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Abstract

Continual learning (CL), the problem of lifelong learn-

ing where tasks arrive in sequence, has attracted increas-

ing attention in the computer vision community lately. The

goal of CL is to learn new tasks while maintaining the per-

formance on the previously learned tasks. There are two

major obstacles for CL of deep neural networks: catas-

trophic forgetting and limited model capacity. Inspired by

the recent breakthroughs in automatically learning good

neural network architectures, we develop a nonexpansive

AutoML framework for CL termed Regularize, Expand and

Compress (REC) to solve the above issues. REC is a uni-

fied framework with three highlights: 1) a novel regularized

weight consolidation (RWC) algorithm to avoid forgetting,

where accessing the data seen in the previously learned

tasks is not required; 2) an automatic neural architecture

search (AutoML) engine to expand the network to increase

model capability; 3) smart compression of the expanded

model after a new task is learned to improve the model ef-

ficiency. The experimental results on four different image

recognition datasets demonstrate the superior performance

of the proposed REC over other CL algorithms.

1. Introduction

In many real-world applications, batches of data arrive

periodically (e.g., daily, weekly, or monthly) with the data

distribution changing over time. This presents a challenge

for continual learning (CL), and is an important topic of

study in machine learning. The primary goal of continual

learning is to learn consecutive tasks without forgetting the

knowledge learned from earlier tasks, and leverage the pre-

vious knowledge to obtain better performance or faster con-

vergence on the new tasks. One naive way is to fine-tune

the model for every new task; however, such retraining typ-

ically degenerates the model performance on both new tasks

and the old ones. If the new tasks are greatly different from

the old ones, we might not be able to obtain the optimal
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Figure 1. (a) The previous state-of-the-art CL method, DEN [30],

selectively retrains the old network, and dynamically expands the

model capacity. (b) The proposed REC method expands the net-

work through network transformation based AutoML, and then

subsequently compresses the model back to its original size.

model for the new tasks. Meanwhile, the retraining may

adversely affect the old tasks, causing them to drift from

their optimal solution. This is known as “catastrophic for-

getting”, a phenomenon where training a model with new

tasks interferes the previously learned old knowledge, lead-

ing to a performance degradation or even overwriting of the

old knowledge by the new one.

To overcome above catastrophic forgetting problem,

many approaches have been proposed [15, 19, 23, 32, 33].

Kirkpatrick et al. [15] propose using a regularization term to

prevent the new weights from deviating too much from the

previously learned weights, based on their significance to

old tasks. Their method uses a fixed neural network archi-

tecture, which would not scale up when network capacity

gets saturated with more and more new tasks to learn. Dy-

namically expanding the network [30] (DEN) is one way

to overcome the problem caused by static architecture — it

expands the network capacity whenever it detects that the

loss for the new task would not reach a pre-defined thresh-

old. However, DEN involves many hyperparameters and

the final performance is highly sensitive to these parame-

ters; it relies on hand-crafted heuristics to explore the tun-

ing space. This search space can be considerably large, and

human experts usually find a sub-optimal solution in a time-
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consuming parameters tuning process. To this end, we aim

to automatically expand the network for CL, with better

performance and less parameter redundancy than human-

designed architectures. To better facilitate automatic knowl-

edge transfer without human expert tuning and model de-

sign with optimized model complexity, we unprecedentedly

propose a regularized nonexpansive CL framework while

taking learning efficiency into consideration.

AutoML refers to automatically learn a suitable machine

learning (ML) model for a given task — Neural Architec-

ture Search (NAS) [34] is a subfield of AutoML for deep

learning, which searches for optimal hyperparameters of de-

signing a network architecture using reinforcement learn-

ing (RL). The RL framework has a main controller that

observes the generated children networks’ performance on

the validation set as the reward signal — it then assigns

a high probability to the architecture candidate that have

high validation accuracy to update the model. If we use

this approach directly in the continual learning setting, it

would forget old tasks’ knowledge, and it would be a waste-

ful process since each new task network architecture has

to be searched from scratch by the controller, ignoring the

correlations between previously learned tasks and the new

task. We hereby propose a regularized weight consolidation

(RWC) approach to obtain an effective classifier by exploit-

ing inherent correlations between old tasks and new task.

Furthermore, to narrow down the architecture search space

and save time, network transformation [4] is utilized to ac-

celerate meta-learning of the new network.

However, if we keep expanding the network for more

and more new tasks, the model size will grow drastically

to violate piratical efficiency requirements (e.g., low mem-

ory footprint, low power usage). Many network-expansion-

based continual learning algorithms [24, 30] increase the

model capability but also decrease the learning efficiency

in terms of memory cost and power usage. Therefore, we

conduct model compression after completing the learning

of each new task — we compress the expanded model to

the initial model size (before network expansion), with neg-

ligible performance loss on both old and new tasks. Fig 1 il-

lustrates the main difference of our approach with network-

expansion-based continual learning algorithms.

In this work, we focus on 1) overcoming catastrophic

forgetting for CL and 2) improving the network capacity

without decreasing learning efficiency. We propose a new

sparse group regularized weight consolidation (RWC), to

address the first problem. Compared to previous works,

e.g. EWC [15], RWC can identify and retrain discrimina-

tive subset of parameters by incorporating inherent corre-

lations among multiple learned new tasks and extract more

meaningful features from old tasks, while EWC only con-

siders the previous tasks’ Fisher Information. The exper-

imental results show RWC achieves higher average per-

task accuracy compared to EWC, especially later tasks. To

address the second problem, we aim to automatically ex-

pand the network for CL with high performance and op-

timized model complexity without human expert tuning.

We therefore consider the newly expanded layer as a new

task-specific layer, where l1 regularization is adopted to

promote sparsity for the new weight so that each neuron

only connects with few neurons in the following layer. This

will efficiently learn a discriminative representation for the

new task while reducing the computation overheads. We

then compress the expanded model to the same model size

as the initial model, with negligible performance loss on

both old and new tasks. This is different from previous

network-expansion-based CL algorithms, e.g., DEN [30]

and PGN [24], which reduce the model efficiency after

learning new tasks. As far as we know, this is the first

regularization-based nonexpansive AutoML algorithm for

CL.

The key contributions of this work can be summarized

as follows:

1. We propose to Regularize, Expand and Compress

(REC) for CL, which automatically expands the network

capacity for continuous learning a new task with fewer

parameters than human-designed architectures. The final

model is a non-expensive model but the performance is sig-

nificantly enhanced by network expanding procedure.

2. To overcome the catastrophic forgetting of the previ-

ously learned tasks, we propose Regularized Weight Con-

solidation (RWC) — it identifies and retrains the discrimi-

native subset of weights by exploiting inherent correlations

among the tasks and trains the newly added layer as a task-

specific layer for the new task.

3. Furthermore, REC applies an economical and effi-

cient network transformation on arrival of the new task,

which is advantageous over traditional AutoML frame-

works, which discards the trained network and searching

the architecture from scratch.

2. Related Work

2.1. Overcoming Catastrophic Forgetting

Recently, a lot of lifelong learning methods were pro-

posed to address the catastrophic forgetting problem. The

first group of methods uses regularized learning. Elastic

Weight Consolidation (EWC) [15] shows that task-specific

synaptic consolidation may overcome catastrophic forget-

ting in neural networks and observes the important weights

for the previous tasks and selectively adjusts the plasticity of

the weights. Inspired by EWC, Schwarz et al. [26] propose

online EWC, which enlarges the EWC scalability by lim-

iting the regularization term computational cost when the

number of tasks increases. Synaptic Intelligence [31] com-

putes an online importance measure along an entire learn-
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Table 1. Comparisons of the lifelong learning approaches for overcoming catastrophic forgetting. EWC: Elastic Weight Consolidation [15];

DEN: Dynamically expandable network [30]; LwF: Learning without forgetting [19]; GEM: Gradient of Episodic Memory [21]; PGN:

Progressive neural network [24] and our algorithm REC.

EWC DEN LwF GEM PGN REC

No memory growth X X X X

No exemplar X X X X X

Expanding network capacity when necessary X X X

AutoML ability X

ing trajectory, which is similar to EWC. Rotate-EWC [20]

(REWC) is a modified version of EWC — it approximately

diagonalizes the Fisher information matrix of the network

parameters that compute the factorized rotation of the pa-

rameter space used in conjunction with EWC.

The second group of the strategies is associated with

learning task-specific parameters. Learning without forget-

ting (LwF) [19] leverages distillation regularization on the

new tasks — the soft labels of previously learned tasks are

enforced to be similar to the network with the current task

by using knowledge distillation [11]. Less-forgetful learn-

ing [14] is proposed to regularize the L2 distance between

the final hidden activations and the old tasks’ parameters for

preserving the old task feature mappings.

The third group of methods expands the network capac-

ity. Progressive neural network (PGN) [24] is proposed to

block any changes to the pre-trained network models on

previously learned tasks and expands the network archi-

tecture by allocating sub-networks with the fixed capacity

to be trained with the new information. PathNet [7] uses

agents embedding into a neural network to find which parts

of the network can be reused for learning new tasks and

freezes task-relevant paths for avoiding catastrophic forget-

ting. Dynamically expanding network (DEN) [30] increases

the number of trainable parameters to continually learn new

tasks and dynamically selects neurons to retrain or expand

neuron capacity by using group sparse regularization.

The other family of the methods uses episodic mem-

ory, where the previously learned task samples are stored

to effectively recall the experience in the past. Gradient

of Episodic Memory (GEM) [21] performs positive for-

ward transfer, minimizes negative backward transfer to pre-

viously learned tasks and learns the subset of correlations

to a set of tasks without using task descriptors. Incremental

Classifier and Representation Learning (iCaRL) [23] com-

bines classification loss on new tasks and distillation loss on

previously learned tasks with a K-nearest neighbor classifier

and selects the exemplars for each task by letting the em-

beddings of the selected samples closer to the center point

of each class. Table 1 shows the multiple merits of REC,

comparing with previous researches in this area.

2.2. AutoML and Knowledge Distillation

There are many works on AutoML to improve the perfor-

mance of deep neural networks [34, 22, 3]. Neural Archi-

Figure 2. Illustration of our CL framework. REC first searches

the best child network by RWC with Net2Deeper and Net2Wider

operators in the controller for a new coming task, then compresses

the expanded network to the same size as the initial model and

continually learns next new task.

tecture Search (NAS) [34] searches the transferable network

blocks via reinforcement learning and outperforms many

manually designed network architecture. ENAS [22] uses

a controller to discover network architectures by searching

an optimal subgraph within a large computational graph and

shares parameters among child models to enable efficient

NAS. EAS [3] efficiently explores network architecture via

network transformation [4] which is a functionality preserv-

ing method to expand the architecture with a fixed number

of units or filters.

Besides, Knowledge distillation (KD) [11] is also very

related to our work. KD is widely used to compress a

network with a different architecture that approximates the

original network where knowledge is transferred from a

large teacher network to a small student network. The stu-

dent network is trained with KD loss –a modified cross-

entropy loss– that ensures the teacher network and student

network are similar. In our work, we adopt the KD to com-

press the expanded network after learning each new task.

3. Method

Fig. 2 is an overview of our NonExpensive AutoML

framework REC for CL with three components.

3.1. Problem Definition and Overview

We define the continual learning problem as follows

— there will be an unknown number of tasks with un-
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known distributions, arriving in sequence. Our goal is to

learn a deep model in such a continual learning scenario

without catastrophic forgetting. For the evaluation proto-

col, we report the classification accuracy on each of pre-

vious T − 1 tasks and the current task T after training on

the T -th task. Given a sequence of T tasks, task at time

point t = 1, 2, · · · , T with Nt images comes with dataset

Dt = {x
t
i, y

t
i}

Nt

i=1
. Specifically, for task t, yti ∈ {1, ...,K}

is the label for the i-th sample xt
i ∈ R

dt in task t. We

denote the training data matrix by Xt for Dt, i.e., Xt =
(xt

1
, · · · ,xt

Nt
). When the dataset of task t comes, all the

previous training datasets D1, · · · ,Dt−1 are not available

any more, but the deep model parameter θt−1 = {θt−1

l }Ll=1

can be accessed. The continual learning problem at time

point t when given data Dt can be defined as solving the

following problem:

min
θt
F(θt|θt−1,Dt), t = 1, · · · , T (1)

where F is the loss function of solving θt, θt is the param-

eter for task t.
Kirkpatrick et al. [15] proposed EWC that consists of a

quadratic penalty on the difference between the parameter

θt and θt−1 to slow down the catastrophic forgetting for pre-

viously learned tasks. The posterior distribution p(θt|Dt) is

used to describe the problem by the Bayes’ rule.

log p(θt|Dt) = log p(Dt|θ
t)+log p(θt|Dt−1)−log p(Dt),

(2)

where the posterior probability log p(θt|Dt−1) embeds all

the information from task t−1. However, the problem (2) is

intractable so that EWC approximates it as a Gaussian dis-

tribution with mean of parameter θ̄t−1 and a diagonal I of

the Fisher Information matrix F. The matrix F is computed

by Fi = I(θt)ii = Ex[(
∂

∂θt

i

log p(Dt|θ
t))2|θt]. Therefore,

the problem of EWC on task t can be written as follows:

min
θt

Ft(θ
t) +

λ

2

∑

i

Fi(θ
t
i − θ̄t−1

i )2, (3)

where Ft is the loss function for task t, λ denotes how im-

portant the task t − 1 is compared to the task t and i labels

each weight of the parameter θ.

3.2. Regularized Weight Consolidation

The main problem of EWC is that EWC only enforces

task t close to task t − 1, but ignores the inherent correla-

tions between task t − 1 and task t and such relationship

might potentially help overcome catastrophic forgetting on

the task t − 1. Learning multiple related tasks jointly can

improve performance relative to learning each task sepa-

rately, when the tasks are related — this idea is incorporated

into Multi-Task Learning (MTL) [6]. It has been commonly

Figure 3. RWC retrains the entire network learned on previous

tasks while regularizing it to prevent forgetting from the original

model. RWC (purple solid line) learns better parameter represen-

tations to overcome catastrophic forgetting by studying MTL with

the sparsity-inducing norm (purple dash line) and EWC (red line).

used to obtain better generalization performance than learn-

ing each task individually. We regularized Eq. 3 via MTL

and propose a new objective function Eq. 4 to overcome

catastrophic forgetting from multiple tasks simultaneously:

min
θt

Ft(θ
t) +

λ

2

∑

i

Fi(θ
t
i − θ̄t−1

i )2 + λ2||[θ
t; θt−1]||2,1,

(4)

where λ2 is the non-negative regularization parameter and

||[θt; θt−1]||2,1 = ||||θt||2, ||θ
t−1||2||1 is the l2,1-norm reg-

ularization to learn the related representations and capture

the common subset of relevant parameters from each layer

for task t− 1 and task t.
Specifically, we further consider some important param-

eters which have better representation power to a subset

of tasks. The sparsity-inducing norm [8] has been studied

in this paper to select such discriminative parameter sub-

set by incorporating inherent correlations among multiple

tasks. To this end, the l1 sparse norm is imposed to learn

the new task-specific parameters while learning task relat-

edness among multiple tasks. Therefore, the objective func-

tion for task t becomes:

min
θt

Ft(θ
t) +

λ

2

∑

i

Fi(θ
t
i − θ̄t−1

i )2

+λ2||[θ
t; θt−1]||2,1 + λ3||θ

t||1,

(5)

where λ3 is the non-negative regularization parameter.

We call our algorithm Regularized Weight Consolidation

(RWC) and Fig. 3 shows the geometric illustration of RWC.

3.3. NonExpansive Continual Learning

RWC is a regularization-based CL, it might be needed

to expand the network if the task is very different from the

existing ones or the network capacity is not sufficient when

more and more newly coming tasks. Due to human experts

usually find a sub-optimal solution, this encourages us to

propose AutoML based network expanding method for CL

to find a global optimal solution. We name it Regularize,

Expand, Compress (REC) and summarize the steps in Al-
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Algorithm 1: REC

Input : Dataset D1, · · · ,DT , λ, λ1, λ2

Output: θTc
1 begin

2 for t = 1→ T do

3 if t = 1 then

4 Train an initial network with weights θ1

by using Eq. 1.

5 else

6 Search a best child network θt by Alg. 2

with Eq. 8.

7 Compress θt to the same model size as θ1

by Eq. 10 and use θtc for next task.

gorithm 1 and the details of expanding network are outlined

in Algorithm 2.

We consider net2wider and net2deeper operators [4] to

expand the network capacity. The net2wider network trans-

formation function is as follows:

πwider(j) =

{

j j ≤ Ol,
random sample from {1, ..., Ol} j > Ol,

(6)

where Ol represents the outputs of the original layer l. And

the net2deeper network transformation function is

γ(πdeeper(j)) = γ(j) ∀j. (7)

where the constraint γ holds for the rectified linear activa-

tion. We learn a meta-controller to generate network trans-

formation actions (Eq. 6 and Eq. 7) when given the initial

network architecture. Specifically, we use an encoder net-

work [3], which is implemented with an input embedding

layer and a bidirectional recurrent neural network [25], to

learn a low-dimensional representation of the initial net-

work and be embedded into different operators to generate

different network transformation actions. Besides, we use

a shared sigmoid classifier to make the Net2Wider decision

according to the hidden state of the layer learned by the bidi-

rectional encoder network [3] and the wider network can be

further combined with a Net2Deeper operator.

We integrate RWC (Eq. 5) into the AutoML framework

as the loss function for CL settings. After we learning

the network θt−1 on the data Dt−1, we will automatically

search the best child network θt for task t among all the

generated children networks θt
1
, ..., θtm (m is the number of

children networks). The network expansion will be finished

by Net2wider and Net2Deeper operators when it is neces-

sary to expand the network. If the controller decides to ex-

pand the network, the newly added layer will not have the

previous tasks’ Fisher Information. We consider the newly

added layer as a new task-specific layer, l1 regularization is

adopted to promote sparsity in the new weight so that each

neuron only connected with few neurons in the layer below.

This will efficiently learn the best representation for the new

task while reducing the computation overheads. The modi-

fied RWC in the network expansion scenario as follows:

min
θt

Ft(θ
t) +

λ

2

∑

i 6=deeper
i 6=wider

Fi(θ
t
i − θ̄t−1

i )2

+ λ2||[θ
t; θt−1]||2,1 + λ3||θ

t
i=deeper
i=wider

||1,

(8)

where the subscript deeper and wider refer to the newly

added layer in task t.
After the controller generates the child network, the child

network will achieve an accuracy Aval on the validation set

of task t and this will be used as the reward signal Rt to

update the controller. We maximize the expected reward to

find the optimal child network. The empirical approxima-

tion of our AutoML REINFORCE rule [28] as follows:

1

m

m
∑

i=1

S
∑

s=1

▽C logP (as|a1, · · · , as−1;C)Rt
i, (9)

where m is the number of children networks that the con-

troller C samples and as and gs represents the action and

state of predicting s-th hyperparameter to design a child

network architecture, respectively. In Alg. 2, T is the transi-

tion function. Since Rt is non-differentiable, we use policy

gradient to update the controller. We use a non-linear trans-

formation tan(Aval × π/2) on validation set of task t as

done in [3] and use the transformed value as the reward.

We also use an exponential moving average of previous re-

wards with a decay of 0.95 to reduce the variance. To bal-

ance the old task and new task knowledge, we set maximum

expanding layers are 2 and 3 on net2wider and net2deeper

operators, respectively.

If the network keeps expanding as more and more tasks

will be given, the model will suffer the inefficient problem

and have extra memory cost. Thus, the model compression

technique is needed to reduce the memory cost and receive a

nonexpansive model. Here, we use soft-label (the logits) as

knowledge distillation (KD) [11] instead of the hard labels

to train the student model. To be noticed, the θt has learned

the knowledge of new task t and old tasks 1, · · · , t−1. The

compressed model θtc will have the similar performance as

θt and it is not really necessary learning the parameter of

θt−1 again. We follow Ba et al. [2] that the student model is

trained to minimize the mean of the l2 loss on the training

data {xt
i, z

t
i}

Nt

i=1
, where zti is the logits of the child model θt

i-th training sample. We compress the θt to the same size

model as θ1 as long as we expand the network, the KD loss

is listed below:

min
θt
c

Fkd(f(x
t; θtc), z

t) =
1

N t

∑

i

||f(xt
i; θ

t
c)− zti ||

2

2
,

(10)
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Algorithm 2: Automatically Network Transformation

Input : Dataset Dt, θ
t−1

Output: The best expended model θt

1 begin

2 for i = 1→ m do

3 for s = 1→ S do

4 as ← πdeeper(gs−1; θ
t−1

deeper) or

πwider(gs−1; θ
t−1

wider)
5 gs ← T (gs−1, as)
6 θt ← θtnewLayer

7 Ri ← tanh(At
i(gS)× π/2)

8 θti ←▽θt

i−1

J(θti−1
)

where θtc is the weights of the student network and f(xt
i; θ

t
c)

is the prediction of task t i-th training sample.

The final student network θtc is trained to convergence

with hard and soft labels by the following loss function:

min
θt
c

F(f(xt; θtc),y
t) + Fkd(f(x

t; θtc), z
t), (11)

where F is the loss function (cross-entropy) for training

with ground truth yt of task t.

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our algorithm on most commonly

used datasets for CL. We list them as follows:

– MNIST-permutation: MNIST [18] is used as the

most common datasets among all lifelong learning works,

which consists of ten handwritten digits classes with

60,000/10,000 training and testing examples. One way to

create the datasets for multiple tasks is randomly permut-

ing the pixels by a fixed permutation [15] so that the input

distribution for each task is unrelated.

– MNIST-Variation: MNIST-variation [18] dataset ro-

tates the MNIST dataset by a fixed angle between 0 to 180

degrees for each different task. We use 180/T as the fixed

angle to create T tasks.

– CIFAR-100: CIFAR-100 [16] dataset contains 60,000

32 × 32 color images in 100 object classes. Each class

has 500/100 images for training and testing. We consider

each task with a set of classes, it contains 100/T classes

when there are T tasks. Different from MNIST-permutation

dataset, the input distributions are similar for all tasks but

the output distributions for each task are different.

– CUB-200: CUB-200 [29] is a fine-grained image clas-

sification benchmark, we use CUB-200-2011 version in this

work. It contains 11,788 images of 200 types of birds

with 5,994/5,794 for training and testing. Each image has

detailed annotations and a bounding box. We crop the

bounding boxes from the original images and resize them

to 224× 224. We use the same way to create multiple tasks

as CIFAR-100 dataset.

For the first three datasets, we choose T = 10 tasks.

Since the fine-grained CUB-200 dataset is more challeng-

ing than others, we set T = 4 tasks to show better compar-

isons on lifelong learning. For all datasets, we use 0.1 ratio

to split validation set and the model observes the tasks in se-

quence. We generate multiple tasks for each dataset first and

all comparison methods then use the same task order and the

same categories within the task for fair comparisons.

Base network settings. For two MNIST datasets, we

use a two-layer fully-connected neural network of 100-

100 units with ReLU activations as our initial network.

For CIFAR-100 dataset, we use a modified version of

AlexNet [17] which has five convolutional layers (64-128-

256-256-128 depth with 5 × 5 filter size), and three fully-

connected layers (384-192-100 neurons at each layer) and

the standard data augmentation is used in this dataset. For

CUB-200 dataset, we use a pre-trained VGG-16 [27] model

from ImageNet [5] and fine-tune it on the CUB-200 data for

better initialization. We follow the setting of Liu et al. [20],

which adds a global pooling layer after the final convolu-

tional layer of the VGG-16. The fully-connected layers are

changed to 512-512 and the size of the output layer is the

number of classes in each task. All models and algorithms

are implemented using Tensorflow [1] library.

Comparison methods. We compare our algorithm

with six other methods: 1) SN: A single network trained

across all tasks. 2) Net2Net [4]: Network expanding

by Net2Net [4] on new task. 3) EWC [15]: A deep

network trained with elastic weight consolidation. 4)

Net2Net-EWC: Network expanding by Net2Net [4] with

elastic weight consolidation [15] when learning new task.

5) DEN [30]: Dynamically expandable network. 6)

REWC [20]: Rotate Elastic Weight Consolidation. 7)

RWC: A deep network trained with regularized weight con-

solidation. 8)REC: Regularize, Expand and Compress.

Hyperparameter settings. All hyper-parameters in

RWC are optimized using a grid-search and the best results

for each model are reported. For two MNIST datasets, the

SGD optimizer is used with a learning rate of 0.001 and we

set batch size of 256 with 8 epochs, λ1 = 2, λ2 = 0.0001
and λ3 = 0.001 in all experiments. For CIFAR-100 dataset,

we use SGD optimizer with momentum parameter of 0.9,

learning rate of 0.01, batch size of 128 with 20 epochs,

λ1 = 10, λ2 = 0.015 and λ3 = 0.0001. For CUB dataset,

the Adam optimizer is used with a learning rate of 0.001,

batch size of 32 and 50 epochs, λ1 = 100, λ2 = 0.001 and

λ3 = 0.005. For network transformation based AutoML

experimental settings, we followed the training details of

Cai et al. [3].
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Figure 4. The experimental results of continual training on MNIST-permutation, MNIST-variation and CIFAR-100 datasets. We report

the average per-task performance (Accuracy) of the models over T = 10 task. The numbers in the legend represent average per-task

performance after the model has finished learning task t.
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Figure 5. Forgetting experiment for task 1 on MNIST-permutation, MNIST-variation and CIFAR-100 datasets. We report the accuracy of

different models on task t = 1 at each training stage to see how the model performance changes over time for all datasets.

Table 2. Comparisons of the model size and the average task accu-

racy after training 10 tasks on MNIST-permutation. #W (1): total

parameters of task 1. #W (10): total parameters of task 10. ACC

(10): average per-task accuracy after training task 10.

Methods #W (1) #W (10) ACC (10)

SN 0.01M 0.01M 17.4%

Net2Net 0.01M 0.02M 32.1%

EWC 0.01M 0.01M 84.4%

Net2Net-EWC 0.01M 0.02M 81.8%

DEN 0.01M 0.14M 94.9%

RWC 0.01M 0.01M 93.8%

REC 0.01M 0.01M 95.7%

4.2. Experimental Results

We evaluate our methods from both model accuracy and

model complexity, where we measure the model size at the

end of the training process.

Comparisons of the model performance. We re-

port the average per-task accuracy of MNIST-permutation,

MNIST-variation and CIFAR-100 datasets when T = 10 in

Fig. 4 and average the results over five runs. Overall, REC

outperforms all comparison methods and overcomes catas-

trophic forgetting especially on the later tasks (after task

5). We can observe that the regularization based network

(EWC, RWC) has worse performance than expandable net-

works (DEN, REC), which shows that selectively expand

networks help improve the performance by a large mar-

gin. Specifically, REC performs better than DEN on two

MNIST datasets and RWC performs similarly with DEN on

MNIST-permutation dataset while using fewer parameters.

We also observe that directly apply Net2Net [4] on lifelong

learning does not perform well since it forgets the old tasks’

knowledge as finetuning (SN), but adding EWC as the loss

function can help enhance the old tasks’ performance on

Net2Net. REC has better performance than Net2Net-EWC,

because we consider the new task-specific parameters and

the discriminative common subset between the old tasks and

the new one.

We also evaluate the catastrophic forgetting over time

on the earliest task, Fig. 5 shows the test accuracy of the

first task throughout the whole lifelong learning process

on MNIST-permutation, MNIST-variation and CIFAR-100

datasets. It shows that our methods (RWC and REC) over-

come forgetting on old tasks compared with all other meth-

ods on MNIST-permutation and CIFAR-100 datasets. It is

worth noting that DEN performs slightly better than our

method on task 1 after learning later tasks on MNIST-

variation dataset due to they selectively expands network for

the new task, it will give a bias towards to the earliest task.

Our REC is a nonexpensive network and our overall aver-

age per-task performance is better than DEN, which shows

that our method has better performance on later learned

tasks and achieve a more balanced performance when learn-
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Table 3. Comparisons of the model size and the average task accu-

racy after training 10 tasks on CIFAR-100 dataset. #W (1): total

parameters of task 1. #W (10): total parameters of task 10. ACC

(10): average per-task accuracy after training task 10.

Methods #W (1) #W (10) ACC (10)

SN 4M 4M 16.3%

Net2Net 4M 6.3M 20.8%

EWC 4M 4M 41.9%

Net2Net-EWC 4M 7.4M 47.2%

RWC 4M 4M 55.6%

REC 4M 4M 59.7%

ing sequential tasks in the temporal dimension comparing

with DEN. Besides, we have an interesting founding on

MNIST-variation dataset, the SN and Net2Net has irregular

performance on task 1 after learning task 10, it is due to the

task 10 is the upside-down flipped image of task 1 and such

flip gives benefit on some digits such as ‘1’,‘0’,‘8’. And SN

and Net2Net forget too much task 1’ knowledge after learn-

ing task 9, they only can keep the most recently learned task

knowledge when they learn task 10 comparing with EWC,

RWC and REC and this causes the irregular performance.

Comparisons of the model complexity. Table 2 and

Table 3 report the comparisons of the model size and the

average per-task performance after training T = 10 tasks of

different approaches on MNIST-permutation and CIFAR-

100 datasets, respectively. Overall, REC performs simi-

larly or better than all other approaches with smaller model

size. We observe that DEN performs better than RWC

and worse than REC on MNIST-permutation dataset, but

it has 1.4X network expansion comparing with ours. For

CIFAR-100 dataset, We compute our AUROC after learning

T = 10 tasks, REC can achieve 0.887 comparing with DEN

(0.923), however, our model size is 50% of DEN’s model.

Besides, we notice that DEN involves 7 hyperparameters

and very sensitive to them, we slightly change one of them

from 10−3 to 10−2, the result becomes 0.8907 on MNIST-

permutation dataset. Our method only has three hyperpa-

rameters and it needs much less expert tuning comparing

with DEN. Training times is a limitation of the current ver-

sion of REC, since REC is a reinforcement learning based

algorithm, a varies number of trails are needed and this re-

sults in more training time than other methods. We will

improve the training efficiency of our work in the future.

Besides, we did not consider complexity network structures

(e.g. ResNet [10], DenseNet [13]), we will extend the cur-

rent work to more network architectures in the future.

Results on CUB-200 dataset. Fig. 6 shows the com-

parison results when T = 4 on CUB-200 dataset with

EWC [15] and REWC [20]. It shows that RWC has compa-

rable results with REWC, RWC has better performance on

task 3 and task 4 while has worse performance on task 2.

We test REC with only new task validation set (REC-new),

which has similar results as RWC on later tasks. This might

be caused by using only new task validation set is not suffi-
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Figure 6. Comparison results with EWC and REWC on CUB-200

dataset when T = 4.

Table 4. Comparison results of average per-task accuracy after

training task 10 on MNIST-permutation dataset.

Method EWC EWC+l1 EWC+l2,1 RWC

ACC(10) 84.4% 87.7% 88.5% 94.0%

cient to compute the rewards on a more subtle dataset. We

hypothesis the exemplars from old tasks will help improve

the nonexpansive AutoML system’s performance. Thus, we

use the validation sets of all learned tasks to compute the re-

wards and report the results (REC-all) in Fig. 6. The results

show that exemplars from old tasks help improve the perfor-

mance of AutoML based algorithm and we will investigate

the relationship between the number of exemplars and the

performance of REC in our future work.

Ablation study on each component in RWC. We study

how the different components used in RWC affect the fi-

nal performance of lifelong learning. We report the av-

erage per-task accuracy after training task 10 on MNIST-

permutation of different strategies EWC, EWC with l1-norm

only, EWC with l2-norm only and RWC in Table 4. It shows

that l2,1-norm has a stronger effect of the performance than

l1-norm while our method RWC outperforms the single reg-

ularization strategies, which demonstrates the meaningful

and useful of our method by studying common weights sub-

set with discriminative new task parameters.

5. Conclusions and Limitations

In this work, we develop a regularized continual learn-

ing framework via nonexpansive AutoML (REC). REC is

achieved at two stages: continually network expansion and

model compression. To overcome catastrophic forgetting,

we propose RWC. We achieve better accuracy and smaller

model size than other CL methods on four datasets.

Model compression is an optional stage for the cur-
rent work with a trade-off between the compressed model
and the original model. REC is our initial work for
overcoming catastrophic forgetting and we will speed-
up the hyperparameter optimization [12] in our future
work. The AutoML training time is another limita-
tion with REC, however it can be further improved by
optimality tightening [9] or parallelization [34] or sim-
ilar approaches for reducing the training time. We
plan to reduce the training complexity in our future
work.
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