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Abstract

Scene text erasing is a task of removing text from natu-

ral scene images, which has been gaining attention in re-

cent years. The main motivation is to conceal private in-

formation such as license plate numbers, and house name-

plates that can appear in images. In this work, we propose

a method for scene text erasing that approaches the prob-

lem as a general inpainting task. In contrast to previous

methods, which require pairs of original images contain-

ing text and images from which the text has been removed,

our method does not need corresponding image pairs for

training. We use a separately trained scene text detector

and an inpainting network. The scene text detector predicts

segmentation maps of text instances which are then used as

masks for the inpainting network. The network for inpaint-

ing, trained on a large-scale image dataset, fills in masked

out regions in an input image and generates a final image

in which the original text is no longer present. The results

show that our method is able to successfully remove text and

fill in the created holes to produce natural-looking images.

1. Introduction

Nowadays, text is present almost everywhere around us

and is an inseparable part of our daily lives. Text is used

as a way to communicate and convey various kinds of in-

formation. When taking photos for personal enjoyment or

for the purpose of collecting data, some text is inevitably

bound to appear in the images, whether captured intention-

ally or incidentally. However, a lot of text contains personal

and private information, e.g. vehicle registration plates, ID

numbers, names, and home addresses, which could be mis-

used if it became publicly available on the internet. To pre-

vent that, it is desirable to remove any exploitable informa-

tion from images before releasing them to the public, which

calls for a method to automatically erase text from images

without severely degrading their visual quality. The prob-

lem can be divided into two subtasks:

Figure 1: Examples of scene text erasing. Original images

are on the left, images where the text was erased by our

model on the right.

1. detecting and removing pixels that belong to text re-

gions

2. filling missing pixels to naturally blend with the back-

ground

Previous research on scene text erasing approaches the

problem as supervised image-to-image translation. How-

ever, that requires to prepare images containing text in-

stances and their corresponding counterparts without text

for training, which is difficult and expensive for real-life

scene images. Zhang et al. [39] partly avoid this problem

by using synthetic data for training, but such data semanti-

cally deviates from real-life scenes and creates a bias that

might lead to a drop in performance when transferring the

model to images of real-life scenes.

This work is the first to propose a method for scene text

erasing that does not require training data pairs of original
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images with text and their corresponding ground-truth im-

ages where the text has been removed. We achieve it by

abstracting the problem as a general inpainting task and use

a trained scene text detector to predict which parts of the

image contain text and need to be removed (subtask 1) and

repaint those parts using an inpainting network (subtask 2).

Training a scene text detector requires less expensive an-

notation than training a scene text eraser using the afore-

mentioned corresponding image pairs because only bound-

ing boxes of text regions are required. The inpainting net-

work is trained on general natural scene images with ran-

dom masks and therefore it is expected to be suitable for

filling backgrounds. As we do not use the target images

without text for training, we consider our method as requir-

ing weaker supervision compared to previous works. Exam-

ple of results obtained by our proposed method are shown

in Figure 1.

2. Related Work

2.1. Text Erasing

Early research on erasing text from images focused on

removing captions and subtitles from video frames [19, 25,

17]. Spatial restoration in the current frame and temporal

restoration in consecutive frames was adopted in [19, 25] to

replace pixels of text. Khodadadi et al. [17] used a pattern

matching algorithm to replace text pixels. Recently, Kim

et al. [18] proposed a method for video decaptioning that

uses an encoder-decoder neural network with multi-frame

input, exploiting spatio-temporal information in the video.

However, these methods focus on digitally created text in

images and require the text to be well-aligned, clean, and in

focus, which is not always the case in scene text images due

to their complexity, distortion, different lighting conditions,

etc.

Nakamura et al. [26] were the first to propose a method

for erasing text from natural scene images. They divide the

image into small patches using a sliding windows method

and use a U-Net [30] shaped neural network to erase the

text. As the erasing process is performed separately on all

patches, which are then merged back together, the results

tend to be inconsistent.

Recent methods for scene text erasing [39, 33] are based

on generative adversarial networks (GANs) [5]. In particu-

lar, they are derived from the family of GANs that perform

transformations on an image, such as image-to-image trans-

lation [12, 43]. Zhang et al. [39] employ a GAN with a U-

Net shaped encoder-decoder generator, and train it by using

several loss functions, namely content loss [14], texture loss

[38], total variation loss [14], and multi-scale regression

loss. In addition, they propose a local-aware patch-based

discriminator that only penalizes the patches that contain

text. Tursun et al. [33] use a ground-truth text region mask

as an additional input into the network. This enables selec-

tive erasing by allowing the users to select text regions that

they want to erase. However, a disadvantage of this method

is that a text region mask is always required, which means

that text removal cannot be performed fully automatically

without user guidance. Without any input mask, the model

can still erase some text but the performance is very lim-

ited. Note that our proposed method can also be employed

for selective erasing if we allow users to select which pre-

detected text regions they want to erase.

All of the methods for scene text erasing mentioned

above require pairs of original images containing text and

ground-truth images with the text removed for training. Ob-

taining such data is a difficult and expensive process. One

way of achieving that, used in [39], is to utilize photo-

editing software and manually edit the original images.

However, removing text from complex scene images so that

the result looks naturally requires a skilled person and a lot

of time. Another way to obtain ground-truth images without

text is to use conventional inpainting methods, as performed

in [26]. To alleviate the problem of acquiring training data

pairs, [39, 33] use images with synthetically created text [6]

and their corresponding originals without any text. How-

ever, the process of synthetically creating text in an image

does not consider the semantic context of the image; there-

fore, the generated images look unreal in most cases, which

might introduce unwanted bias in the training data and the

trained model might not transfer well onto real-world im-

ages. In contrast, our method does not require any train-

ing data pairs of original images and their corresponding

ground-truth images with the text removed. Only text re-

gion bounding box annotation is needed so that a scene text

detector can be trained, but acquiring bounding box anno-

tation is much easier than manually erasing text to generate

ground-truth images.

A comparison of the features of our proposed method

and methods from related works is summarized in Table 1.

As we focus on erasing scene text, we compare our method

only with other methods for erasing text from natural scene

images.

2.2. Scene Text Detection

Early successful works on detecting text instances in

natural scene images used handcrafted features such as

stroke width transform [4], maximally stable extremal re-

gions [28], and histogram of oriented gradients [34]. Af-

ter the breakthrough of deep convolutional neural networks

(CNNs) in computer vision tasks in recent years, first works

adopting neural network approach combined handcrafted

features with CNNs [10, 32]. Most recent methods follow

the trends of general object detection and image segmenta-

tion and use a single neural network. A line of works in-

spired by object detection methods employs bounding box
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GAN Selective erasing Fully automatic Training w/o image pairs

Nakamura et al. [26] x x X x

EnsNet [39] X x X x

MTRNet [33] X X partially x

Our method X X X X

Table 1: A summarized comparison of the features of our method and related works. Note that selective erasing in our case

requires human interaction, but the user can simply select from candidate regions instead of drawing them as in MTRNet

[33]. When selective erasing is not required, our method is fully automatic. MTRNet can also run in a fully-automatic mode

but with very limited performance.

regression. Several of these methods perform two-stage

detection, incorporating a region proposal network in the

model [24, 13]. Other methods use a single-stage net-

work to carry out bounding box regression [20, 9]. An-

other line of methods utilizes image segmentation to local-

ize text regions. Several recent works [23, 36] are inspired

by instance segmentation and build upon Mask R-CNN [7].

Other methods use binary segmentation of text area and pro-

pose additional algorithms to correctly separate individual

text regions [35, 44]. There are also works that combine

the aforementioned approaches and use both bounding box

regression and segmentation to detect text regions [42, 22].

In our model, we need to mask out detected text regions;

therefore, we employ a segmentation-based scene text de-

tector that explicitly produces segmentation maps of de-

tected text regions.

2.3. Image Inpainting

Conventional image inpainting methods use image-level

features to fill missing holes with texture from the surround-

ing area [3, 1]. The performance of these methods is limited

and application on larger holes results in severe artifacts and

noise. More advanced algorithms find patches that match

with the context surrounding the holes and use them to fill

in the blank space [2]. While producing a more realistic

texture, it does not consider the semantics of the image and

fails to plausibly regenerate structure of objects.

In recent years, a majority of methods for image inpaint-

ing use CNNs [29, 11, 37, 21, 40]. An image with holes

is passed into a network which infers the missing pixels

and outputs an image with filled in holes. CNNs have large

modeling capacity which allows them to learn complex im-

age features and they can also learn their semantics, which

leads to more realistic results. Pathak et al. [29] were the

first to adopt a GAN for image inpainting, which enabled

them to fill large holes. To achieve both more globally and

locally coherent results, the utilization of global and local

discriminators [11] was proposed. Since previous research

focused on rectangular holes, partial convolution [21] and

gated convolution [37] were introduced to deal with free-

form holes by masking or gating the responses from convo-

lutional filters to utilize only valid image pixels.

There are countless ways to fill in missing pixel regions

in an image and create a visually realistic result. Unlike

other methods that are deterministic and generate only one

result per an image, the model proposed by Zheng et al.

[40] has an element of stochasticity, which enables gener-

ation of multiple different results per one image. Adding

stochasticity to the model does not achieve only diversity in

the results, but also improves their visual quality.

3. Methodology

Our proposed model consists of two separately trained

modules:

1. scene text detector

2. generative adversarial network for inpainting

At inference time, the two modules are connected into

one model for scene text erasing whose overall structure is

illustrated in Figure 2.

3.1. Scene Text Detector

We use PSENet [35] for detecting text in natural scene

images to produce text region masks in our model. It is

an encoder-decoder network that outputs several segmenta-

tion maps for an image, each of which corresponds to ker-

nels produced by shrinking the original text bounding boxes

with various scales. For final bounding box detection, pro-

gressive scale expansion algorithm is employed. However,

we only need segmentation maps for our scene text eraser

so we extract the full-scale segmentation map produced by

the neural network and use it as a mask for the inpainting

module as can be seen in Figure 2.

The scene text detector is trained on the MLT dataset

of multi-language scene text images [27] and ICDAR 2015

scene text dataset [15]. We experiment with both ResNet-

50 and ResNet-152 [8] as the backbone networks for the

model.

3.2. Inpainting Module

The model proposed by Zheng et al. [40] serves as the

inpainting module in our eraser. It is a GAN that consists of
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Figure 2: The overall structure of our scene text eraser model at inference time. It consists of a scene text detection module

(top) that produces a segmentation map, and an inpainting module (bottom) that produces the final result. The orange and

blue blocks represent encoding and decoding layers, respectively.

two parallel pipelines, both of which have a generator and

a discriminator. The generative pipeline takes a masked out

image as input, and the complement of the image is passed

as input to the reconstructive pipeline. During training, the

information extracted from the generative pipeline is passed

to the reconstructive pipeline so that it can learn to restore

the original image. The generative pipeline only learns to

infer and fill in the missing regions from the visible parts

of the image. During testing, only the generative pipeline is

used.

The inpainting network is trained using one of the

datasets described in Section 4.1. We exploit the size and

image diversity of those datasets to obtain a robust inpaint-

ing model, necessary to produce natural-looking results.

3.3. Scene Text Eraser

To erase text from images, we combine the two modules

described above into one model at test time. An input image

I containing text instances is first processed by the scene

text detector, which produces a binary segmentation map

M of predicted text regions. The segmentation map is then

used as a mask for the inpainting network.

The inpainting network takes the same image I that was

processed by the scene text detector as input. At training

time, a random mask is used to mask out parts of the in-

put image, but at test time we use the segmentation map

M predicted by our scene text detector to mask out text re-

gions in the input image. The image with masked out text

regions is then processed by the generator from the inpaint-

ing network, which fills in the blank regions and produces a

final image with where the text is erased and missing parts

are ”re-painted” in a way that they naturally blend with the

background.

We do not directly train the model to learn to erase text

from scene images because our method does not use pairs

of original and ground-truth images for training.

The structure of the entire model is shown in Figure 2.

4. Experiments

4.1. Datasets

4.1.1 Scene Text Detection

The scene text detector is trained on MLT 2017 and ICDAR

2015 datasets. MLT 2017 [27] is a multilingual scene text

dataset consisting of 7200 training images, 1800 validation,

and 9000 test images, and their corresponding annotations.

ICDAR 2015 [15] comprises 1000 annotated training im-

ages and 500 test images containing incidental text in the

Latin alphabet.
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4.1.2 Image Inpainting

We use inpainting modules trained on the following

datasets:

• Places2 [41] - 1.8 million images from 365 categories

of indoor and outdoor scenes.

• Paris Street View [29] - about 15 thousand images of

outdoor scenes from the streets of Paris collected from

Google Street View.

• ImageNet-1k [31] - approximately 1.2 million train-

ing images of 1000 object categories.

4.1.3 Evaluation Datasets

ICDAR 2013 scene text dataset [16] contains 229 images

for training and 233 for testing. The images were taken

with a focus on the text instances. We use the test set of

this dataset to evaluate the results of text erasing in terms

of recall, that is how much of the text in original images is

detected in the images generated by our scene text eraser.

Synthetic dataset for scene text removal proposed in

[39] contains 8000 training and 800 testing image pairs.

An image pair consists of an image with text synthetically

placed over it and its ground-truth image that does not con-

tain any text as shown in Figure 3. We only use the test set

to evaluate the performance of our method. Note that most

of the images from the test set are also included in the train-

ing set; therefore, the dataset does not necessarily test the

generalization abilities of a model when used for training.

Real-world dataset for scene text removal created by

Zhang et al. [39] consists of 1000 pairs of real images

with scene text and their corresponding images with the text

manually removed using a photo editing software as can be

seen in Figure 3. The images were taken from a subset of

images with English text from the MLT 2017 dataset.

4.2. Baseline for Inpainting

We set up two simple methods as baselines to compare

the inpainting module of our proposed method with.

• Maskout. Text regions detected using a trained scene

text detector are masked out from the image. This

method erases all of the detected text from an im-

age but produces visually unpleasant results by leaving

holes in the image, thus severely degrading the image

quality.

• Blur. Instead of masking out the detected text regions,

we blur them by applying a Gaussian filter. Stronger

filters are necessary to blur larger text regions. There-

fore, we empirically find filter parameters that opti-

mize the trade-off between visual quality and text de-

tection recall.

Figure 3: Examples of image pairs from the synthetic

dataset (top) and the real-world dataset (bottom) which

were introduced in [39].

4.3. Evaluation

Quantitative results. For quantitative evaluation of our

proposed method, we follow [26, 39, 33] and use an auxil-

iary scene text detector to investigate how much text can

be detected in images after processing them through our

scene text eraser. To make the comparison as fair as pos-

sible, we use the same scene text detection model [42] that

was used in previous works. The performance is evaluated

by computing the recall of text detection on images from

the ICDAR 2013 dataset [16] in which the text was erased

by our model. Recall serves as an indicator of how much of

the original text was detected, so the lower the recall is, the

more text instances are successfully erased by the model.

The results in Table 2 indicate that the choice of training

dataset for an inpainting module does not have much influ-

ence on text detection recall. The maskout baseline yields

the lowest recall since all of the detected text pixels are

removed without being replaced by inpainting. However,

the proposed method achieves similar text detection recall

while producing visually better images.

A comparison with previous works can be seen in Table

3. MTRNet [33] achieves the lowest recall but only when

ground-truth masks of text regions are used in network in-

put. Our method yields the lowest recall when ground-truth

masks are not used.

Visual quality. We also evaluate our method in terms

of visual quality. For that we resort to the datasets from

[39] and use the structural similarity index (SSIM) and peak

signal-to-noise ratio (PSNR) as metrics to calculate how

similar the processed images with erased text are to their
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ResNet-50 ICDAR 2013 Synthetic dataset Real-world dataset

Recall SSIM PSNR SSIM PSNR

Maskout 2.19 84.03 36.06 83.57 35.17

Blur 2.49 90.69 36.06 89.78 35.20

Proposed method (Places2) 2.47 93.69 37.44 92.53 36.41

Proposed method (Paris) 3.00 92.53 37.15 91.52 36.19

Proposed method (ImageNet) 2.56 93.58 37.55 92.32 36.51

ResNet-152 ICDAR 2013 Synthetic dataset Real-world dataset

Recall SSIM PSNR SSIM PSNR

Maskout 0.55 83.94 36.03 83.44 35.21

Blur 0.67 90.51 36.02 89.63 35.23

Proposed method (Places2) 0.64 93.64 37.46 92.73 36.52

Proposed method (Paris) 1.26 92.56 37.16 91.67 36.27

Proposed method (ImageNet) 0.82 93.60 37.62 92.39 36.59

Table 2: Performance comparison of baselines and the proposed method. We use three different datasets for evaluation of

scene text erasing in terms of text detection recall, and visual quality of generated results. Lower recall and higher SSIM and

PSNR indicate better performance. The top table shows results with ResNet-50 as the backbone network for the scene text

detector, the bottom table shows results using ResNet-152. The names in the parentheses specify which dataset the inpainting

module was trained on.

ICDAR 2013

Recall

Nakamura et al. [26] 10.08

EnsNet [39] 5.66

MTRNet (wo/ GT mask) [33] 29.11

MTRNet (w/ GT mask) [33] 0.18

Ours (ResNet-50) 2.47

Ours (ResNet-152) 0.64

Table 3: Comparison of performance of our proposed

method and previous works on the auxiliary task of detect-

ing text in images processed by a scene text eraser. Recall

is an indicator of how much of the original text is detected.

Lower recall means that more text has been successfully

erased.

ground-truth counterparts without text. Higher SSIM and

PSNR values imply better performance.

Table 2 shows that the proposed method achieves notably

better results than the baseline regardless of which dataset

is used in the training of the inpainting module. In terms of

both metrics, inpainting modules trained on the ImageNet-

1k and Places2 datasets produce similar results. The in-

painting module trained on the Paris Street View dataset

renders slightly worse results which confirms that a large

amount of data is highly beneficial for increasing the per-

formance.

We also compare the performance with previously re-

ported results in Table 4. Our method yields a lower SSIM,

but it is not trained on the synthetic dataset. In contrast,

Synthetic dataset [39]

SSIM PSNR

EnsNet [39] 96.44 37.36

Ours (ResNet-50) 93.69 37.44

Ours (ResNet-152) 93.64 37.46

Table 4: Comparison of visual quality of images generated

by our proposed method and related work. Higher SSIM

and PSNR values imply better performance. Our method

does not yield as good results as [39]; however, it is not

trained on synthetic data and does not use original and

ground-truth image pairs for training. Here we state our

results with Places2 dataset used for training.

EnsNet [39] uses the dataset for training. Our model ex-

pects realistic input, whereas the synthetic images consider-

ably deviate from reality. In particular, text does not stretch

over multiple semantically different regions in real scenes

(e.g., a foreground object and background), but the syn-

thetic dataset contains many such examples. Also note that

the synthetic dataset introduced in [39] contains test images

in the training data, which gives any method that is trained

on the dataset a significant advantage.

Qualitative results. Examples of scene text erasing re-

sults can be seen in Figure 4. Our proposed method can

remove the text from images and fill in the missing pixels

in a way that makes them blend with the surrounding area.

Unlike baseline methods, it produces images that can give

the impression that there never was any text in the image.

Furthermore, it completely removes the text pixels unlike
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Figure 4: Examples of scene text erasing on images from the ICDAR 2013 dataset. The top row shows the original images

containing text instances. The second and third row show results produced by baselines - maskout and blur, respectively.

Results of our method can be seen in rows 4 to 6, where each row shows results produced with inpainting modules trained on

different datasets: Places2, Paris Street View, and ImageNet-1k (in this order).
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Figure 5: Examples of two types of failure cases: unsuc-

cessful text erasing caused by imperfect text detection (left),

a failure to fill the masked out region in a way that would

blend with the surrounding area (right).

blurring, which is prone to producing results that a state-of-

the-art method for scene text reading or a human could read

in some cases.

Images produced using an inpainting module trained on

the Paris Street View dataset contain more artifacts than

those generated by an inpainting module trained on Places2

or ImageNet-1k. This is likely caused by the difference in

the size of the datasets. Paris Street View is approximately

100 times smaller than the other datasets so it contains much

less information which the network can learn from. Inpaint-

ing modules trained on Places2 and ImageNet-1k generate

visually similar results, which coincides with the qualitative

results.

Figure 5 illustrates two types of failures that can occur.

The first column shows a case of unsuccessful text erasing

caused by imperfect detection of text by the scene text de-

tector. The second column demonstrates an example where

text was successfully detected but the inpainting network

was not able to fill in the masked out region in a way that

would blend with the surrounding area and look natural. Im-

perfect text detection is likely to occur when the appearance

of the text is unusual or the text is very small. On the other

hand, producing good inpainting results is difficult when the

text region is large or when the background contains com-

plex patterns.

5. Conclusion

We have proposed a method for removing text from nat-

ural scene images that does not require training data pairs

of original images containing text instances and their corre-

sponding ground-truth images with the text removed. We

bypassed the expensive process of creating ground-truth

data by approaching the problem of erasing text from im-

ages as a general inpainting task and combined it with scene

text detection.

The results show that our method can remove text from

images and fill in the created blank space to naturally blend

with the background. The qualitative and quantitative eval-

uation indicates that masking out detected text and using

inpainting to fill in the holes is a safer and visually better

way to conceal scene text than simply blurring detected text

and that our method produces results that are competitive

with existing methods.

We made attempts to further improve the performance by

finetuning the scene text detection and inpainting modules

together in an end-to-end manner but we were not able to

achieve better results. Improving the performance by train-

ing in end-to-end manner thus remains future work.
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[29] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and

A. Efros. Context encoders: Feature learning by inpainting.

In CVPR, 2016.

[30] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In MIC-

CAI, 2015.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 115(3):211–252, 2015.

[32] S. Tian, Y. Pan, C. Huang, S. Lu, K. Yu, and C. Lim Tan.

Text flow: A unified text detection system in natural scene

images. In ICCV, 2015.

[33] O. Tursun, R. Zeng, S. Denman, S. Sivipalan, S. Sridharan,

and C. Fookes. Mtrnet: A generic scene text eraser. ICDAR,

2019.

[34] K. Wang, B. Babenko, and S. Belongie. End-to-end scene

text recognition. In ICCV, 2011.

[35] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao.

Shape robust text detection with progressive scale expansion

network. In CVPR, 2019.

[36] E. Xie, Y. Zang, S. Shao, G. Yu, C. Yao, and G. Li. Scene text

detection with supervised pyramid context network. arXiv

preprint arXiv:1811.08605, 2018.

[37] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang.

Free-form image inpainting with gated convolution. arXiv

preprint arXiv:1806.03589, 2018.

[38] H. Zhang, V. Sindagi, and V. M. Patel. Image de-raining

using a conditional generative adversarial network. arXiv

preprint arXiv:1701.05957, 2017.

[39] S. Zhang, Y. Liu, L. Jin, Y. Huang, and S. Lai. Ensnet: En-

sconce text in the wild. In AAAI, 2019.

[40] C. Zheng, T.-J. Cham, and J. Cai. Pluralistic image comple-

tion. CVPR, 2019.

[41] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba.

Places: A 10 million image database for scene recognition.

TPAMI, 2017.

[42] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and

J. Liang. East: an efficient and accurate scene text detector.

In CVPR, 2017.

[43] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In ICCV, 2017.

[44] Y. Zhu and J. Du. Textmountain: Accurate scene

text detection via instance segmentation. arXiv preprint

arXiv:1811.12786, 2018.

2246


