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Abstract

Deep neural networks (DNNs) often suffer from “catas-

trophic forgetting” during incremental learning (IL) — an

abrupt degradation of performance on the original set of

classes when the training objective is adapted to a newly

added set of classes. Existing IL approaches tend to pro-

duce a model that is biased towards either the old classes

or new classes, unless with the help of exemplars of the

old data. To address this issue, we propose a class-

incremental learning paradigm called Deep Model Consol-

idation (DMC), which works well even when the original

training data is not available. The idea is to first train a

separate model only for the new classes, and then combine

the two individual models trained on data of two distinct set

of classes (old classes and new classes) via a novel dou-

ble distillation training objective. The two existing models

are consolidated by exploiting publicly available unlabeled

auxiliary data. This overcomes the potential difficulties due

to unavailability of original training data. Compared to

the state-of-the-art techniques, DMC demonstrates signifi-

cantly better performance in image classification (CIFAR-

100 and CUB-200) and object detection (PASCAL VOC

2007) in the single-headed IL setting.

1. Introduction

Despite the recent success of deep learning in computer

vision for a broad range of tasks [8, 19, 24, 30], classical

training paradigm of deep models is ill-equipped for incre-

mental learning (IL). Most deep neural networks can only

be trained when the complete dataset is given and all classes

are known prior to training. However, the real world is dy-

namic and new categories of interest can emerge over time.

Re-training a model from scratch whenever a new class is

encountered can be prohibitively expensive due to train-

ing data storage requirements and the computational cost

of full retrain. Directly fine-tuning the existing model on

only the data of new classes using stochastic gradient de-

scent (SGD) optimization is not a better approach either,

as this might lead to the notorious catastrophic forgetting
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Figure 1. Overview of the proposed incremental learning algo-

rithm. Given a model pretrained on existing classes and labeled

data of new classes, we first train a new model for recognizing

instances of new classes; we then combine the old model and the

new model using the novel deep model consolidation (DMC) mod-

ule, which leverages external unlabeled auxiliary data. The final

model suffers less from forgetting the old classes, and achieves

high recognition accuracy for the new classes.

problem [15, 37], which can result in severe performance

degradation on old tasks.

We consider a realistic, albeit strict and challenging, set-

ting of class-incremental learning, where the system must

satisfy the following constraints: 1) the original training

data for old classes are no longer accessible when learn-

ing new classes — this could be due to a variety of reasons,

e.g., legacy data may be unrecorded, proprietary, too large

to store, or subject to privacy constraint when training the

model for a new task; this is a practical concern in various

academic and industrial applications, where the model can

be transferred from one party to another but data should be

kept private, and a practitioner wants to augment the model

to learn new classes; 2) the system should provide a com-

petitive multi-class classifier for the classes observed so far,

i.e. single-headed classification should be supported, which

does not require any prior information of the test data; 3) the

model size should remain relatively unchanged after learn-

ing new classes.

Several attempts have been made to enable IL for DNNs,
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but none of them satisfies all of these constraints. Some re-

cent works [4, 7, 16, 20, 34, 41] that rely on the storage

of partial old data have made impressive progress. They

are arguably not memory efficient and storing data for the

life time involves violate some practical constraints such as

copyright or privacy issues, which is common in the do-

mains like bio-informatics [45]. The performance of the

existing methods that do not store any past data is yet un-

satisfactory. Some of these methods rely on incrementally

training generative models [21, 48], which is a harder prob-

lem to solve; while others fine-tune the old model on the

new data with certain regularization techniques to prevent

forgetting [1, 6, 22, 28, 49, 54, 56]. We argue that the inef-

fectiveness of these regularization-based methods is mainly

due to the asymmetric information between old classes and

new classes in the fine-tuning step. New classes have ex-

plicit and strong supervisory signal from the available la-

beled data, whereas the information for old classes is im-

plicitly given in the form of a noisy regularization term.

Moreover, if we over-regularize the model, the model will

fail to adapt to the new task, which is referred to as intransi-

gence [6] in the IL context. As a result, these methods have

intrinsic bias towards either the old or the new classes in

the final model, and it is extremely difficult to find a sweet

spot considering that in practice we do not have a validation

dataset for the old classes during incremental learning.

As depicted in Fig. 1, we propose a novel paradigm

for class-incremental learning called deep model consoli-

dation (DMC), which first trains a separate model for the

new classes using labeled data, and then combines the new

and old models using publicly available unlabeled auxil-

iary data via a novel double distillation training objective.

DMC eliminates the intrinsic bias caused by the informa-

tion asymmetry or over-regularization in the training, as the

proposed double distillation objective allows the final stu-

dent model to learn from two teacher models (the old and

new models) simultaneously. DMC overcomes the diffi-

culty introduced by loss of access to legacy data by lever-

aging unlabeled auxiliary data, where the abundant trans-

ferable representations are mined to facilitate IL. Further-

more, using the auxiliary data rather than the training data

of the new classes ensures the student model absorbs the

knowledge transferred from the both teacher models in an

unbiased way.

Crucially, we do not require the auxiliary data share the

class labels or generative distribution of the target data. The

only requirement is that they are generic, diversified, and

generally related to the target data. Usage of such un-

labeled data incurs no additional dataset construction and

maintenance cost since they can be crawled from the web

effortlessly when needed and discarded once the IL of new

classes is complete. Furthermore, note that the symmetric

role of the two teacher models in DMC has a valuable ex-

tra benefit in the generalization of our method; it can be

directly applied to combine any two arbitrary pre-trained

models that can be downloaded from the Internet for easy

deployment (i.e., only one model needs to be deployed in-

stead of two), without access to the original training data.

To summarize, our main contributions include:

• A novel paradigm for incremental learning which ex-

ploits external unlabeled data, which can be obtained at

negligible cost. This is an illuminating perspective for

IL, which bypasses the constraint of having old data

stored by finding some cheap substitute that does not

need to be stored.

• A new training objective function to combine two deep

models into one single compact model to promote

symmetric knowledge transfer. The two models can

have different architectures, and they can be trained on

data of distinct set of classes.

• An approach to extend the proposed paradigm to in-

crementally train modern one-stage object detectors,

to which the existing methods are not applicable.

• Extensive experiments that demonstrate the substantial

performance improvement of our method over existing

approaches on large-scale image classification and ob-

ject detection benchmarks in the IL setting.

2. Related work

McCloskey et al. [37] first identified the catastrophic

forgetting effect in the connectionist models, where the

memory about the old data is overwritten when retraining

a neural network with new data. Recently, researchers have

been actively developing methods to alleviate this effect.

Regularization methods. Regularization methods enforce

additional constraints on the weight update, so that the new

concepts are learned while retaining the prior memories.

Goodfellow et al. [15] found that dropout [51] could re-

duce forgetting for multi-layer perceptrons sometimes. One

line of work constrains the network parameters that are im-

portant to the old tasks to stay close to their old values,

while looking for a solution to a new task in the neigh-

borhood of the old one. EWC [22] and its variants [6, 46]

use Fisher information matrix to estimate the weight impor-

tance; MAS [1] uses the gradients of the network output;

SI [54] uses the path integral over the optimization trajec-

tory instead. RWalk [6] combines EWC [22] and SI [54].

Information about the old task and new task is not symmet-

ric during learning in these methods; besides, the network

may become stiffer and stiffer to adapt to the new task as

it learns more tasks over time. Li and Hoiem [28] pursued

another direction by proposing the Learning without For-

getting (LwF) method, which finetunes the network using

the images of new classes with knowledge distillation [18]

loss, to encourage the output probabilities of old classes

for each image to be close to the original network outputs.
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However, information asymmetry between old classes and

new classes still exists. Image samples from new data may

severely deviate from the true distribution of the old data,

which further aggravates the information asymmetry. In-

stead, we assign two teacher models to one student net-

work to guarantee the symmetric information flow from

old- and new-class models into the final model. IMM [27]

first finetunes the network on the new task with regulariza-

tion, and then blends the obtained model with the origi-

nal model through moment matching. Though conceptu-

ally similar, our work is different from IMM [27] in the

following ways: 1) we do not use regularized-finetuning

from old-class model when training the new model for the

new classes, so we can avoid intrinsic bias towards the old

classes and suboptimal solution for the new task; 2) we do

not assume the final posterior distribution for all the tasks is

Gaussian, which is a strong assumption for DNNs.

Dynamic network methods. Dynamic network meth-

ods [35, 36, 47, 53] dedicate a part of the network or

a unique feed-forward pathway through neurons for each

task. At test time, they require the task label to be specified

to switch to the correct state of the network, which is not ap-

plicable in the class-IL where task labels are not available.

Rehearsal and pseudo-rehearsal methods. In rehearsal

methods [4, 7, 20, 34, 39, 41], past information is period-

ically replayed to the model to strengthen memories it has

already learned, which is done by interleaving data from

earlier sessions with the current session data [43]. How-

ever, storage of past data is not resource efficient and may

violate some practical constraints such as copyright or pri-

vacy issues. Pseudo-rehearsal methods attempt to allevi-

ate this issue by using generative models to generate pseu-

dopatterns [43] that are combined with the current samples.

However, this requires training a generative model in the

class-incremental fashion, which is an even harder problem

to solve. Existing such methods do not produce competitive

results [21, 48] unless supported by real exemplars [16].

Incremental learning of object detectors. Shmelkov et al.

[49] adapted LwF for the object detection task. However,

their framework can only be applied to object detectors in

which proposals are computed externally, e.g., Fast R-CNN

[14]. In our experiments, we show that our method is appli-

cable to more efficient modern single-shot object detection

architectures, e.g., RetinaNet [30].

Exploiting external data. In computer vision, the idea of

employing external data to improve performance of a target

task has been explored in many contexts. Inductive transfer

learning [11, 55] aims to transfer and reuse knowledge in

labeled out-of-domain instances. Semi-supervised learning

[5, 59] attempts to exploit the usefulness of unlabeled in-

domain instances. Our work shares a similar spirit with self-

taught learning [40], where we use unlabeled auxiliary data

but do not require the auxiliary data to have the same class

labels or generative distribution as the target data. Such

unlabeled data is significantly easier to obtain compared to

typical semi-supervised or transfer learning settings.

3. Method

Let’s first formally define the class-incremental learn-

ing setting. Given a labeled data stream of sample sets

X1, X2, · · · , where Xy = {xy
1, · · ·x

y
yn
} denotes the sam-

ples of class y ∈ N
+, we learn one class or group of classes

at a time. During each learning session, we only have

training data Dnew = {Xs+1, . . . , Xt} of newly available

classes s + 1, · · · , t, while the training data of the previ-

ously learned classes {X1, . . . , Xs} are no longer accessi-

ble. However, we have the model obtained in the previous

session, which is an s-class classifier fold(x; Θold). Our

goal is to train a t-class classifier f(x; Θ) without catas-

trophic forgetting on old classes or significant underperfor-

mance on the new classes. We assume that all models are

implemented as DNNs where x and Θ denote the input and

the parameters of the network, respectively.

We perform IL in two steps: the first step is to train a

(t − s)-class classifier using training data Dnew, which we

refer as the new model fnew(x; Θnew); the second step is to

consolidate the old model and the new model.

The new class learning step is a regular supervised

learning problem and it can be solved by standard back-

propagation. The model consolidation step is the major con-

tribution of our work, where we propose a method called

Deep Model Consolidation (DMC) for image classification

which we further extend to another classical computer vi-

sion task, object detection.

3.1. DMC for image classification

We start by training a new CNN model fnew on new

classes using the available training data Dnew with standard

softmax cross-entropy loss. Once the new model is trained,

we have two CNN models specialized in classifying either

the old classes or the new classes. After that, the goal of the

consolidation is to have a single compact model that can

perform the tasks of both the old model and the new model

simultaneously. Ideally, we have the following objective:

f(x; Θ)[j] =

{

fold(x; Θold)[j], 1 ≤ j ≤ s

fnew(x; Θnew)[j], s < j ≤ t
, ∀x ∈ I

(1)

where j denotes the index of the classification score asso-

ciated with j-th class, and I denotes the joint distribution

from which samples of class 1, · · · , t are drawn. We want

the output of the consolidated model to approximate the

combination of the network outputs of the old model and

the new model. To achieve this, the network response of the

old model and the new model is employed as supervisory

signals in joint training of the consolidated model.
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Knowledge distillation (KD) [18] is a popular technique

to transfer knowledge from one network to another. Origi-

nally, KD was proposed to transfer knowledge from a cum-

bersome network to a light-weight network performing the

same task, and no novel class was introduced. We general-

ize the basic idea in KD and propose a double distillation

loss to enable class-incremental learning. Here, we define

the logits as the inputs to the final softmax layer. We run a

feed-forward pass of fold and fnew for each training image,

and collect the logits of the two models ŷold = [ŷ1, · · · , ŷs]
and ŷnew = [ŷs+1, · · · , ŷt], respectively, where the super-

script is the class label associated with the neuron in the

model. Then we minimize the difference between the log-

its produced by the consolidated model and the combination

of logits generated by the two existing specialist models, ac-

cording to some distance metric. We choose L2 loss [2] as

the distance metric because it demonstrates stable and good

performance, see § 4.2.2 for discussions.

Due the absence of the legacy data, we cannot consoli-

date the two models using the old data. Thus some auxiliary

data has to be used. If we assume that natural images lie

on an ideal low-dimensional manifold, we can approximate

the distribution of our target data via sampling from readily

available unlabeled data from a similar domain. Note that

the auxiliary data do not have to be stored persistently; they

can be crawled and fed in mini-batches on-the-fly in this

stage, and discarded thereafter.

Specifically, the training objective for consolidation is

min
Θ

1

|U|

∑

xi∈U

Ldd(yi, ẙi), (2)

where U denotes the unlabeled auxiliary training data, and

the double distillation loss Ldd is defined as:

Ldd(y, ẙ) =
1

t

t
∑

j=1

(

yj − ẙj
)2

, (3)

in which yj is the logit produced by the consolidated model

for the j-th class, and

ẙj =

{

ŷj − 1

s

∑s

k=1
ŷk, 1 ≤ j ≤ s

ŷj − 1

t−s

∑t

k=s+1
ŷk, s < j ≤ t

(4)

where ŷ is the concatenation of ŷold and ŷnew.

The regression target ẙ is the concatenation of normal-

ized logits of the two specialist models. We normalize ŷ by

subtracting its mean over the class dimension (Eq. 4). This

serves as a step of bias calibration for the two set of classes.

It unifies the scale of logits produced by the two models, but

retains the relative magnitude among the classes, so that the

symmetric information flow can be enforced.

Notably, to avoid the intrinsic bias toward either old or

new classes, Θ should not be initialized from Θold or Θnew;

we should also avoid the usage of training data for the new

classes Dnew in the model consolidation stage.

3.2. DMC for object detection

We extend the IL approach given in Section 3.1 for mod-

ern one-stage object detectors, which are nearly as accurate

as two-stage detectors but run much faster than the later

ones. A single-stage object detector divides the input im-

age into a fixed-resolution 2D grid (the resolution of the

grid can be multi-level), where higher resolution means that

the area corresponding to the image region (i.e., receptive

field) of each cell in the grid is smaller. There are a set of

bounding-box templates with fixed sizes and aspect ratios,

called anchor boxes, which are associated with each spa-

tial cell in the grid. Anchor boxes serve as references for

the subsequent prediction. The class label and the bounding

box location offset relative to the anchor boxes are predicted

by the classification subnet and bounding boxes regression

subnet, respectively, which are shared across all the feature

pyramid levels [29].

In order to apply DMC to incrementally train an object

detector, we have to consolidate the classification subnet

and bounding boxes regression subnet simultaneously. Sim-

ilar to the image classification task, we instantiate a new de-

tector whenever we have training data Dnew for new object

classes. After the new detector is properly trained, we then

use the outputs of the two specialist models to supervise the

training of the final model.

Anchor boxes selection. In one-stage object detectors, a

huge number of anchor boxes have to be used to achieve de-

cent performance. For example, in RetinaNet [30], ∼100k

anchor boxes are used for an image of resolution 800×600.

Selecting a smaller number of anchor boxes speeds up

forward-backward pass in training significantly. The naive

approach of randomly sampling some anchor boxes doesn’t

consider the fact that the ratio of positive anchor boxes

and negative ones is highly imbalanced, and negative boxes

that correspond to background carry little information for

knowledge distillation. In order to efficiently and effec-

tively distill the knowledge of the two teacher detectors in

the DMC stage, we propose a novel anchor boxes selection

method to selectively enforce the constraint for a small set

of anchor boxes. For each image sampled from the auxil-

iary data, we first rank the anchor boxes by the objectness

scores. The objectness score (os) for an anchor box is de-

fined as:

os , max{p1, · · · , ps, ps+1, · · · , pt}, (5)

where p1, · · · , ps are classification probabilities produced

by the old-class model, and ps+1, · · · , pt are from the new-

class model. Intuitively, a high objectness score for a box

implies a higher probability of containing a foreground ob-

ject. The predicted classification probabilities of the old
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classes are produced by the old model, and new classes by

the new model. We use the subset of anchor boxes that have

the highest objectness scores and ignore the others.

DMC for classification subnet. Similar to the image clas-

sification case in Sec. 3.1, for each selected anchor box,

we calculate the double distillation loss between the log-

its produced by the classification subnet of the consolidated

model y and the normalized logits generated by the two ex-

isting specialist models ẙ. The loss term of DMC for the

classification subnet Lcls(y, ẙ) is identical to Eq. 3.

DMC for bounding box regression subnet. The output

of the bounding box regression subnet is a tuple of spatial

offsets t = (tx, ty, th, tw), which specifies a scale-invariant

translation and log-space height/width shift relative to an

anchor box. For each anchor box selected, we need to set

its regression target properly. If the class that has the high-

est predicted class probability is one of the old classes, we

choose the old model’s output as the regression target, oth-

erwise, the new model’s output is chosen. In this way, we

encourage the predicted bounding box of the consolidated

model to be closer to the predicted bounding box of the most

probable object category. Smooth L1 loss [14] is used to

measure the closeness of the parameterized bounding box

locations. The loss term of DMC for the bounding box re-

gression subnet is as follows:

Lloc(t, t̂) =
∑

k=x,y,h,w

smoothL1
(tk − t̂k), (6)

in which

t̂ =

{

t̂old, max1≤j≤s ŷ
j > maxs<j≤t ŷ

j

t̂new, otherwise
, (7)

Overall training objective. The overall DMC objective

function for the object detection is defined as

min
Θ

1

|U|

∑

xi∈U

Lcls(yi, ẙi) + λLloc(ti, t̂i) (8)

where λ is a hyper-parameter to balance the two loss terms.

4. Experiments

4.1. Evaluation protocols

There are two evaluation protocols for incremental learn-

ing. In one setting, the network has different classification

layers (multiple “heads”) for each task, where each head can

differentiate the classes learned only in this task; it relies on

an oracle to decide on the task at test time, which would

result in a misleading high test accuracy [6, 33]. In this

paper, we adopt a practical yet challenging setting, namely

“single-head” evaluation, where the output space consists

of all the t classes learned so far, and the model has to learn

to resolve the confusion among the classes from different

tasks, when task identities are not available at test time.

4.2. Incremental learning of image classifiers

4.2.1 Experimental setup

We evaluate our method on iCIFAR-100 benchmark as done

in iCaRL [41], which uses CIFAR-100 [23] data and learn

all 100 classes in groups of g = 5, 10, 20 or 50 classes at

a time. The evaluation metric is the standard top-1 multi-

class classification accuracy on the test set. For each exper-

iment, we run this benchmark 5 times with different class

orderings and then report the averages and standard devi-

ations of the results. We use ImageNet32×32 dataset [9]

as the source of auxiliary data in the model consolidation

stage. The images are down-sampled versions of images

from ImageNet ILSVRC [12, 44] training set. We exclude

the images that belong to the CIFAR-100 classes, which re-

sults in 1,082,340 images. Following iCaRL [41], we use

a 32-layer ResNet [17] for all experiments and the model

weights are randomly initialized.

4.2.2 Experimental results and discussions

We compare our method against the state-of-the-art

exemplar-free incremental learning methods EWC++ [6,

22], LwF [28], SI [54], MAS [1], RWalk [6] and some base-

lines with g = 5, 10, 20, 50. Finetuning denotes the case

where we directly fine-tune the model trained on the old

classes with the labeled images of new classes, without any

special treatment for catastrophic forgetting. Fixed Repre-

sentation denotes the approach where we freeze the network

weights except for the classification layer (the last fully

connected layer) after the first group of classes has been

learned, and we freeze the classification weight vector after

the corresponding classes have been learned, and only fine-

tune the classification weight vectors of new classes using

the new data. This approach usually underfits for the new

classes due to the limited degree of freedom and incompat-

ible feature representations of the frozen base network. Or-

acle denotes the upper bound results via joint training with

all the training data of the classes learned so far.

The results are shown in Fig. 2. Our method outper-

forms all the methods by a significant margin across all

the settings consistently. We used the official code1 for [6]

to get the results for EWC++ [6, 22], SI [54], MAS [1]

and RWalk [6]. We found they are highly sensitive to the

hyperparameter that controls the strength of regularization

due to the asymmetric information between old classes and

new classes, so we tune the hyperparameter using a held-

out validation set for each setting separately, and report the

best result for each case. The results of LwF [28] are from

iCaRL [41] and they are the second-best in all the settings.

It can be also observed that DMC demonstrates a sta-

ble performance across different g, in contrast to other

1https://github.com/facebookresearch/agem
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Figure 2. Incremental learning with group of g = 5, 10, 20, 50
classes at a time on iCIFAR-100 benchmark.
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crementally over 20 tasks (g = 5) on iCIFAR-100.
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Figure 4. Confusion matrices of methods on iCIFAR-100 when

incrementally learning 10 classes in a group. The entries trans-

formed by log(1 + x) for better visibility. Fig. 4(b), 4(c) and 4(d)

are from [41]. (Best viewed in color.)

regularization-based methods, where the disadvantages of

inherent asymmetric information flow reveal more, as we

incrementally learn more sessions. They struggle in finding

the good trade-off between forgetting and intransigence.

Fig. 3 illustrates how the accuracy on the first group of

classes changes as we learn more and more classes over

time. While the previous methods [1, 6, 22, 28, 54] all

suffer from catastrophic forgetting on the first task, DMC

shows considerably more gentle slop of the forgetting curve.

Though the standard deviations seems high, which is due to

the random class ordering in each run, the relative standard

deviations (RSD) are at a reasonable scale for all methods.

We visualize the confusion matrices of some of the meth-

ods in Fig. 4. Finetuning forgets old classes and makes pre-

dictions based only on the last learned group. Fixed Repre-

sentation is strongly inclined to predict the classes learned

in the first group, on which its feature representation is op-

timized. The previous best performing method LwF does a

better job, but still has many more non-zero entries on the

recently learned classes, which shows strong evidence of in-

formation asymmetric between old classes and new classes.

On the contrary, the proposed DMC shows a more homo-

geneous confusion matrix pattern and thus has visibly less

intrinsic bias towards or against the classes that it encoun-

ters early or late during learning.

Impact of the distribution of auxiliary data. Fig. 5

shows our empirical study on the impact of the distribu-

tion of the auxiliary data by using images from datasets

of handwritten digits (MNIST [26]), house number digits

(SVHN [38]), texture (DTD [10]), and scenes (Places365

[58]) as the sources of the auxiliary data. Intuitively, the

more diversified and more similar to the target data the aux-

iliary data is, the better performance we can achieve. Ex-

periments show that usage of overparticular datasets like

MNIST and SVHN fails to produce competitive results, but

using generic and easily accessible datasets like DTD and

Places365 can already outperform the previous state-of-the-

art methods. In the applied scenario, one may use the prior

knowledge about the target data to obtain the desired auxil-

iary data from a related domain to boost the performance.
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Figure 5. Varying the datasets of auxiliary data used in the consol-

idation stage on iCIFAR-100 benchmark. Note that using MNIST

leads to failure (∼2% acc.) so we omit the plots.

Choices of loss function. We compare some common dis-

tance metrics used in knowledge distillation in Table 1 . We

observe DMC is generally not sensitive to the loss func-

tion chosen, while L2 loss and KD loss [18] with T = 2
performs slightly better than others. As stated in [18], both

formulations should be equivalent in the limit of a high tem-

perature T , so we use L2 loss throughout this paper for its

simplicity and stability over various training schedules.

Effect of the amount of auxiliary data. Fig. 6 illustrates

the effect of the amount of auxiliary data used in consolida-

tion stage. We randomly subsampled 2k × 103 images for
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Table 1. Average incremental accuracies on CIFAR-100 when g =
20 and varying distance metrics used in Ldd.

KD (T = 1) KD (T = 2) L1 L2

46.95± 2.01 58.01± 1.17 57.86± 1.16 58.06± 1.15

k = 0, · · · , 9 from ImageNet32×32 [9]. We report the av-

erage of the classification accuracies over all steps of the IL

(as in [4], the accuracy of the first group is not considered

in this average). Overall, our method is robust against the

reduction of auxiliary data to a large extent. We can out-

perform the previous state-of-the-art by just using 8,000,

16,000 and 32,000 unlabeled images (< 3% of full auxil-

iary data) for g = 10, 20, 50, respectively. Note that it also

takes less training time for the consolidated model to con-

verge when we use less auxiliary data.

10
3

10
4

10
5

10
6

Amount of auxiliary data (in log scale)

10

20

30

40

50

60

A
v
e

. 
in

c
re

m
e

n
ta

l 
a

c
c
. 

in
 %

g=10
g=20
g=50

Figure 6. Average incremental accuracy on iCIFAR-100 with g =
10, 20, 50 classes per group for different the amount of auxiliary

data used in the consolidation stage. Dashed horizontal lines rep-

resent the performance of the previous state-of-the-art, i.e., LwF.

Experiments with larger images. We additionally evalu-

ate our method on CUB-200 [52] dataset in IL setting with

g = 100. The network architecture (VGG-16 [50]) and data

preprocessing are identical with REWC [33]. We use Bird-

Snap [3] as the auxiliary data source where we excluded the

CUB categories. As shown in Table 2, DMC outperforms

the previous state-of-the-art [33] by a considerable margin.

This demonstrates that DMC generalizes well to various im-

age resolutions and domains.

Table 2. Accuracies on CUB-200 when incrementally learning

with g = 100 classes per group.

Methods Old Classes New Classes Average Accuracy

EWC [22] 42.3 48.6 45.3

REWC [33] 53.3 45.2 48.4

Ours 54.70 57.56 55.89

4.3. Incremental learning of object detectors

4.3.1 Experimental setup

Following [49], we evaluate DMC for incremental object

detection on PASCAL VOC 2007 [13] in the IL setting:

there are 20 object categories in the dataset, and we incre-

mentally learn 10 + 10 classes and 19 + 1 classes. The

evaluation metric is the standard mean average precision

(mAP) on the test set. We use training images from Mi-

crosoft COCO [31] dataset as the source of auxiliary data

for the model consolidation stage. Out of 80 object cate-

gories in the COCO dataset, we use the 98,495 images that

contain objects from the 60 non-PASCAL categories.

We perform all experiments using RetinaNet [30], but

the proposed method is applicable to other one-stage de-

tectors [25, 32, 42, 57] with minor modifications. In the

10+10 experiment, we use ResNet-50 [17] as the backbone

network for both 10-class models and the final consolidated

20-class model. In 19+1 experiment, we use ResNet-50 as

the backbone network for the 19-class model as well as the

final consolidated 20-class model, and ResNet-34 for the 1-

class new model. In all experiments, the backbone networks

were pretrained on ImageNet dataset [17].

4.3.2 Experimental results and discussions

We compare our method with a baseline method and

with the state-of-the-art IL method for object detection by

Shmelkov et al. [49]. In the baseline method, denoted by In-

ference twice, we directly run inference for each test image

using two specialist models separately and then aggregate

the predictions by taking the class that has the highest clas-

sification probability among all classes, and use the bound-

ing box prediction of the associated model. The method

proposed by Shmelkov et al. [49] is compatible only with

object detectors that use pre-computed class-agnostic ob-

ject proposals (e.g., Fast R-CNN [14]), so we adapt their

method for RetinaNet by using our novel anchor boxes se-

lection scheme to determine where to apply the distillation,

denoted by Adapted Shmelkov et al. [49].

Learning 10 + 10 classes. The results are given in Table

3. Compared to Inference twice, our method is more time-

and space-efficient since Inference twice scales badly with

respect to the number of IL sessions, as we need to store

all the individual models and run inference using each one

at test time. The accuracy gain of our method over the In-

ference twice method might seem surprising, but we believe

this can be attributed to the better representations that were

inductively learned with the help of the unlabeled auxil-

iary data, which is exploited also by many semi-supervised

learning algorithms. Compared to Adapted Shmelkov et

al. [49], our method exhibits remarkable performance im-

provement in detecting all classes.

Learning 19 + 1 classes. The results are given in Table

4. We observe an mAP pattern similar to the 10 + 10 ex-

periment. Adapted Shmelkov et al. suffers from degraded

accuracy on old classes. Moreover, it cannot achieve good

AP on the “tvmonitor” class. Heavily regularized on 19 old

classes, the model may have difficulty learning a single new

class with insufficient training data. Our DMC achieves

state-of-the-art mAP of all the classes learned, with only

half of the model complexity and inference time of Infer-

ence twice. We also performed the addition of one class
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Table 3. VOC 2007 test per-class average precision (%) when incrementally learning 10 + 10 classes.

Method ae
ro

b
ik

e

b
ir

d

b
o

at

b
o

tt
le

b
u

s

ca
r

ca
t

ch
ai

r

co
w

ta
b

le

d
o

g

h
o

rs
e

m
b

ik
e

p
er

so
n

p
la

n
t

sh
ee

p

so
fa

tr
ai

n

tv mAP

Class 1-10 76.8 78.1 74.3 58.9 58.7 68.6 84.5 81.1 52.3 61.4 - - - - - - - - - - -

Class 11-20 - - - - - - - - - - 66.3 71.5 75.2 67.7 76.4 38.6 66.6 66.6 71.1 74.5 -

Oracle 77.8 85.0 82.9 62.1 64.4 74.7 86.9 87.0 56.0 76.5 71.2 79.2 79.1 76.2 83.8 53.9 73.2 67.4 77.7 78.7 74.7

Adapted Shmelkov et al. [49] 67.1 64.1 45.7 40.9 52.2 66.5 83.4 75.3 46.4 59.4 64.1 74.8 77.1 67.1 63.3 32.7 61.3 56.8 73.7 67.3 62.0

DMC- exclusive aux. data 68.6 71.2 73.1 48.1 56.0 64.4 81.9 77.8 49.4 67.8 61.5 67.7 67.5 52.2 74.0 37.8 63.0 55.5 65.3 72.4 63.8

Inference twice 76.9 77.7 74.4 58.5 58.7 67.8 84.9 77.8 52.0 65.0 67.3 69.5 70.4 61.2 76.4 39.2 63.2 62.1 72.9 74.6 67.5

DMC 73.9 81.7 72.7 54.6 59.2 73.7 85.2 83.3 52.9 68.1 62.6 75.0 69.0 63.4 80.3 42.4 60.3 61.5 72.6 74.5 68.3

Table 4. VOC 2007 test per-class average precision (%) when incrementally learning 19 + 1 classes.

Method ae
ro

b
ik

e

b
ir

d

b
o

at

b
o

tt
le

b
u

s

ca
r

ca
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ch
ai
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co
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le

d
o

g

h
o
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e

m
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e

p
er
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p
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n
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sh
ee

p

so
fa

tr
ai

n

tv mAP

Class 1-19 70.6 79.4 76.6 55.6 61.7 78.3 85.2 80.3 50.6 76.1 62.8 78.0 78.0 74.9 77.4 44.3 69.1 70.5 75.6 - -

Class 20 - - - - - - - - - - - - - - - - - - - 68.9 -

Oracle 77.8 85.0 82.9 62.1 64.4 74.7 86.9 87.0 56.0 76.5 71.2 79.2 79.1 76.2 83.8 53.9 73.2 67.4 77.7 78.7 74.7

Adapted Shmelkov et al. [49] 61.9 78.5 62.5 39.2 60.9 53.2 79.3 84.5 52.3 52.6 62.8 71.5 51.8 61.5 76.8 43.8 43.8 69.7 52.9 44.6 60.2

DMC- exclusive aux. data 65.3 65.8 73.2 43.8 57.1 73.3 83.1 79.3 45.4 74.3 55.1 82.0 68.7 62.6 74.9 42.3 65.2 67.5 67.8 64.0 65.5

Inference twice 70.6 79.1 76.6 52.8 61.5 77.6 85.1 80.3 50.6 76.0 62.7 78.0 76.5 74.7 77.0 43.7 69.1 70.3 70.0 69.5 70.1

DMC 75.4 77.4 76.4 52.6 65.5 76.7 85.9 80.5 51.2 76.1 63.1 83.3 74.6 73.7 80.1 44.6 67.5 68.1 74.4 69.0 70.8

experiment with each of the VOC categories being the new

class. The behavior for each class is very similar to the

“tvmonitor” case described above. The mAP varies from

64.88% (for new class “aeroplane”) to 71.47% (for new

class “person”) with mean 68.47% and standard deviation

of 1.75%. Detailed results are in the supplemental material.

Impact of the distribution of auxiliary data. The auxil-

iary data selection strategy that was described in Sec. 4.3.1

would potentially include images that contain objects from

target categories. To see the effect of data distribution, we

also experimented with a more strict data in which we ex-

clude all the MS COCO images that contain any object in-

stance of 20 PASCAL categories, denoted by DMC- exclu-

sive aux. data in Table 3 and 4. This setting can be consid-

ered as the lower bound of our method regarding the distri-

bution of auxiliary data. We see that even in such a strict

setting, our method outperforms the previous state-of-the-

art [49]. This study also implies that our method can benefit

from auxiliary data from a similar domain.

Consolidating models with different base networks. As

mentioned in Sec. 4.3.1, originally we used different base

network architectures for the two specialist models in 19+1
classes experiment. As shown in Table 5, we also com-

pare the case when using ResNet-50 backbone for both the

19-class model and the 1-class model. We observed that

ResNet-50 backbone does not work as well as ResNet-34

backbone, which could result from overfitting of the deeper

model to the training data of the new class and thus it fails

to produce meaningful distillation targets in the model con-

solidation stage. However, since our method is architecture-

independent, it offers the flexibility to use any network ar-

chitecture that fits best to the current training data.

Table 5. VOC 2007 test mAP (%) when using different network

architectures for the old and new model, respectively. Classes 1-

19 are the old classes, and class 20 (tvmonitor) is the new one.
Model Old Classes New Class All Classes

Class 1-19 (ResNet-50) 70.8 - -

Class 20 (ResNet-34) - 68.9 -

Consolidated 70.9 69 70.8

Class 20 (ResNet-50) - 59.0 -

Consolidated 70.2 57.9 69.9

5. Conclusion

In this paper, we present a novel class-incremental learn-

ing paradigm called DMC. With the help of a novel dou-

ble distillation training objective, DMC does not require

storage of any legacy data; it exploits readily available

unlabeled auxiliary data to consolidate two independently

trained models instead. DMC outperforms existing non-

exemplar-based methods for incremental learning on large-

scale image classification and object detection benchmarks

by a significant margin. DMC is independent of network

architectures and thus it is applicable in many tasks.

Future directions worth exploring include: theoretically

characterize how the “similarity” between the unlabeled

auxiliary data and target data affects the IL performance;

2) continue the study on using of exemplars of old data

with DMC (presented in supp. material), in terms of ex-

emplar selection scheme and rehearsal strategies; 3) gener-

alize DMC to consolidate multiple models at one time; 4)

extend DMC to other applications where consolidation of

deep models is beneficial, e.g., taking ensemble of models

trained with the same or partially overlapped sets of classes.
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K. Alahari. End-to-end incremental learning. In The Eu-

ropean Conference on Computer Vision (ECCV), September

2018. 2, 3, 7

[5] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised

learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE

Transactions on Neural Networks, 20(3):542–542, 2009. 3

[6] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr.

Riemannian walk for incremental learning: Understanding

forgetting and intransigence. In The European Conference

on Computer Vision (ECCV), September 2018. 2, 5, 6

[7] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny.

Efficient lifelong learning with a-gem. In Proceedings of

the International Conference on Learning Representations

(ICLR), 2019. 2, 3

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016. 1

[9] P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsam-

pled variant of imagenet as an alternative to the cifar datasets.

arXiv preprint arXiv:1707.08819, 2017. 5, 7

[10] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and

A. Vedaldi. Describing textures in the wild. In Proceedings

of the IEEE Conf. on Computer Vision and Pattern Recogni-

tion (CVPR), 2014. 6

[11] G. Csurka. A comprehensive survey on domain adaptation

for visual applications. In Domain Adaptation in Computer

Vision Applications, pages 1–35. Springer, 2017. 3

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. ImageNet: A Large-Scale Hierarchical Image Database.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2009. 5

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

7

[14] R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1440–1448,

2015. 3, 5, 7

[15] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and

Y. Bengio. An empirical investigation of catastrophic for-

getting in gradient-based neural networks. In International

Conference on Learning Representations (ICLR), 2014. 1, 2

[16] C. He, R. Wang, S. Shan, and X. Chen. Exemplar-supported

generative reproduction for class incremental learning. In

29th British Machine Vision Conference (BMVC 2018),

pages 3–6, 2018. 2, 3

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016. 5, 7

[18] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. In NIPS Deep Learning and Represen-

tation Learning Workshop, 2014. 2, 4, 6

[19] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-

berger. Densely connected convolutional networks. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 4700–4708, 2017. 1

[20] K. Javed and F. Shafait. Revisiting distillation and incremen-

tal classifier learning. Asian Conference on Computer Vision

(ACCV), 2018. 2, 3

[21] R. Kemker and C. Kanan. Fearnet: Brain-inspired model for

incremental learning. In International Conference on Learn-

ing Representations, 2018. 2, 3

[22] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-

jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,

A. Grabska-Barwinska, et al. Overcoming catastrophic for-

getting in neural networks. Proceedings of the national

academy of sciences, page 201611835, 2017. 2, 5, 6, 7

[23] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

5

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1

[25] H. Law and J. Deng. Cornernet: Detecting objects as paired

keypoints. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 734–750, 2018. 7

[26] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 6

[27] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang.

Overcoming catastrophic forgetting by incremental moment

matching. In Advances in Neural Information Processing

Systems, pages 4652–4662, 2017. 3

[28] Z. Li and D. Hoiem. Learning without forgetting. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2017. 2, 5, 6

[29] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

arXiv preprint arXiv:1612.03144, 2016. 4

[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. IEEE transactions on pattern

analysis and machine intelligence, 2018. 1, 3, 4, 7

[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European Conference on Com-

puter Vision, pages 740–755. Springer, 2014. 7

1139



[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European Conference on Computer Vision, pages 21–37.

Springer, 2016. 7

[33] X. Liu, M. Masana, L. Herranz, J. Van de Weijer, A. M.

Lopez, and A. D. Bagdanov. Rotate your networks: Bet-

ter weight consolidation and less catastrophic forgetting. In

2018 24th International Conference on Pattern Recognition

(ICPR), pages 2262–2268. IEEE, 2018. 5, 7

[34] D. Lopez-Paz et al. Gradient episodic memory for contin-

ual learning. In Advances in Neural Information Processing

Systems, pages 6467–6476, 2017. 2, 3

[35] A. Mallya, D. Davis, and S. Lazebnik. Piggyback: Adapt-

ing a single network to multiple tasks by learning to mask

weights. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 67–82, 2018. 3

[36] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks

to a single network by iterative pruning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7765–7773, 2018. 3

[37] M. McCloskey and N. J. Cohen. Catastrophic interference

in connectionist networks: The sequential learning problem.

In Psychology of learning and motivation, volume 24, pages

109–165. Elsevier, 1989. 1, 2

[38] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. NIPS Workshop on Deep Learning and Unsu-

pervised Feature Learning, 2011. 6

[39] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational

continual learning. In Proceedings of the International Con-

ference on Learning Representations (ICLR), 2018. 3

[40] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-

taught learning: transfer learning from unlabeled data. In

Proceedings of the 24th international conference on Machine

learning, pages 759–766. ACM, 2007. 3

[41] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.

icarl: Incremental classifier and representation learning. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017. 2, 3, 5, 6

[42] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 779–788, 2016. 7

[43] A. Robins. Catastrophic forgetting, rehearsal and pseudore-

hearsal. Connection Science, 7(2):123–146, 1995. 3

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. 5

[45] S. Samet, A. Miri, and E. Granger. Incremental learning of

privacy-preserving bayesian networks. Applied Soft Comput-

ing, 13(8):3657–3667, 2013. 2

[46] J. Schwarz, J. Luketina, W. M. Czarnecki, A. Grabska-

Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell. Progress

& compress: A scalable framework for continual learning.

Proceedings of the 35th International Conference on Ma-

chine Learning, 2018. 2
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