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Figure 1: Given only a small foreground region, our model can learn to outpaint a set of diverse and plausible missing

backgrounds in both face image and street scene image.

Abstract

In this paper, we study the problem of generating a set of

realistic and diverse backgrounds when given only a small

foreground region. We refer to this task as image outpaint-

ing. The technical challenge of this task is to synthesize not

only plausible but also diverse image outputs. Traditional

generative adversarial networks suffer from mode collapse.

While recent approaches [32, 28] propose to maximize or

preserve the pairwise distance between generated samples

with respect to their latent distance, they do not explicitly

prevent the diverse samples of different conditional inputs

from collapsing. Therefore, we propose a new regulariza-

tion method to encourage diverse sampling in conditional

synthesis. In addition, we propose a feature pyramid dis-

criminator to improve the image quality. Our experimen-

tal results show that our model can produce more diverse

images without sacrificing visual quality compared to state-

of-the-arts approaches in both the CelebA face dataset [29]

and the Cityscape scene dataset [2]. Code is available at:

https://github.com/owenzlz/DiverseOutpaint

1. Introduction

Humans have the ability to hallucinate the possible back-

grounds for a given object. For example when one shops for

a couch (single foreground object) online, one can imagine

how the couch might look inside the living room, one can

also imagine how the couch might look in the office (various

backgrounds). Is it possible for a machine to do the same?

In this paper, we aim to have the machine learn and synthe-

size a set of diverse and reasonable affordance backgrounds

when given a foreground object, especially for cases where

large portions of pixels are missing in an image. We refer

to this task as image outpainting.

To outpaint the reasonable background for a foreground,

the network has to understand the affordance relationship

between the foreground and the background. For example,

when given features of a person’s eyes, the machine needs to

infer the possible facial expressions and other facial features

of a person. Or given a car or a pedestrian pose, a machine

needs to infer the street layout, as shown in Fig.(1). While

affordance learning [10, 5, 22, 26, 35, 38, 41] aims to learn

how objects interact in an environment, our task focuses on

inverse affordance, which hallucinates the environment or

background for the objects. Why would this task be use-

ful besides generating interesting images? Some potential

applications include facial recognition when large regions

of the face are occluded, or synthesizing diverse images for

product advertisements.

Intuitively, our task is multimodal common sense learn-

ing, which means there exists many possible backgrounds

when given only a foreground region. The goal of this paper

is to generate not only plausible but also diverse and thor-

ough outputs. To make this more clear, we draw comparison

between out-painting and the more common inpainting, the

task of filling in missing pixels in an image. Within inpaint-

ing all background and some of the foreground objects are

usually given and the semantic relationship between fore-
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Figure 2: Motivation of our diversity regularization. Given conditional inputs (a), generative models could sample many

outputs for each conditional input but collapse to a few modes (b). The current solution to this problem (c), normalized

diversification [28], could preserve pairwise distance between sampled outputs for each conditional input, but it does not

guarantee that the sampled outputs of different inputs could collapse together. Our solution (d) could not only preserve the

pairwise distance of samples for each input but also prevent the samples of different inputs from collapsing together.

ground and background objects are pre-determined by the

large portion of available pixels. This precludes the gener-

ator from hallucinating multiple possible semantic relation-

ship between foreground/background objects. Outpainting,

on the contrary, requires to fill in large portion of miss-

ing background and there is more degree of freedom in

the common-sense semantic relationship that needs to be

filled in by the generator. The outpainting therefore imposes

higher diversity requirement on the generation framework.

We summarize the contributions of this work as follows.

First, we formulated a new image outpainting task and pro-

vided a multimodal image synthesis solution. Second, we

proposed a new diversity regularization technique to en-

courage diverse sampling without sacrificing image quality

in this conditional synthesis task. In addition, we proposed

a novel feature pyramid discriminator to check multi-scale

information of outpainted images to improve visual quality.

Overall, our proposed method can achieve more diversity

and similar or better quality compared to the state-of-the-

arts multimodal generative methods in both CelebA [29]

face dataset and Cityscape [2] street dataset.

2. Related Work

2.1. Deep Generative Models

Deep generative models have produced exciting results.

One type of generative models is Generative Adversarial

Network (GAN) [9]. It consists of a generator network (G)

and a discriminator network (D). During training, G tries

to generate data as similar as the real data while D tries to

differentiate the data from the real data. Once the adver-

sarial training reaches an equilibrium, G is able to generate

data that is indistinguishable from the real data distribution.

Some applications of GAN will be elaborated in section 2.2.

Another popular generative model is variational auto-

encoder (VAE), which embeds high-dimensional data into

a low-dimensional Gaussian distribution, samples a latent

code and decodes it to the output space. The VAE frame-

work is often used in multimodal prediction tasks, where

the latent distribution models the uncertainty in the output

space. For example, it has been used in multimodal image-

to-image translation [54, 32, 21], predicting uncertain future

motions [40, 6, 46], hallucinating diverse human affordance

[42, 24] and so on.

We will discuss the related works that address the mode

collapse issue in generative modeling. Mode collapse refers

to the degenerate case where the generator produces lim-

ited or even single output mode. BourGAN [44] proposes

to model the modes as a geometric structure of data distri-

bution in a metric space, and uses mixture of Gaussians to

construct latent space in order to map to different modes

wihtout collapse in unconditional generation. In condi-

tional generation, mode seeking GAN (MSGAN) [32] pro-

poses to maximize the ratio of two sampled images over the

their corresponding latent variables as a simple and intu-

itive diversity regularization. Lastly, normalized diversifica-

tion [28] proposes to enforce the model to preserve the nor-

malized pairwise distance between the sparse samples from

a latent distribution to the corresponding high-dimensional

output space. On top of the normalized diversification, we

proposed a simple but effective diversity regularization to

further encourage diversity in conditional image generation.

The experimental results show that our method can gener-

ate more diverse images without sacrificing image quality

compared to the state-of-the-arts approaches.

2.2. Conditional Image Synthesis

Deep generative models have been applied to many

conditional image synthesis tasks. In super resolution
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Figure 3: Model Architecture. The top part shows the architecture of the network, and the bottom part illustrates how the

normalized diversification and diversity regularization are implemented.

[4, 18, 16, 49, 50, 51, 43], deep models learn the image

texture prior to upsample a low-resolution image into high-

resolution version. In style transfer [7, 16, 13, 30, 25], im-

ages can be transformed into an arbitrary style while its

content being maintained by simultaneously minimizing the

content and style loss w.r.t content and style images in fea-

ture space. In text-to-image synthesis [37, 17, 23], models

can synthesize image layout and texture based on the input

text.

Image inpainting, the task of filling parts of missing pix-

els in an image, is the most similar to our task among con-

ditional image synthesis tasks. Early works [20, 45] train

a deep convolutional network for denoising or inpainting

small regions in the image. [36] proposes to learning useful

features using image inpainting with adversarial training.

[14] introduces the global and local discriminators to check

the global and local consistency. [47] iteratively transverses

the image manifold to find the closest encoding with respect

to the input occluded image and uses it to decode the com-

pleted image. More recently, [27] introduces partial convo-

lution, which is weighted to focus more on the valid regions

rather than the hole regions. [48] first produces a coarse

prediction of the missing region in the first stage, and then

refines the texture-level details using an attention mecha-

nism by searching for a set of background regions with the

highest similarity with the coarse prediction. [34] proposes

to inpaint an image by hallucinating the edge connection in

the first stage, and then uses the connected edge map to-

gether with occluded image as inputs to produce the final

completed image in the second stage.

Different from the above works, our goal is to produce

diverse outputs conditional on a small foreground region.

Thus, we only compare our method to the methods that can

generate multimodal image solutions.

3. Methods

In the image outpainting task, we aim to synthesize a

set of plausible and diverse images when given a single

foreground input. The previous approaches mostly leverage

VAE [19] to encode a distribution of possible solutions and

GAN [9] to synthesize realistic image. However, these ap-

proaches suffer from mode collapse. To build on top of nor-

malized diversification[28], we proposed a new regulariza-

tion technique to further encourage image diversity in this

conditional image synthesis and a multi-scale discriminator

to improve the visual quality.

3.1. Normalized Diversification

In normalized diversification, the generator learns map-

ping from a uniform latent space to an unknown output

space. The key idea is to preserve the normalized pairwise

distance of sparse samples between the latent space and the

corresponding output space. In details, the Euclidean dis-

tance is used as the distance metric, which are shown in

Eq.(1) and Eq.(2).

dz(zi, zj) = ||zi − zj ||2 (1)

dx(G(z)i, G(z)j) = ||G(z)i −G(z)j ||2 (2)

In above, dz(zi, zj) and dx(G(z)i, G(z)j) denote the

pairwise distance of samples in latent space and output

space respectively. We denote z as latent variable, G as gen-

erator, G(z) as generated output, and i, j as sample indices.
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The normalized pairwise distance matrices are further de-

fined as Dz
ij , Dx

ij ∈ R
N×N as follows.

Dz
ij =

dz(zi, zj)∑
j dz(zi, zj)

(3)

Dx
ij =

dx(G(z)i, G(z)j)∑
j dx(G(z)i, G(z)j)

(4)

During training, we treat the denominator in Eq.(3) and

Eq.(4) as a constant when back-propagating the gradient to

the generator network. This ensures that we optimize the

absolute pairwise distance, rather than adjusting denomina-

tor to satisfy the loss constraint.

Finally, the normalized diversity constraint is imple-

mented by a hinge loss, where we only penalize the gen-

erator when Dx
ij is smaller than Dz

ij multiplied by a scale

factor.

Lndiv(x, z) =
1

N2 −N

N∑

i=1

N∑

i 6=j

max(0, αDz
ij−Dx

ij) (5)

As shown in the diversity loss Eq.(5), α is the scale hy-

perparameter, and we do not consider the diagonal elements

of the distance matrix, which are all zeros.

Coupled with the normalized diversity loss, the adver-

sarial loss is used to check the generated diverse outputs

are realistic compared to the real data distribution. For the

discriminator,

LD = Ex∼Pdata(x)[min(0, 1−D(x))]

+ Ez∼Pdata(z),z∼Pz(z)[min(0, 1 +D(G(z)))]
(6)

For the generator,

LG = −Ez∼Pz(z)[(D(G(z)))] (7)

We refer to LG as Ladv in the following discussion.

Within our implementation, we use hinge loss to op-

timize the generator and the discriminator. Spectral

normalization[33] is applied to scale down the weights in

discriminator by their largest singular values, which effec-

tively restricts the Lipschitz constant of the discriminator

and thus stabilize training.

3.2. Diversity Regularization

In normalized diversification [28], the diversity loss Ldiv

enforces the model to actively explore the output space

while the adversarial loss Ladv constraints the generated

outputs to be reasonable. However, in conditional gener-

ation, this framework only enforces the diversity for each

conditional input, but do not explicitly prevent sampled out-

puts of different conditional inputs from collapsing to few

modes. In particular, our image outpainting task has a large

degree of freedom to synthesize reasonable outputs for a

foreground input, and thus the sampled images of a condi-

tional input could be at very diverse locations on the image

manifold. Therefore, it is very likely that the sampled im-

ages of different conditional inputs could be very visually

similar or close on the image manifold.

To alleviate this issue, we propose a simple yet effective

diversity regularization in addition to normalized diversifi-

cation in this conditional synthesis task. The overall aim is

to pull the diverse sampled outputs of different conditional

inputs away from each other. Our approach is to impose a

hard constraint on the generated outputs decoded from the

center point of the uniform latent space, and enforce the

generated and corresponding ground-truth outputs to be as

similar as possible. This hard constraint is implemented by

a pixel-wise Euclidean distance.

Lpixel = ||G(z∗)− x||2 (8)

In above, z∗ denotes the center point in the uniform la-

tent space and x is the ground-truth image corresponding to

the conditional input. A visual demonstration of this insight

is shown in Fig.(2).

Figure 4: This figure demonstrates the motivation of iden-

tity regularization. The solid and dashed arrowed lines indi-

cate the learned mapping with and without this regulariza-

tion respectively.

With this diversity regularization, the sampling outputs

of each conditional input will be ideally center around its

corresponding ground truth output, as shown in Fig.(4). Al-

though this regularization loss might not be fully optimized

during training, the sampled outputs of different conditional

inputs are pulled away from each other and thus alleviate

mode collapse issue we mentioned earlier. The improve-

ment of using this regularization is shown both qualitatively

and quantitatively in section 4.

3.3. Feature Pyramid Discriminator

Generative Adversarial Network (GAN) [9] are com-

monly used in image synthesis. Prior to GAN, the synthe-

sized images with only pixel reconstruction loss tends to be

blurry. The main advantage of GAN is that the discrim-

inator can provide supervisory signal for the generator to
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synthesize realistic texture of images similar to the real data

distribution. Indeed, a recent work [8] empirically finds out

that CNNs tend to focus on or bias towards visual texture.

Figure 5: Feature Pyramid Discriminator.

How to design a discriminator that can check both tex-

ture realism and structural plausibility? Our insight is to

explicitly design a discriminator network that can focuses

on both low-level textures and high-level structural seman-

tics. Inspired by the pyramid scene parsing network PSPNet

[53], we propose to integrate the pyramid pooling module

that explicitly computes feature at multiple scales in the dis-

criminator network as above.

This discriminator first extracts features of an image and

downscales the features into multiple scales using average

pooling. Then, the downscaled features are squeezed to

fewer channel dimensions by a layer of convolution. Fi-

nally, the downscaled features are concatenated with origi-

nal feature and are used jointly to compute the real or fake

probability of an image. In summary, our feature pyramid

discriminator aims to check multi-scale information of an

image and is proven to consistently improve image quality

across different datasets, as shown in Table.(2).

3.4. Implementation Details

Our generator network consists of an encoder and a de-

coder with skip connections at each spatial scale. The dis-

criminator is described in section 3.3. Each convolution and

deconvolution layers with stride of 2 are followed by a leaky

relu layer with a negative slope of 0.2 and an instance nor-

malization layer. The final output image is combined from

the foreground input image and the synthesized output im-

age.

At every step of updates, our model jointly optimizes the

diversity loss, the adversarial loss as well as the diversity

regularization loss. The overall optimization objective is

shown Eq.(9).

Ltotal = λ1 ∗ Ldiv + λ2 ∗ Ladv + λ3 ∗ Lreg (9)

The hyperparameters λ indicate the weights of different

optimization objectives. During training, the loss functions

are jointly optimized by Adam optimizer with learning rate

of 3e-4, beta 1 of 0.5, and beta 2 of 0.99. We use λ1 = 0.1,

λ2 = 1, λ3 = 5 for loss weights.

4. Experiments

4.1. Premilinaries

Datasets. To generate synthetic training data, we sam-

pled 400 conditional input points from a 2D uniform dis-

tribution and computed the corresponding outputs with a

discrete non-linear transformation function. In the real im-

age experiments, we used both CelebA [29] face dataset and

Cityscape [2] street scene dataset. For the face dataset, we

center-cropped and scaled the image down to be 128 x 128,

and cut out everything but two eyes and nose as inputs. The

eyes and nose input region are localized by running a pre-

trained facial landmark detector Super-FAN [1]. For the

street scene dataset, we scaled down the images into 256 x

128 and then cut them by half into 128 x 128 as inputs. We

used an instance segmentation network Mask R-CNN [11]

to crop out the foreground region as inputs.

Evaluations. For the synthetic experiments, we eval-

uated the results by visualizing the sampled output space

and calculating the generated data plausibility and diversity

quantitatively. For the real image experiments, we did use

FID[12] score to evaluate the image quality and pairwise

LPIPS[52] score to quantify image diversity. The larger

FID score indicates the better image quality, and the larger

LPIPS score indicates the better image diversity. Qualita-

tive evaluations are also provided.

4.2. Baseline Models

To demonstrate the effectiveness of our method, we com-

pared the results with several state-of-the-arts models as

strong baselines.

cVAE-GAN. [21] The conditional variational auto-

encoder GAN (cVAE-GAN) encodes the input images into

a parametric Gaussian distribution and decodes the sam-

pled latent code into the output images, where the model

is trained with a reconstruction loss, an adversarial loss and

the KL divergence.

BicycleGAN. [54] The BicycleGAN model combines

both cVAE-GAN and conditional latent regressor GAN

(cLR-GAN) [3]. The key idea is to enforce the connec-

tion between latent encoding and output in both directions

simultaneously.

MSGAN. [32] Built on top of the conditional GAN [15],

the MSGAN model maximizes the ratio of the distance be-

tween generated images with respect to the corresponding

latent codes in order to encourage the network to explore

more minor modes in the data distribution.

NDiv. [28] The NDiv model preserves the normalized

pairwise distance between the sparse samples from a latent
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Figure 6: Qualitative results on synthetic data.

Methods Frechet Distance ↓ Pairwise Distance ↑ Number of Modes ↑

BicycleGAN[54] 1.6477 0.0998 482

VAE-GAN[21] 0.8804 0.5898 962

NDiv[28] 1.2829 0.9917 1416

MSGAN[32] 1.2985 4.0199 2041

Ours 1.0751 4.3332 2481

Table 1: Quantitative results on synthetic data.

distribution and the generated output space, where the latent

space is parameterized using a uniform distribution.

All of these approaches aim to generate multimodal so-

lutions in conditional image synthesis. Both cVAE-GAN

[21] and BicycleGAN [54] leverage VAE framework for

variational inference but they do not explicitly enforce sam-

pled diverse outputs, and thus mode collapse happens dur-

ing both training and inference. MSGAN [32] proposes to

enforces the generated outputs to be as diverse as possi-

ble with respect to the corresponding latent codes, but its

Gaussian latent distribution puts a strong prior assumption

on the output distribution. NDiv [28] does not explicitly

prevents the sampled outputs of different conditional inputs

from collapsing into a few modes in conditional generation,

as we discussed in section 3.2.

4.3. Synthetic Data Experiment

To demonstrate the performance of diverse sampling in

conditional generation, we start our experiments with a syn-

thetic dataset. This dataset contains a set of sampled points

from a uniform space R2 ∼ U2(0, 100) as inputs and the

corresponding output points in a star-shaped space within

the same range. We designed a discrete non-linear function

to map the input points to the output points, and train the

generative models to model such non-linear mapping. Both

training and testing contain 400 sampled data points.

The task is to train a conditional generative model, given

an input from the uniform space and a 2-dimension random

vector sampled from either a normal distribution (Bicycle-

GAN, VAE-GAN) or from a uniform distribution (NidV,

ours), generate a corresponding point in the four-star space.

In Fig.(6), the left two plots indicate the testing conditional

inputs and ground truth outputs. The rest of the plots on the

right are sampled outputs using different methods. During

inference, we sampled ten times for each conditional inputs.

Qualitatively, the more distributed the sampled points lie in

the output space indicate more diversity the model can pro-

duce. As shown in the figure, our model can generate more

diverse outputs than other state-of-the-arts methods, since

more sampled output points exist.

In addition, we demonstrate the quantitative comparison

study in Table.(1). To evaluate the plausibility of the gen-

erated outputs, we use the Frechet Distance (FD) to com-

pare the similarity between the generated output distribu-

tion and ground truth output distribution. The FD score is

computed by averaging across ten batches of sampling out-

puts with respect to the ground truth. To evaluate the di-

versity of the generated outputs, we first compute the pair-

wise distance between the sampled outputs for each condi-

tional input, and then calculate the number of existing out-

put points (modes) in the 2D space. The number of mode is

calculated by discretizing the generated output to the clos-

est integer and number of different integers is counted. In

conclusion, the quantitative results show that our model can

generate most diverse and also plausible outputs compared

to the other methods. Although VAE-GAN [21] achieves a

slightly better score in terms of plausibility, it only gener-

ates limited modes in the output space.

4.4. Real Image Experiment

We conducted image outpainting experiments in both

CelebA [29] face dataset and Cityscape [2] street scene

dataset. In the testing phase, we used 1000 images from

both datasets and sample 10 different output images for

each conditional input.

To evaluate the generated image diversity, we first show

the image manifold of 100 generated output images, as

shown in Fig.(7). The 2D image manifold is obtained by
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Figure 7: To visualize how the sampled images are located on the image manifold, we sampled 10 outpainted images for 100

testing input images in CelebA datast[29]. Then, we extracted features for all images using pretrained VGG network[39] and

ran t-sne[31] on the features to visualize the manifold in two dimension. The colored points (pink, orange, green, red, cyan)

indicate the sampled images for five specific conditional inputs. Within the same color points, the more spread the points

indicate more diverse the sampled outputs for the specific conditional input. The blue dots represent the rest of sampled

images.

Figure 8: For a specific testing input image, we randomly sampled three possible outpainted images with different meth-

ods. We intended to demonstrate the diversity levels that each method can produce. Note that the mouths are the same in

BicycleGAN[54], VAE-GAN[21], and MSGAN[32], and hair types are similar in NDiv[28]. In contrast, our method can

generate both diverse types of hair styles and mouths.

Methods
CelebA[29] CityScape[2]

Quality (FID) ↓ Diversity (LPIPS) ↑ Quality (FID) ↓ Diversity (LPIPS) ↑

BicyleGAN[54] 64.1328 0.0927 98.8635 0.0993

VAE-GAN[21] 66.3423 0.1754 77.8836 0.2915

MSGAN[32] 56.9978 0.2318 96.6312 0.3096

NDiv[28] 68.8545 0.3198 72.9145 0.4238

Ours (w/o FPD) 62.0442 0.3101 66.1893 0.4351

Ours (full model) 59.4232 0.3274 61.1454 0.4783

Table 2: Quantitative results on real images.

feature extraction using pretrained VGG network [39] and

t-SNE [31] dimensionality reduction. In Fig.(7), we use five

different color (pink, orange, green, red, cyan) to indicate

sampled output images for five specific conditional input.

This is intended to show the locations of diverse generated

output images on the image manifold for the same condi-

tional input. BicycleGAN [54] and VAE-GAN [21] both

have obvious mode collapse issue, since the sampled im-

ages are mostly clustered together into few modes, which

leads to the big ”holes” in the image manifold. With ex-

plicitly diversity losses, both MSGAN [32] and NDiv [28]

can generate much more diverse outputs, but some gener-

ated images still collapse together, such as the red points.

In contrast, our method can generate the most diverse out-
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Figure 9: Qualitative results of sampled images in CelebA face dataset [29].

Figure 10: Qualitative results of sampled images in Cityscape street scene dataset [2].

puts compared to these methods. On the image manifold,

almost all the randomly sampled outputs stays away from

each other and thus results in a more expanded manifold

than the others. A set of generated images from different

methods are shown in Fig.(8).

In the quantitative evaluation, we use the Frechet In-

ception Distance (FID) [12] to measure the image quality

and the pairwise Learned Perceptual Image Patch Similarity

(LPIPS) [52] to measure the image diversity. The pairwise

LPIPS score is computed between ten sampled genereated

images and is averaged across the entire testing set. As

shown in Table.(2), our model can generate substantially

more diverse images and achieve similar or better image

quality compared to the state-of-the-arts methods on both

datasets. Note that our proposed feature pyramid discrim-

inator (FPD) improves the image quality and our proposed

diversity regularization improves the image diversity con-

sistently in both datasets.

5. Conclusion

In this paper, we formulated the image outpainting task,

which aims to synthesize a set of realistic and diverse back-

grounds when given only a small existing region. Based

on the normalized diversification, we proposed a new reg-

ularization technique to further resolve mode collapse is-

sue in this conditional image synthesis task. We also pro-

posed a feature pyramid discriminator to improve the visual

quality of generated images by checking image information

at multi-scale. Finally, we demonstrated the effectiveness

of our method compared to the state-of-the-arts methods in

terms of both image diversity and quality in both synthetic

dataset and two real-world datasets. In the future, we be-

lieve that our work could be applied to occluded face recog-

nition for forensic purpose or common image editing, and

could potentially extended to understand object affordance

within detection/segmentation tasks.
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