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Figure 1: Given a coarsely cropped object in a source image, a target image and a blending location, our algorithm can blend

the selected object onto a target image with seamless boundary and consistent style with respect to the target image.

Abstract

Image composition is an important operation to cre-

ate visual content. Among image composition tasks, im-

age blending aims to seamlessly blend an object from a

source image onto a target image with lightly mask ad-

justment. A popular approach is Poisson image blending

[23], which enforces the gradient domain smoothness in

the composite image. However, this approach only con-

siders the boundary pixels of target image, and thus can

not adapt to texture of target background image. In ad-

dition, the colors of the target image often seep through

the original source object too much causing a significant

loss of content of the source object. We propose a Poisson

blending loss that achieves the same purpose of Poisson

image blending. In addition, we jointly optimize the pro-

posed Poisson blending loss as well as the style and con-

tent loss computed from a deep network, and reconstruct

the blending region by iteratively updating the pixels us-

ing the L-BFGS solver. In the blending image, we not only

smooth out gradient domain of the blending boundary but

also add consistent texture into the blending region. User

studies show that our method outperforms strong baselines

as well as state-of-the-art approaches when placing objects

onto both paintings and real-world images. Code is avail-

able at: https://github.com/owenzlz/DeepImageBlending

1. Introduction

Image blending is a method for image composition. It

generally refers to cropping a certain region of a source im-

age (usually an object) and placing it onto the target image

at a specified location, where the goal is to make the com-

posite image looks as natural as possible. The challenge of

this task is that the cropped region may not be precisely de-

lineated. Therefore, the blending process needs to not only

adjust the appearance of the cropped object to be compat-

ible with the new background but also make the cropping

boundary appear seamless.

The current most popular method for image blending is

Poisson image editing [23]. The idea is to reconstruct pixels
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in the blending region such that the blending boundary has

smooth pixel transition or small gradients with respect to the

boundary pixels in the target image. However, this method

is difficult to combine with other reconstruction objectives

because of its closed-form matrix solution. A recent work

[33] combines the closed-form solution of Poisson equa-

tion with GAN loss to synthesize realistic blending images.

However, this method requires a source region, a target im-

age, and a corresponding well-blended image as training ex-

amples for supervised learning. Closely related to image

blending is image harmonization, but the foreground object

must be precisely delineated and thus the goal is to only ad-

just the illumination, color, and texture of the foreground to

make it compatible with the new background.

In this work, we propose a novel two-stage blending al-

gorithm. The algorithm first generates a seamless bound-

ary for the source region, and then further refines the region

with similar styles and textures with respect to the target im-

age. In this algorithm, we propose a differentiable loss that

enforces the equivalent purpose of the original objective of

Poisson equation, and it can be easily combined with other

reconstruction objective functions. Our algorithm works

well not only for real-world target images but also stylized

paintings by utilizing content and style loss [7] from deep

features. In addition, our algorithm solves the reconstruc-

tion of image blending using only a single source image, a

coarse mask, and a target image. Since our algorithm does

not rely on any training data, it can generalize to any source

and target images. Finally, we show the uniqueness and

effectiveness of our algorithm compared to the state-of-the-

arts methods through various testing cases.

2. Related Work

2.1. Image Blending

Image blending refers to cropping a certain region of a

source image (usually an object) and placing it onto the tar-

get image at a specified location, where the goal is to make

the composite image look as natural as possible. In con-

trast with image harmonization, an important characteristic

of image blending is that it does not need precise object de-

lineation for the blending mask. The default way of doing

this task is to directly copy pixels from source image and

paste them onto the target image, but this would generate

obvious artifacts because of the abrupt intensity change in

the compositing boundaries.

An early work, alpha blending [25], is the process of lay-

ering multiple images, with the alpha value for a pixel in a

given layer indicating what fraction of the colors from lower

layers are seen through the color at the given level. Al-

though alpha blending performs much better than directly

copy-and-pasting, it produces a ghost effect in the compos-

ite image as the contents in both source and target images

exist in the same region.

Alternatively, the most popular image blending tech-

nique aims to inform gradient domain smoothness [23, 1,

6, 11, 13, 16, 29, 31]. The motivation of gradient domain

blending is that the human visual system is very sensitive

to the regions with abrupt intensity change, such as edges,

and thus we want to produce an image with smooth tran-

sition over the blending boundary. The earliest work [23]

proposes to reconstruct the pixels of the blending region in

the target image by enforcing the gradient domain consis-

tency with respect to the source image, where the gradient

of the blending region is computed and propagated from the

boundary pixels in the target image. With such gradient do-

main consistency, the blended image will have smooth tran-

sitions over the composite boundary even though the object

mask are not precisely delineated. Our work is partially in-

spired by Poisson image editing [23], which will be further

described in Section 3.

A recent approach GP-GAN [33] has leveraged the

closed-form solution of the Gaussian-Poison Equation [3]

and Wasserstein Generative Adversarial Network (WGAN)

[2] to produce photo-realistic blending results. However,

this approach relies on supervised training, which requires

paired data of a source image, target image, and correspond-

ing well-blended image as ground-truth.

2.2. Other Image Editing Techniques

Other common image editing tools includes image de-

noising, image super-resolution, image inpainting, image

harmonization, style transfer and so on. In recent years,

Generative Adversarial Networks (GANs) [8] have been ex-

tensively applied to these tasks and produced very exciting

results.

In super resolution [5, 14, 12, 37, 38, 39, 32], deep

models learn the image texture prior to upsample a low-

resolution image into high-resolution version. In image in-

painting [15, 34, 22, 10, 35, 18, 36, 40], the network aims to

fill the missing pixels in an image with the learned semantic

information as well as real image statistics.

Closely related to our task is image harmonization,

which extracts the foreground region in one image and com-

bines it with the background of another image while adjust-

ing the appearance of the foreground region to make it com-

patible with the new background. Early works [26, 24] use

the global color statistics of the background image to ad-

just the appearance of the foreground image. Recently, [30]

propose an automatic data acquisition approach and learn an

end-to-end deep network to capture both the context and se-

mantic information of the composite image during harmo-

nization. Closest to our work, [20] propose a deep painterly

harmonization technique to composite a real-world object

onto a stylized paintings by adjusting the parameters of the

transfer depending on the painting.

Another closely related task is style transfer [7, 12, 9, 19,
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Figure 2: The two images on the left show the intensity change in a ”copy-and-paste” image and a ”Poisson Blended” image.

The images on the right demonstrate the essential idea of poisson image editing, where the goal is to enforce the Laplacian

gradient domain consistency between the source image and the blended image with a boundary constraint from target image.

Specifically, we use a Laplacian filter to compute the second order gradient of images.

17, 27], which aims to transform the style of an image into

the style of another image. [7] first propose to transform a

content image into the style of another image by jointly op-

timizing the transformed image’s similarity of deep features

with respect to the content image and similarity of gram ma-

trices of deep features with respect to the style image.

3. Background - Poisson Image Editing

Directly copying a foreground object from source image

and pasting it onto a target image can produce big intensity

changes at the boundary, which creates obvious artifacts to

human eyes. Therefore, the motivation of poisson image

blending is to smooth the abrupt intensity change in the

blending boundary in order to reduce artifacts. In Fig. (2),

the left image shows the abrupt intensity change in the com-

posite boundary in the copy-and-paste image and a smooth

boundary transition using poisson blending [23].

In the original work [23], poisson image blending is for-

mulated as an image interpolation problem using a guidance

vector field.

min
f

∫∫
Ω

|▽f − v|2 with f |∂Ω = f∗|∂Ω (1)

where ∇ = [ ∂.
∂x

, ∂.
∂y

] is the gradient operator, f is the

function of the blending image, f∗ is the function of the

target image, v is the vector field, Ω is the blending region

and ∂Ω is the boundary of the blending region. In this case,

the guidance field v is the gradient field taken directly from

source image g.

v = ▽g (2)

We solve this minimization problem with boundary con-

dition for each color channel independently to obtain the

RGB image.

For images, the problem can be discretized using the un-

derlying discrete pixel grid to obtain a quadratic optimiza-

tion problem.

min
f |Ω

∑
〈p,q

⋂
Ω 6=∅〉

(fp−fq−vpq)
2, with fp = f∗

p for all p ∈ ∂Ω

(3)

where Np is the set of 4-connected neighbors for pixel p,

〈p, q〉 denote a pixel pair such that q ∈ Np, fp is the value

of f at p and vpq = gp − gq for all 〈p, q〉.
For discrete system, the solution can be converted into

the following simultaneous linear equations. For p ∈ Ω, the

linear equations are as follows:

|Np|fp −
∑

q∈Np

⋂
Ω

fq =
∑

q∈Np

⋂
∂Ω

f∗
q +

∑
q∈Np

vpq (4)

For pixels p interior to Ω, there are no boundary pixels

from the target image. Thus, the equation becomes the fol-

lowing:

|Np|fp −
∑
q∈Np

fq =
∑
q∈Np

vpq (5)

We need to solve for fp from the given set of simultane-

ous linear equations. Since Eq.(4) form a sparse symmet-

ric positive-definite system, two classical iterative solvers

Gauss-Seidel and V-cycle multigrid [23] are used to solve

the linear system in the early works.

4. Methods

Our algorithm is a two-stage process, as shown in Fig.

(3). In the first stage, a preliminary blended image is syn-

thesized using the proposed Poisson gradient loss, style

loss, and content loss. In the second stage, the preliminary

blended image is further transformed to have a more simi-

lar style to match the target image. Here, we denote IS as

source image, IT as target image, IB as blending image,

IBR as refined blending image, and M as mask. Here, we

assume the source image IS has already been cropped out
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Figure 3: This figure shows our two-stage blending algorithm. In the first stage, an input image IZ is randomly initialized and

directly gets updated with respect to a gradient loss, content loss, and style loss. The gradient loss enforces the gradient of

blending region to be the same as the gradient of the source object, the content loss enforces the semantic similarity between

the blending region and the source object, and the style loss enforces the textural similarity between the blending region and

the target image. In the second stage, the blending image from first stage is considered as an input image, and is further

optimized with respect to the blending image and target image in terms of content and style, respectively.

using the coarse mask M . The size of IS and IT may or

may not be the same, but they can be easily aligned using

the user-provided offsets. For simplicity, we consider IS
and M are already aligned with IT and thus have the same

dimension in the following discussion. We further define an

input image as IZ , which represents the reconstructed pix-

els. During training, the joint loss back-propagates to IZ
in stage one or IBR in stage two, and thus the optimization

process essentially adjusts pixel values in IZ or IBR.

4.1. Poisson Gradient Loss

As we discuss in Section 3, Poisson image Eq. (1) pro-

posed to reconstruct the pixels of the blending region by en-

forcing the gradient domain consistency between the blend-

ing image and the source image. In the meantime, the gra-

dient of the blending image is initially computed from the

boundary pixels of the target image and propagated toward

the inside. Such consistency produce seamless boundary of

the blending region, but it is solved using a well-designed

matrix operation and is difficult to combine with other con-

straints for pixel reconstruction. Thus, we propose to con-

vert this gradient domain constraint into a differentiable loss

function as follows,

Lgrad =
1

2HW

H∑
m=1

W∑
n=1

[▽f(IB)−(▽f(IS)+▽f(IT ))]
2
mn

(6)

In Eq. (6), ▽ represents the Laplacian gradient operator,

and H and W are the width and height of image. The blend-

ing image is defined as IB = IZ⊙M+IT ⊙ (1−M). This

loss function is a close approximation to the Poisson Eq.

(1). First, the reconstructed pixels of IZ is directly com-

bined with IT to construct IB , and then the Laplacian filter

is operated on the whole IB , which takes the boundary pix-

els of IT into account. This part satisfies the boundary con-

straint in Poisson equation. Second, we directly minimize

the difference between the gradient of IB and the addition

of gradients of IS and IT . Since the gradient of IT is ex-

actly the same as the gradient outside blending region in IB ,
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Figure 4: This is a demonstrate of the blending pixel reconstruction process at different iterations in stage one and stage two.

the loss is essentially computed within the blending region.

The second part satisfies the gradient domain constraint in

Eq. (1). An alternative way to implement this loss is to crop

out the gradient of the blending region in IB using M and

compare it with ▽IS . We think these two ways of imple-

mentation make little differences.

4.2. Style and Content Loss

In the original work [7], Gatys et al. proposed to trans-

form the style of a source image using a style loss while

preserving the content of the source using a content loss.

In the first stage, the content and style losses are defined as

follows,

Lcont =

L∑
l=1

αl

2NlMl

Nl∑
i=1

Ml∑
k=1

(Fl[IZ ] ⊙M−Fl[IS ])
2
ik (7)

Lstyle =
L∑

l=1

βl

2N2
l

Nl∑
i=1

Nl∑
j=1

(Gl[IZ ]−Gl[IT ])
2
ij (8)

where ⊙ is the element-wise product, L is the number

of convolutional layers, Nl is the number of channels in

activation, Ml is the number of flattened activation val-

ues in each channel. Fl[·] ∈ R
Nl×Ml is an activation

matrix computed from a deep network F at the lth layer.

Gl[·] = Fl[·]Fl[·]
T ∈ R

Nl×Nl denotes the Gram matrix

of the corresponding activation matrix at the lth layer. In-

tuitively, the Gram matrix captures the similarity relation

between all pairs of channel features, which encodes the

image style or texture and zero information about spatial

structure. Finally, αl and βl are the weights that control

the influence of each layer when computing the content and

style loss.

In the second stage, the inputs to the content and style

losses are different, which are defined as follows,

Lcont =

L∑
l=1

αl

2NlMl

Nl∑
i=1

Ml∑
k=1

(Fl[IBR]− Fl[IB ])
2
ik (9)

Lstyle =
L∑

l=1

βl

2N2
l

Nl∑
i=1

Nl∑
j=1

(Gl[IBR]−Gl[IT ])
2
ij (10)

where IBR is the refined blending image, which is opti-

mized with respect to IB in terms of content and IT in terms

of style.

4.3. Regularization Loss

To stabilize the style transformation of blended region

and encourage spatial smoothness, we further add a his-

togram loss proposed by [27] and a total variation loss pro-

posed by [21] to regularize the generated image.

The histogram loss from [27] performs a histogram

matching on each corresponding feature map at each out-

put layer between the target image and the blended output.

In this case we do it each iteration. Let Fl(IB) be the activa-

tion output for each layer of the blended image and Rl(IB)
be the histogram matched activation between the blended

output and the target image. This loss serves to stabilize

the style transfer by matching the marginal distributions

for each filter in each layer of the blended image with the

marginal distribution of the target image. The activations

we used for the histogram loss is the same activations as the

style loss.

Lhist =
L∑

l=1

γl ‖Fl(IB)−Rl(IB)‖ F
2

(11)

The total variation (tv) loss is used to remove the un-

wanted details while preserving the import information in

the image. The loss objective is shown below.

Ltv =

H∑
m=1

W∑
n=1

|Im+1,n − Im,n|+ |Im,n+1 − Im,n| (12)

4.4. Two­Stage Algorithm

In our algorithm, the first stage aims to seamlessly blend

the object onto the background, and the second stage aims
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Figure 5: Ablation study of different loss functions as well as single-stage versus two-stage.

to further refine the texture and style of the blending re-

gion. The input to the first stage is a 2D random noise,

while the input to the second stage is the final blending im-

age from the first stage. We use the VGG-16 [28] network

pretrained on ImageNet [4] to extract features for comput-

ing style and content losses. Regarding the gradient domain,

we use Laplacian filter to compute the second order gradient

of images to compute the gradient blending loss.

Algorithm 1 First Stage - Seamless Blending

Input: source image IS , blending mask M , target image IT
max iteration T , loss weights λgrad, λcont, λstyle, λhist, λtv

Given: a gradient operator ▽, a pretrained VGG network F

Output: blending image IB
for i ∈ [1:T] do

IB = IZ ⊙M + IT ⊙ (1−M)
Lgrad = GradientLoss(IB , IS , IT ,▽) by Eq. 6

Lcont = ContentLoss(IZ ,M, IS , F ) by Eq. 7

Lstyle = StyleLoss(IB , IT , F ) by Eq. 8

Lhist = HistogramLoss(IB , IT , F ) by Eq. 11

Ltv = TV Loss(IB) by Eq. 12

Ltotal = λgrad∗Lgrad+λcont∗Lcont+λstyle∗Lstyle+
λhist ∗ Lhist + λtv ∗ Ltv

IZ ← L-BFGS Solver(Ltotal, IZ)
end

IB = IZ ⊙M + IT ⊙ (1−M)

Algorithm 2 Second Stage - Style Refinement

Input: blending image IB , target image IT
max iteration T , loss weights λcont, λstyle, λhist, λtv

Given: a pretrained VGG network F

Output: refined blending image IBR

IBR = copy(IB)
for i ∈ [1:T] do
Lcont = ContentLoss(IBR, IB , F ) by Eq. 9

Lstyle = StyleLoss(IBR, IT , F ) by Eq. 10

Lhist = HistogramLoss(IBR, IT , F ) by Eq. 11

Ltv = TV Loss(IBR) by Eq. 12

Ltotal = λgrad∗Lgrad+λcont∗Lcont+λstyle∗Lstyle+
λhist ∗ Lhist + λtv ∗ Ltv

IBR ← L-BFGS Solver(Ltotal, IBR)
end

We use VGG layers conv1 2, conv2 2, conv3 3, conv4 3

to compute style loss and conv2 2 to compute content loss.

We set maximum iteration to be 1,000 in both stages, and

optimize the loss with L-BFGS solver. The runtime on a

512× 512 image takes about 5 minutes on a single NVIDIA

GTX 1080Ti. We set λblend = 10e5, λcont = 1, λstyle =
10e5, λhist = 1, λtv = 10e − 6 in the second stage, and

set λcont = 1, λstyle = 10e7, λhist = 1, λtv = 10e − 6 in

the second stage. More carefully tuning might give a better

combination of hyper-parameters, but this is not our focus.
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Figure 6: This figure shows the comparison between strong baseline approaches and ours on the paintings. Poisson Blending

refers to Poisson Image Editing[23]. Poisson Blending + Style Transfer refers to first blend the object onto the target image

and then run style transfer[7] on the blending image. Style Transfer + Poisson Blending refers to first run style transfer[7]

on the source image and then blend it onto the target image.

5. Experimental Results

We conduct ablation, comparison and user studies to

show the robustness of our method and results. In our ab-

lation study, we show the importance of each loss function

and our second stage style refinement. As shown in Fig.

(5), our full model clearly outperforms other baseline vari-

ants. There exists obvious artifacts on the blending bound-

ary without our proposed blending loss. Some visual con-

tents are wiped out without the content loss. The blending

region and target background have inconsistent illumination

and texture without style loss. Finally, our two-stage al-

gorithm adds more style and texture in the blending image

compared to the single-stage baseline.

In our comparison study, we first conduct experiments

on paintings as shown in Fig. (6). In this study, we com-

pare with several intuitive and strong baselines. ”copy-

and-paste” produces results that have obvious artificial

boundary. ”Poisson Blending” [23] is able to produce a

smooth blending boundary, but produce inconsistent style

and texture between the blending region and the back-

ground. ”Poisson Blending + Style Transfer” [23, 7] pro-

duce more consistent style and texture than ”Poisson Blend-

ing” but produces unpleasant color illumination during

Poisson Blending. ”Style Transfer + Poisson Blending”

[7, 23] produces consistent style but lack some of the orig-

inal source image content. In contrast, our method pro-

duces most consistent style and texture while maintaining

the source content.

In the experiment of real-world images, we compare

our algorithm with several state-of-the-art image compos-

ite algorithms, as shown in Fig. (7). ”Deep Image Har-

monization” [30] is a data-driven harmonization algorithm

that aims to adjust illumination of composite the region us-

ing the learned image prior. As seen, it is able to adjust

the illumination of the blending region but is not able to

smooth out the boundary, and thus has an artificial border.

”Poisson Blending”[23] generates seamless boundary, but

the background color ”blends through” the blending region.

”GP-GAN”[33] is a recent proposed blending algorithm

that leverages Poisson Blending with Generative Adversar-

ial Network, and is trained in a supervised way. However,

this method can hardly generalize to our test cases and pro-

duces unrealistic boundary and illumination. Finally, our

algorithm produces the best visual results in terms of blend-

ing boundary, texture, and color illumination.

To quantify the performance of our method in compar-
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Figure 7: This figure shows the comparison between the state-of-the-art image composite approaches and ours on real-

world images. Deep Harmonization refers to Deep Image Harmonization[26]. Poisson Blending refers to Poisson Image

Editing[23]. GP-GAN refers to Gaussian-Poisson Generative Adversarial Network[33].

Figure 8: This figure shows our user study results. Two histograms on the left and right show the quantitative comparison in

paintings and real-world images respectively. ”PB+ST” denotes ”Poisson Blending + Style Transfer” and ”ST+PB” denotes

”Style Transfer + Poisson Blending”.

ison to other algorithms, we recruited thirty users for user

studies using 20 sets of images, 10 real-world and 10 paint-

ing style target images. Each user is asked to pick one com-

posite image they think is the most realistic from five differ-

ent images generated by five different algorithms. From the

histograms (8), we see that the images that have the high-

est votes are almost all images generated by our method.

Specifically, nine out of ten images our method generated

using real-world target images received the highest votes

from the users, and eight out of ten images our method

generated using painting-style target images received the

highest votes from the users. The results indicate that our

method is more preferable than other methods 80∼ 90% of

the time.

6. Conclusion

In this paper, we propose a novel gradient blending loss

and a two-stage algorithm that generates blending image

on-the-fly with a L-BFGS solver. Our algorithm does not

rely on any training data and thus can generalize to any

real-world images or paintings. Through user study, our al-

gorithm is proven to outperform strong baselines and state-

of-the-arts approaches. We believe that our work could be

applied in common image editing tasks and opens new pos-

sibility for users to easily compose artistic works.
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[15] R. Köhler, C. Schuler, B. Schölkopf, and S. Harmeling.

Mask-specific inpainting with deep neural networks. In Ger-

man Conference on Pattern Recognition, pages 523–534.

Springer, 2014.

[16] A. Levin, A. Zomet, S. Peleg, and Y. Weiss. Seamless image

stitching in the gradient domain. In European Conference on

Computer Vision, pages 377–389. Springer, 2004.

[17] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang.

Universal style transfer via feature transforms. In Advances

in neural information processing systems, pages 386–396,

2017.

[18] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and

B. Catanzaro. Image inpainting for irregular holes using par-

tial convolutions. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 85–100, 2018.

[19] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep photo

style transfer. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4990–

4998, 2017.

[20] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep painterly

harmonization. In Computer Graphics Forum, volume 37,

pages 95–106. Wiley Online Library, 2018.

[21] A. Mahendran and A. Vedaldi. Understanding deep image

representations by inverting them. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 5188–5196, 2015.

[22] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2536–2544, 2016.
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