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Figure 1: This paper presents a semi-supervised learning method to train a keypoint detector by leveraging multiview tracking.

This keypoint detector can localize a set of joints for non-humans species such as mouse, monkey, and dogs, where attaining

a large scale annotated data is extremely challenging.

Abstract

This paper presents a semi-supervised learning frame-

work to train a keypoint detector using multiview image

streams given the limited number of labeled instances (typ-

ically <4%). We leverage three self-supervisionary signals

in multiview tracking to utilize the unlabeled data: (1) a

keypoint in one view can be supervised by other views via

epipolar geometry; (2) a keypoint detection must be consis-

tent across time; (3) a visible keypoint in one view is likely

to be visible in the adjacent view. We design a new end-to-

end network that can propagate these self-supervisionary

signals across the unlabeled data from the labeled data in a

differentiable manner. We show that our approach outper-

forms existing detectors including DeepLabCut tailored to

the keypoint detection of non-human species such as mon-

keys, dogs, and mice.

1. Introduction

Enabling computational measurements of the motor be-

haviors of animals gives rise to scaling up neuroscientific

experiments with an unprecedented precision, leading to

deeper understanding of our behaviors (humans). For in-

stance, human surrogate models, such as monkeys and

mice, have been studied to identify the neural-behavioral

pathway through their free-ranging activities (including

several social interactions), which is largely homologous

to humans. While non-invasive markerless motion capture

is a viable solution to measure such behaviors, it still re-

mains blind to animal behaviors because of lack of a large-

scale annotated dataset unlike human subjects (e.g., MS

COCO [21] and MPII [1]).

Recently, subject-agnostic pose tracking approaches

based on deep neural networks such as DeepLabCut [24]

have shown remarkable generalization power, allowing a

smart pose interpolation: a pre-trained network based on

a generic large image dataset (e.g., ImageNet [29]) is re-

fined to learn a pose variation from a few hundreds of an-

notated images in a video, and then, the refined network

tracks the poses in the rest video by detection. It is rela-

tively labor-effective (comparing to labeling millions of im-

ages) and resilient to a target, i.e., the keypoints on body,

foot, and finger of cheetah, insects, and mouse can be reli-

ably tracked. However, their application to the free-ranging

behaviors1 is challenging because such motion introduces a

larger pose variation and self-occlusion, and therefore, con-

siderable amount of annotations is needed. Figure 6(d-e)

illustrates its performance degradation as the range of mo-

tion increases (i.e., mice ≪ monkeys).

1Their approaches are designed to track restricted motion, e.g., the an-

imal’s head be immobile and attached to a recording rig [33].
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This paper presents a new semi-supervised learning ap-

proach for a pose detector that leverages the complementary

relationship between multiview geometry and visual track-

ing given the limited labeled data. We hypothesize that

the annotation efforts can be substantially reduced by uti-

lizing three self-supervisionary signals embedded in multi-

view image streams2. (1) Multiview supervision: the pose

detection from two views must satisfy the epipolar con-

straint, i.e., the detected keypoint in one view must lie in

the corresponding epipolar line transferred from the other

view given their fundamental matrix [11]. We integrate the

cross-view supervision [37] by matching the keypoint dis-

tributions from two views via their common epipolar plane.

This eliminates the necessity of 3D reconstruction3. (2)

Temporal supervision: a pose changes continuously. We

incorporate the dense tracking to warp the keypoint dis-

tribution between consecutive frames to supervise them to

each other [8, 36]. (3) Visibility supervision: free-ranging

activities inherently involve with frequent self-occlusions,

producing spurious and degenerate detection. Inspired by

the observation that the keypoint visibility varies smoothly

across views [16], we use the spatial proximity of the cam-

eras to supervise the visibility map in one view from the

adjacent views. These three supervisionary signals are com-

bined to form an end-to-end system that effectively uses

both labeled and unlabeled data.

Our system takes as input multiview image streams with

a small set of annotated frames, and outputs a pose detec-

tion network that predicts the keypoint locations on the rest

unlabeled data. We propose a new formulation of multi-

view semi-supervised learning by matching keypoint distri-

butions conditioned on a visibility map across frames and

views. The formulation is implemented using a novel net-

work design composed of three pathways that can minimize

the distribution mismatches in the form of four losses: label

loss, cross-view loss, tracking loss, and visibility loss. We

demonstrate that the resulting network shows strong per-

formance in terms of the keypoint detection accuracy in the

presence of significant occlusion given a small set of labeled

data (<4%).

Our approach inherits the flexible nature of epipolar ge-

ometry, which can be applied to various camera configura-

tions. The distribution matching through their fundamen-

tal matrix eliminates the requirement of 3D reconstruction

that involves with alternating reconstruction [4, 6, 30, 34] or

data driven depth prediction [17,32,39]. Finally, our design

is network-agnostic, i.e., any pose detection network pro-

ducing a probability map representation can be used with

a trivial modification such as DeepPose [31], CPM [7, 35],

and Hourglass [26].

To our knowledge, this is the first paper that leverages

2Similar insight has been used to reconstruct a reliable long-term 3D

trajectories with the multiview videos [10, 16, 38].
3This is analogous to the fundamental matrix computation without 3D

estimation [11, 23].

the spatiotemporal relationship of multiview image streams

to train a pose detector. The core contributions include: (1)

a new differentiable formulation of multiview spatiotempo-

ral self-supervision for the unlabeled data; (2) a visibility

supervision based on camera spatial proximity to prevent

from spurious propagation of the self-supervision; (3) its

realization using an end-to-end network that is flexible to

camera configurations; and (4) strong performance on the

realworld data of non-human species on monkeys, dogs,

and mice with a small set of the labeled data.

2. Related Work

This paper studies designing a pose detector given the

limited labeled data by leveraging multiview epipolar ge-

ometry and temporal consistency. These two supervisionary

signals are by large studied in isolation.

Temporal Supervision The tracking results such as opti-

cal flow [3], MOSSE [5], and discriminative correlation fil-

ters [13], provides an auxiliary information that can be used

to enforce the temporal consistency across a continuous se-

quence [8, 36]. A challenge is that it suffers from track-

ing drift induced by object deformation, which substantially

limits its validity. Such challenge has been addressed by

learning the temporal evolution of tracking patches [22, 27]

using recurrent neural networks. This generates a com-

promised network that minimizes the inconsistency in the

learned trajectories, which suppresses the low-quality de-

tection from the tracking drift. A pitfall of this approach

is the requirement of per-frame annotation to supervise the

recurrent network. This requirement can be relaxed by us-

ing supervision-by-registration approach [8] that achieves

higher detection rate even with the limited labeled data.

However, its application towards the pose detection for non-

human species is still challenging because: (1) supervision

from optical flow involves with the tracking drift caused by

occlusion, and therefore, long-term tracking is infeasible;

(2) the soft-argmax operation for computing the track coor-

dinate may lead to noisy supervision in the cases where the

pose detection is erroneous (e.g., multiple peaks) as shown

in Figure 2(a). This multi-modality of pose recognition es-

calates when the keypoint is invisible. This strongly influ-

ences tracking accuracy, especially for a small-sized tar-

get; (3) the argmax operation takes into account only for

the peak location where the non-maximum local peaks may

play a role.

Multiview Supervision Multiview images possess highly

redundant yet distinctive visual information that can be used

to self-supervise the unlabeled data. Bootstrapping is a

common practice: to use multiview images to robustly re-

construct the geometry using the correspondences and to

project to the unlabeled images to provide a pseudo-label,

which has been shown highly effective [6, 30, 34]. A pit-

fall of this approach is that it involves an iterative process

over learning and reconstruction. Another approach is to

separately learn depth from a single view image in isola-
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Figure 2: (a) Soft-argmax produces a biased keypoint esti-

mate when the keypoint distribution is multimodal. (b) We

use three self-supervisionary signals: cross-view supervi-

sion (lTj x̃
j
t ), temporal supervision (xi

t = Wt+1→t(x
i
t+1)),

and visibility supervision (vi ≈ vj).

tion that can be used for self-supervision [17, 32, 39]. This

relies on the depth prediction where the accuracy of the

trained model is bounded by the accuracy of reconstruc-

tion/prediction. Yao et al. [37] introduces a new framework

that bypasses 3D reconstruction during the training process

through the epipolar constraint, i.e., the epipolar constraint

is transformed to the distribution matching. The problem

of this approach is that its performance is highly dependent

on the pre-trained model. It has no reasoning about outliers,

i.e., the recognition network converges to a trivial solution if

the outliers dominate the distribution of the multiview pose

detection.

Our main hypothesis is that these two supervisions are

complementary. We formulate the spatiotemporal supervi-

sion that can benefit from both and address each limitation.

(1) We use dense optical flow tracking to address noisy su-

pervision, i.e., it is unlikely that the noisy prediction is tem-

porally correlated. (2) We leverage the end-to-end epipo-

lar distribution matching to avoid the multimodality issue

that arises using the soft-argmax operation. This is differ-

entiable, and therefore, trainable. (3) The multiview image

streams can alleviate the tracking drift [16,38], i.e., it is un-

likely that the tracking drift occurs in a geometrically con-

sistent fashion. (4) Visibility map can assist to determine the

validity of the tracking without explicit outlier rejection.

3. Notation and Multiview Conditions

Consider multiview image streams, I = {Iit} where Iit
is the image of the ith camera at t time instant. We de-

note the set of synchronized images at t time instant across

all views with It = {I1t , · · · I
n
t } that satisfy the epipolar

constraint [23] where n is the number of cameras. Ii =
{Ii1, · · · I

i
T } is the set of images from the ith camera for all

time instances where T is the total time instances4. A subset

4We consider a stationary multi-camera system [16, 38] while the spa-

tiotemporal constraint of epipolar geometry and temporal coherence still

applies for a moving synchronized multi-camera system, e.g., social cam-

eras [2].

of these images are manually annotated (keypoint location)

IL, and the rest remain unlabeled IU , i.e., I = IL ∪ IU .

A 3D keypoint Xt ∈ R3 at t time instant travels to Xt+1.

The point is projected onto the ith and jth images (Iit and

I
j
t ) to form the 2D projections xi

t,x
j
t ∈ R2 as shown in

Figure 2(b):

x̃i
t
∼= PiX̃t, x̃

j
t
∼= PjX̃t, x̃i

t+1
∼= PiX̃t+1, (1)

where Pi ∈ R3×4 is the ith camera projection matrix, and

x̃ is the homogeneous representation of x [11].

To be geometrically consistent across multiview image

streams, the projections of the moving 3D keypoint need to

satisfy the following three constraints:

Cross-view Constraint The keypoint xi
t must lie in the

epipolar line of the corresponding point x
j
t in the jth

view [11], i.e., (x̃
j
t )

TFij x̃
i
t = lTj x̃

i
t = 0 where Fij is

the fundamental matrix between the ith and jth views, and

lj ∈ P2 is the epipolar line transferred from x
j
t .

Tracking Constraint The pixel brightness on xt and xt+1

must be persistent, Iit(x
i
t+1+∆x) = Iit+1(x

i
t+1) where ∆x

is the backward optical flow at xi
t+1.

Visibility Constraint The visible keypoint in one view is

likely visible in adjacent view, i.e., vi ≈ vj if ‖Ci−Cj‖ <
ǫ where vi ∈ [0, 1] is the probability of the keypoint be-

ing visible to the ith camera, and Ci is the optical center of

the ith camera. For instance, vi = vj = 1 and vk = 0 in

Figure 2(b).

4. Multiview Supervision by Registration

We build a keypoint detector producing the keypoint dis-

tribution φ(I;w) ∈ [0, 1]W×H×C and its visibility map

ψ(I;wv) ∈ [0, 1]W×H×C . These two distributions are

combined to produce a posterior per-pixel keypoint distri-

bution:

ξ(I) = φ(I;w)ψ(I;wv) (2)

where W , H , and C are the width, height, and the num-

ber of keypoints including the background. The keypoint

distribution is parametrized by the weight w, and the vis-

ibility map is parametrized by the weight wv . We denote

the probability evaluated at x as P i
t (x) = φ(Iit;w)

∣∣
x

and

V i
t (x) = ψ(Iit;wv)

∣∣
x

. In the inference phase, the result-

ing detected keypoint location is the peak in the posterior

distribution ξ.

We learn w and wv from the labeled and unlabeled

data where |IL| ≪ |IU | where a supervised learning ap-

proach alone likely to be highly biased. To utilize the un-

labeled data, we leverage the three multiview constraints

in Section 3. However, integrating these into an end-to-

end training is challenging because of representation mis-

match. The raster representation of the keypoint distribu-

tion φ(I;w) differs from the vector representation of the
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supervision. (b) The keypoint distribution of the hind right foot in view 1 (P 1) is transformed to Qi and projected onto the

side view (top). (c) The keypoint distribution can be warped P1(W ) using dense optical flow (W ) to supervise the next frame

P2, which is multimodal distribution.

constraints (e.g., lTx̃ = 0). Conversion between these two

representations requires the argmax operation:

x∗ = argmax
x

P i
t (x). (3)

The argmax in Equation (3) is non-differentiable, and

therefore, embedding the constraints makes the network

not trainable. This precludes from an end-to-end train-

ing for multiview supervision, leading to offline alternat-

ing reconstruction [4, 6, 30, 34] or additional depth predic-

tion [17, 32, 39] that often suffer from suboptimality [37].

Whilst the differentiable soft-argmax can alleviate this is-

sue to some extent, it is highly sensitive to spurious and

noisy keypoint detection (e.g., multimodal probability map

as shown in Figure 2(a)). In subsequent sections, we ad-

dress this challenge by transforming the constraints into

a distribution matching with the raster representation as a

whole by minimizing KL divergence [19].

4.1. Cross­view Supervision

A set of images at the same time instant, It, we su-

pervise their keypoint distributions based on the epipolar

constraint. Inspired by Yao et al. [37], we reformulate the

epipolar geometry in terms of distribution matching over

their common epipolar planes. Consider a keypoint in the

ith image, xi, that corresponds to the keypoint in the jth

image xj . Their inverse projections (the 3D ray emitted

from the camera center and passing the keypoint location

xi) can be written as pi(λ) = λRT

i K
−1
i x̃i + Ci where

Ki ∈ R3×3, Ri ∈ SO(3), and Ci ∈ R3 are the intrin-

sic parameter, rotation, and optical center of the ith camera,

and λ > 0 is the depth of the point on the ray as shown in

Figure 3(a). To satisfy the epipolar constraint, their inverse

projections must lie in a common epipolar plane (Π ∈ P3),

i.e., ΠTp̃i = ΠTp̃j = 0.

Using the fact that the common epipolar plane can be

parametrized by its rotation about the baseline, i.e., surface

normal Π(θ ∈ S), we transform the keypoint distribution to

the epipolar plane distribution, obtained by the max-pooling

over the epipolar line:

Qi(θ) = argmax
x∈lj(θ)

P i(x), (4)

where lj(θ) is the epipolar line that is the projection of the

common epipolar plane, and Qi is the epipolar plane distri-

bution. The bottom row in Figure 3(b) illustrates the key-

point distribution of the right hind foot in view 1 (P 1). It

is transformed to the epipolar plane distribution Q1 using

the max-pooling over the epipolar lines. We visualize the

projection of Q1 onto the second view (the top row), i.e.,

the hind foot must lie in the most probable location in the

second view. Note that the multimodal keypoint distribu-

tion does not produce additional spurious supervision to the

other view.

Equation (4) allows measuring geometric discrepancy of

keypoint distributions across views. Therefore, the unla-

beled data can be self-supervised to each other by minimiz-

ing their cross entropy with the raster representation:

LC(It) =
∑

i,j∈C

DKL(Qi||Qj), (5)

where C is the camera index set of It.

4.2. Temporal Supervision

Given a sequence of images from the ith camera, Ii, we

supervise the keypoint distribution at tth time instant using

that of neighboring images in time, i.e.,

P i
t1
(x) ≈ P i

t2
(Wt2→t1(x)) (6)

where Wt2→t1 is the pre-computed dense optical flow from

t2 to t1 frames, i.e., P i
t2
(Wt2→t1(x)) is the warped distri-

bution of P i
t2

. We use a kernelized correlation filter [13]

with inverse compositional mapping [3] to track all pixels

offline while online optical flow computation [8, 20] can be

complementary to our approach with a trivial modification.

Using Equation (6), we design a tracking loss for the

temporal supervision:

LT(I
i) =

∑

t1,t2∈[0,T ]

DKL(P
i
t1
||P i

t2
(Wt2→t1)), (7)
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Figure 4: We integrate a visibility inference to validate the

multiview supervisory signals. The left hind paw is oc-

cluded by torso, which is conditioned by the visibility map

(middle), resulting in the reduction of the keypoint proba-

bility. This prevents from influencing the occluded keypoint

detection across views.

where T is the number of frames.

A key innovation of Equation (7) against existing optical

flow supervision [8,21,36] is that it eliminates the necessity

of the argmax operation by warping the keypoint distribu-

tion as a whole. In practice, we find that having sufficient

time difference between frames improves training perfor-

mance and efficiency. For instance, a high framerate video

of a monkey who stays still for a majority of time gener-

ates less informative temporal supervision and is prone to

noise, i.e., Wt+1→t = I where I is the identity mapping.

On the other hand, when the frame difference is too large,

significant tracking drift is likely to occur. We address this

by selectively applying the temporal supervision on the two

frames that have the sufficient magnitude of the integral

dense optical flow, i.e., ǫm <
∑

x∈X
‖Wt2→t1(x)‖ < ǫM

where X is the domain of an image, and ǫm and ǫM are

lower and upper bounds of the magnitude of the integral

dense optical flow. Figure 3(c) illustrates the temporal su-

pervision using dense optical flow. The left wrist keypoint

distribution P1 is warped to form P1(W ). This unimodal

distribution can supervise the ambiguous prediction in P2

with two modes.

4.3. Visibility Supervision

Free-ranging activities inherently involve with self-

occlusion, e.g., a hand is occluded by the torso at a cer-

tain view. Without precise reasoning about the visibility

of keypoints, the cross-view and temporal supervisions can

be highly fragile because there is no mechanism to prevent

from such error propagation over the unlabeled multiview

images5. For instance, the temporal supervision via the op-

tical flow of the occluded hand can mislead the hand loca-

tion to the torso location in other visible images. To reject

such error, RANSAC [9] with geometric verification (e.g.,

reprojection error) has been used. However, the operation

5A similar observation has been made for long-term trajectory recon-

struction [16].

is non-differentiable, and therefore, it requires alternating

offline reconstruction and training [30].

Instead, we design a new module that integrates the vis-

ibility inference as a part of the training process. The key

idea is that a keypoint is likely to be visible if it is visible

from the adjacent cameras. This provides a spatial prior on

the visibility map across views:

LV(It) =
∑

i,j∈C

δi,j‖max V i
t −max V

j
t ‖

2, (8)

where δi,j is Kronecker delta that is one if the distance

between the optical centers of the ith and jth cameras is

smaller than ǫC , i.e., ‖Ci − Cj‖ < ǫC , and zero other-

wise, and C is the camera index set of It. Equation (8) is

a necessary condition that penalizes the difference in visi-

bility maps for adjacent cameras, i.e., it is valid when the

location of the maximum visibility map coincides with the

peak of the keypoint probability. In practice, the visibility

is highly correlated with the keypoint distribution where LV

is effective. For instance, Figure 4 illustrates the visibility

supervision across views. The left hind paw is occluded by

torso, which is conditioned by the visibility map (middle),

resulting in the reduction of the keypoint probability. This

prevents from influencing the occluded keypoint detection

across views.

4.4. Label Supervision

We supervise the keypoint distribution and visibility map

using a set of the labeled data as follows:

LL(IL) =
∑

I∈IL

DKL(P I
i
t
||P i

t ) +DKL(V I
i
t
||V i

t ), (9)

where P I
i
t

and V I
i
t

are the ground truth keypoint distribu-

tion and its visibility of image Iit. The ground truth key-

point distribution is obtained by convolving a scaled Gaus-

sian at the ground truth keypoint location. For the visibil-

ity map, it is computed via ray-casting on a discretized 3D

voxel space. See Appendix for more details of ground truth

visibility map generation.

4.5. Overall Loss

The resulting keypoint detector is learned using both la-

beled and unlabeled data by minimizing the following over-

all loss:

L(w,wv) = LL(I) + λC

T∑

t=1

LC(It) + λT
∑

i∈C

LT(I
i)

+ λV

T∑

t=1

LV(It), (10)

whereLL, LC, andLT, andLV are the losses for the labeled

supervision, cross-view supervision, temporal supervision,

and visibility supervision, respectively. λC , λT and λV are

the weights that control their importance.

424



Keypoint probability network Visibility map network Max-pool over epipolar line

i

t2P

j

t1Qj

t1P

j

t1V

i

t1P
i

t1Q

i

t1VC

T
i

t2P (W )

V

Ground 

truth

L

L

Warping w/ optical flow

Temporal pathway

View pathway

Reference pathway

i

t1I

i

t2I

j

t1I

Figure 5: We design a network composed of three pathways: reference, temporal, and view pathways to utilize both labeled

and unlabeled data. Each pathway is composed of two subnetworks producing keypoint distribution and visibility map. The

labeled loss LL is computed from the reference pathway by comparing to the ground truth annotation (keypoint and visibility)

if available. The temporal and reference pathways measure the tracking loss LT by warping the keypoint distribution using

the dense optical flow (P i
t2
(Wt2→t1)), and the view and reference pathways measure the cross-view loss LC by transforming

the keypoint distribution to the epipolar plane distribution, i.e., Qi
t1

↔ Q
j
t1

.

5. Implementation

We design a network that is composed of three pathways:

reference, view, and temporal pathways as shown in Fig-

ure 5. Each pathway takes as an input image with the size

of 368× 368× 3 and produce the keypoint probability and

visibility map with the size of 46× 46× 21. They all share

the network weights w and wv . The reference and view

pathways are designed to measure the cross-view loss LC

and visibility supervision loss LV for two adjacent views

by transforming to the epipolar plane distribution. The ref-

erence and temporal pathways measure the tracking loss LT

by warping the keypoint distribution using the dense optical

flow. The label loss is measured for the reference pathway

if the input image is labeled. We use the convolutional pose

machine [7] as a base network to implement φ(·) and ψ(·)
while any existing pose detector can be complementary. See

Appendix for network training. The code is publicly avail-

able: https://github.com/msbrpp/MSBR

Network Initialization by Bootstrapping To alleviate the

noisy initialization of the detector, which occurs frequently

when the unlabeled data dominate, we take a few prac-

tical steps. (1) With a subset of the labeled data in the

same time instant, we triangulate the keypoint in 3D with

RANSAC. This 3D keypoint is projected onto all multi-

view images, which can greatly augment the labeled data

reliably. (2) Based on the 3D keypoints with volume es-

timation, we compute the visibility of labeled data using

ray-casting, which provides the visibility map label for all

views. (3) With the augmented labeled data with their vis-

ibility, we train the network in a fully supervised manner.

This process is called bootstrapping [30], which provides a

good initialization to train our triple network. (4) We re-

train the pre-trained network with the unlabeled data with

cross-view, tracking, and visibility losses.

6. Experiments and Results

Datasets We evaluate our approach using realworld mul-

tiview image streams of non-human and human species

without a pre-trained model captured by multi-camera sys-

tems. (1) Monkey subject 35 cameras running at 60 fps

are installed in a large cage (9′ × 12′ × 9′) that allows

the free-ranging behaviors of monkeys. There are diverse

monkey activities include grooming, hanging, and walk-

ing. The camera produces 1280× 960 images. The ground

truth of keypoint and visibility is manually labeled. (2)

Dog subjects Multi-camera system composed of 69 syn-

chronized HD cameras (1024×1280 at 30 fps) are used to

capture the behaviors of multiple breeds of dogs includ-

ing Dalmatian and Golden Retrievers. The ground truth

is manually labeled. (3) Mouse subject We use a multi-

view mouse locomotion dataset used to evaluate DeepLab-

Cut [25]. A single camera with a mirror generates multi-

view synchronized images of a head-fixed mouse running

on a treadmill. The scene is captured at 200 Hz and the

keypoints are fully annotated manually6. (4) Human sub-

ject I A multiview behavioral imaging system composed

of 69 synchronized HD cameras capture human activities

at 30 fps with 1024×1280 resolution. We select 51 con-

secutive synchronized frames from 10 camera as training

streams. Two end frames are used for the labeled data (20

images) and the rest images are used for the unlabeled data

(490). The human pose detectors are used to triangulate the

3D pose to provide the ground truth. (5) Human subject

II We test our approach on two publicly available datasets

for human subjects: Panoptic Studio dataset [15] and Hu-

man3.6M [14]. For the Panoptic Studio dataset, we use 31

HD videos (1920× 1080 at 30 Hz). The scenes includes di-

verse subjects with social interactions that introduce severe

6The data were prepared by Rick Warren in Sawtell lab [25].
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Human subject I Dog subject Monkey subject

Method Sho Elb Wri Kne AUC Nec F.Leg Paw H. Leg AUC Nec F.Leg Paw Hip H. Leg AUC

Supervised learning 81.7 37.9 33.6 86.1 91.6 96.1 80.3 34.8 82.1 91.3 94.5 67.4 31.5 96.9 68.9 75.3
Temp. 86.4 44.6 32.5 93.4 91.7 94.2 83.2 31.6 83.3 92.0 94.2 82.8 37.4 90.3 83.7 87.4
Temp. + Vis. 92.7 48.4 41.1 97.8 93.3 96.9 91.5 38.1 88.9 92.5 94.9 87.4 45.8 91.6 87.9 89.2
Cross. 62.4 31.7 19.8 44.7 78.7 85.3 68.7 23.6 61.4 70.3 89.7 60.2 29.6 50.9 63.7 68.9
Cross. + Boot. 85.0 41.5 38.6 97.6 92.6 96.6 88.2 35.3 91.2 92.9 94.2 87.4 38.2 91.7 86.2 87.6
Temp. + Cross. 88.8 70.6 40.2 97.5 92.2 96.1 89.1 37.2 92.3 92.9 97.6 92.1 47.2 90.4 93.5 90.3
Temp. + Cross + Boot. 89.4 77.1 57.5 98.6 92.2 98.9 92.5 52.8 95.8 93.8 97.9 94.8 48.7 92.0 95.1 91.6

Ours 92.9 77.2 65.4 98.9 95.1 98.9 94.2 53.2 95.8 94.8 98.7 95.2 50.1 93.5 95.7 92.2

Table 1: We conduct an ablation study on human, dog, and monkey subjects using the PCKh measure.
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Figure 6: (a-c) We conduct ablation study using a PCK measure on human, dog, and monkey subjects. (d-e) We compare

DeepLabCut (ResNet 50) [24] with ours on monkey and mouse subjects.

Method Nec F.Leg Paw Hip H. Leg AUC
Supervised learning 94.5 67.4 31.5 96.9 68.9 75.3
Simon et al. (argmax) 96.1 68.4 32.3 95.7 70.2 76.5
Dong et al. (soft-argmax) 85.7 32.9 10.6 87.2 37.8 59.6
Temporal sup. (flow warping) 94.2 82.8 37.4 90.3 83.7 87.4
Ours 98.7 95.2 50.1 93.5 95.7 92.2

Table 2: We compare our approach with Simon et al. [30]

and Dong et al [8] on the monkey dataset.

social occlusion. The Human3.6M dataset is captured by 4

HD cameras that includes variety of single actor activities,

e.g., sitting, running, and eating/drinking.

Metric We use a measure of the probability of correct key-

point (PCK) and PCKh that accounts for 50% of head length

as a correct match. Area under curve (AUC) on PCK is also

used to measure overall accuracy given fixed threshold.

Ablation Study We conduct ablation study to analyze the

effect of each component in our network. (1) supervised

learning with the labeled data; (2) semi-supervised learn-

ing with temporal supervision; (3) temporal supervision

+ visibility supervision; (4) cross-view supervision; (5)

cross-view supervision + visibility supervision + bootstrap-

ping; (6) cross-view supervision + temporal supervision; (7)

cross-view supervision + temporal supervision + bootstrap-

ping; (8) ours (cross-view supervision + temporal supervi-

sion + visibility supervision + bootstrapping). Except for

the fully supervised learning, all network designs utilizes

the unlabeled data.

Table 1 and Figure 6(a-c) summarize the result of abla-

tion study on human, dog, and monkey subjects. Our ap-

proach achieves 95.1% on the Human dataset and 94.8%
AUC on the Dog dataset, which outperforms the other 2

unsupervised baselines, temporal supervision and cross-

supervision, by 3.4% and 16.4% AUC respectively on the

Human dataset, and by 2.8% and 18.8% AUC on the Dog

dataset. In addition, visibility probability improves tempo-

ral supervision by 1.8% AUC on the Human dataset and

2.65% AUC on the Dog dataset. Similarly, data augmen-

tation improves cross-view supervision by 16.6% AUC on

the Human dataset and 13.9% AUC on the Dog dataset.

Comparison with Soft-argmax We conduct an experiment

to assess the performance of soft-argmax based approach.

In Table 2, the soft-argmax approach (Dong et al.) is com-

pared with our temporal supervision using dense flow warp-

ing on the monkey dataset. Our supervision approach sig-

nificantly outperforms the soft-argmax with large margin

(27.8%), which is also verified in Yao et al. [37]. The soft-

argmax leads to highly biased keypoint coordinate when the

prediction is spurious due to the nature of weighted average.

Comparison with Semi-supervised Learning We com-

pare our approach with existing semi-supervised learning

frameworks that use (1) temporal supervision [8] and (2)

cross-view supervision [37] on two publicly available hu-

man subject datasets (Panoptic Studio and Human3.6M).

No pre-trained model is used for the comparison.

Table 3 summarizes the PCKh measure of methods in-

cluding fully supervised learning with the labeled data.

Leveraging semi-supervised learning enhances the detec-

tion accuracy (there exists significant performance degrada-

tion of cross-view supervision due to long interval between

the annotated frames). This shows that our approach lever-

ages the unlabeled data better through the tight integration

of temporal and cross-view supervisions. Also we test the

generalizability of the trained pose detector by applying to
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Unlabeled data detection Unseen data detection

Panoptic Studio dataset Nec Sho Elb Wri Hip Kne Ank AUC Nec Sho Elb Wri Hip Kne Ank AUC

Supervised learning 93.5 78.2 36.8 28.6 98.7 83.5 92.4 88.5 94.2 75.4 32.9 23.6 97.2 78.6 89.4 85.5

Temp. 98.1 88.3 43.6 33.5 97.8 92.7 96.6 92.3 96.7 80.7 37.8 28.2 97.8 86.2 92.7 90.1

Yao et al. [37] 98.6 68.2 38.3 23.5 28.9 45.2 69.2 72.5 93.6 64.5 35.8 24.5 34.9 42.8 70.2 70.8

Ours 98.8 93.1 78.5 66.8 98.5 98.3 98.9 95.6 97.2 88.3 68.3 52.4 97.6 89.3 94.7 91.4

Human3.6M Nec Sho Elb Wri Hip Kne Ank AUC Nec Sho Elb Wri Hip Kne Ank AUC

Supervised learning 92.1 75.3 41.8 26.5 93.7 82.5 90.4 86.2 90.1 76.3 38.9 20.8 93.8 78.6 83.2 84.8

Temp. 95.4 88.6 46.5 35.2 96.5 95.6 95.2 91.6 91.7 81.4 42.3 25.6 93.9 83.4 87.5 86.9

Yao et al. [37] 95.8 50.8 31.5 18.5 32.6 40.8 65.3 69.9 89.6 48.3 29.7 20.5 29.8 34.9 60.7 65.2

Ours 97.9 92.5 76.7 64.3 97.2 97.6 96.9 94.8 93.2 92.8 67.3 49.6 93.7 87.6 89.5 88.7

Table 3: We compare our approach with existing semi-supervised learning frameworks: (1) temporal supervision and (2)

cross-view supervision [37]. We evaluate on two public human datasets (Panoptic Studio and Human3.6M) using PCKh

measure. We test the generalizability by applying on unseen subjects.

Monkey subject

DeepLabCut [24] Ours

# annotations Nose Hea Nec F.Leg Paw Hip H. Leg AUC Nose Hea Nec F.Leg Paw Hip H. Leg AUC

10 92.1 93.5 90.6 59.4 28.2 97.3 63.2 73.9 93.2 94.6 91.4 83.2 43.9 92.1 85.5 89.1
20 95.9 95.7 95.2 68.3 30.8 98.3 70.1 78.7 95.1 99.3 98.7 95.2 50.1 93.5 95.7 92.2
30 95.3 95.8 96.7 73.7 33.2 98.5 75.6 80.3 95.4 99.1 98.5 95.9 54.8 95.7 96.0 93.8
40 96.5 96.2 96.8 77.8 39.7 97.9 78.7 83.8 96.5 99.5 99.2 96.3 55.7 94.8 96.3 95.3
50 96.5 96.5 97.1 81.9 42.6 98.3 82.3 85.4 96.6 99.4 99.0 96.4 56.3 95.1 96.7 96.2

Mouse subject

DeepLabCut [24] Ours

# annotations LF. paw LH. paw Tail RF. paw RH. paw MAE RMSE AUC LF. paw LH. paw Tail RF. paw RH. paw MAE RMSE AUC

5 51.1 53.7 73.1 51.3 53.3 6.7 8.7 63.5 57.6 58.5 76.6 57.9 58.1 6.1 8.4 65.7
10 60.0 61.9 78.5 60.6 61.1 5.8 7.9 69.8 68.4 69.5 82.8 67.8 69.8 4.9 7.3 73.6
20 64.5 65.2 80.7 64.9 66.4 5.4 7.7 74.2 73.9 75.6 85.4 74.5 75.0 4.4 6.5 79.5
40 67.3 67.1 82.1 66.7 67.3 5.0 7.5 75.9 78.8 79.0 87.9 78.4 79.2 3.9 5.9 81.4

Table 4: We compare our approach with DeepLabCut [24] that leverages a pre-trained model as varying the number of

annotations. RMSE and MAE are measured in term of confidence map size (46× 46).

Methods Nec Sho Elb Wri Hip Kne Ank AUC

Simon et al. 92.3 82.2 43.5 35.4 91.6 85.3 89.2 90.3
Kocabas et al. 97.6 87.3 42.7 30.6 84.2 91.1 90.3 88.5
Rhodin et al. 98.5 85.2 56.6 42.1 97.8 90.4 91.7 91.9

Ours 97.9 92.5 76.7 64.3 97.2 97.2 96.9 94.8

Table 5: We compare our approach with three baselines: (1)

Simon et al. [30], (2) Kocabas et al. [18], and (3) Rhodin et

al. [28] on Human3.6 dataset.

the unseen subjects who are not used as unlabeled data. For

Panoptic Studio, Dance 1 is used for the labeled and un-

labeled and Dance 2 is used for the unseen data, and for

Human3.6M, Eating and Discussion are used for the labeled

and unlabeled data, and Greeting is used for the unseen data.

The trend is similar to the unlabeled data, i.e., our approach

shows stronger generalization power.

Comparison with DeepLabCut We compare our approach

with DeepLabCut [24] that leverages a pre-trained model

(ResNet 50 [12] trained on ImageNet [29]). In particular,

we focus on non-human subjects (monkeys and mice) to re-

flect the strength of DeepLabCut. Two datasets differ in

range of motion. For the mouse locomotion, the head of

the mouse is stabilized where the range of motion is re-

stricted to leg motion on the treadmill. On the other hand,

the monkey activities are completely unconstrained, which

produces severe self-occlusion and pose variation.

Table 4 and Figure 6(d-e) summarize the performance

comparison with respect to the number of annotations. A

notable difference is that the performance gap of the mon-

key activities is much higher than that of the mouse, e.g.,

for 10 annotated data, our approach outperforms 15% for

the monkey and 3.5% for the mouse. This indicates that

our approach is more resilient to large appearance change

induced by free-ranging activities.

Qualitative Evaluation We show the qualitative result in

Figure 1. See Appendix and Supplementary Video for ex-

tensive qualitative result.

7. Summary

We present a new semi-supervised learning framework

to train a keypoint detector from multiview image streams.

We integrate three self-supervisionary signals to effectively

utilize a large amount of the unlabeled multiview data: (1)

the cross-view supervision that enforces geometric consis-

tency through the epipolar constraint across views; (2) the

temporal supervision that constrains keypoint detection to

be in accordance with dense optical flow; and (3) the visi-

bility supervision that validates the detected keypoint in the

presence of severe self-occlusion. We embed these super-

visions into a new network design composed of three path-

ways in a differentiable fashion, allowing end-to-end train-

ing. We demonstrate that our approach outperforms existing

semi-supervised learning approaches [8, 37] and DeepLab-

Cut [24] that uses a pre-trained model. The resulting net-

work precisely detects the keypoints of both non-human and

human subjects with highly limited labeled data (< 4%).
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