCNN-FPN [14] 29.21 48.26 53.48 43.55 56.69 64.07 5.35

Table 6. Comparisons of AP s on TinyPerson.

DSFD for face detection, which is one of the SOTA face

detectors with code available. But it obtained poor perfor-

mance on TinyPerson, due to the great difference between

relative scale and aspect ratio, which also further demon-

strates the great chanllange of the proposed TinyPerson.

With performance comparison, Faster RCNN-FPN is cho-

sen as the baseline of experiment and the benchmark.

5.3. Analysis of Scale Match

TinyPerson. In general, for detection, pretrain on MS

COCO often gets better performance than pretrain on Im-

ageNet, although the ImageNet holds more data. How-

ever, detector pre-trained on MS COCO improves very lim-

ited in TinyPerson, since the object size of MS COCO is

quite different from that of TinyPerson. Then, we obtain

a new dataset, COCO100, by setting the shorter edge of

each image to 100 and keeping the height-width ratio un-

changed. The mean of objects’ size in COCO100 almost

equals to that of TinyPerson. However, the detector pre-

trained on COCO100 performs even worse, shown in Table

7. The transformation of the mean of objects’ size to that in

TinyPerson is inefficient. Then we construct SM COCO by

transforming the whole distribution of MS COCO to that

of TinyPerson based on Scale Match. With detector pre-

trained on SM COCO, we obtain 3.22% improvement of

AP tiny
50 , Table 7. Finally we construct MSM COCO using

Monotone Scale Match for transformation of MS COCO.

With MSM COCO as the pre-trained dataset, the perfor-

mance further improves to 47.29% of AP tiny
50 , Table 7.

Tiny Citypersons. To further validate the effectiveness of

the proposed Scale Match on other datasets, we conducted

experiments on Tiny Citypersons and obtained similar per-

formance gain, Table 8.

pretrain dataset MRtiny
50 AP tiny

50

ImageNet 87.78 43.55

COCO 86.58 43.38

COCO100 87.67 43.03

SM COCO 86.30 46.77

MSM COCO 85.71 47.29

Table 7. Comparisons on TinyPerson. COCO100 holds the sim-

ilar mean of the boxes’ size with TinyPerson, SM COCO uses

Scale Match on COCO for pre-training, while MSM COCO uses

Monotonous Scale Match on COCO for pre-training.

pretrain dataset MRtiny
50 AP tiny

50

ImageNet 75.44 19.08

COCO 74.15 20.74

COCO100 74.92 20.57

SM COCO 73.87 21.18

MSM COCO 72.41 21.56

Table 8. Comparisons on Tiny Citypersons. COCO100 holds the

similar mean of the boxes’ size with Tiny Citypersons.

6. Conclusion

In this paper, a new dataset (TinyPerson) is introduced for

detecting tiny objects, particularly, tiny persons less than 20

pixels in large-scale images. The extremely small objects

raise a grand challenge for existing person detectors.

We build the baseline for tiny person detection and exper-

imentally find that the scale mismatch could deteriorate the

feature representation and the detectors. We thereby pro-

posed an easy but efficient approach, Scale Match, for tiny

person detection. Our approach is inspired by the Human

Cognition Process, while Scale Match can better utilize the

existing annotated data and make the detector more sophis-

ticated. Scale Match is designed as a plug-and-play univer-

sal block for object scale processing, which provides a fresh

insight for general object detection tasks.
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