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Abstract

Recent anchor-based deep face detectors have achieved

promising performance, but they are still struggling to de-

tect hard faces, such as small, blurred and partially oc-

cluded faces. One reason is that they treat all images and

faces equally, and ignore the imbalance between easy im-

ages and hard images; however large amounts of train-

ing images only contain easy faces, which are less help-

ful to learn robust detectors for hard faces. In this paper,

we propose that the robustness of a face detector against

hard faces can be improved by learning small faces on

hard images. Our intuitions are (1) hard images are the

images which contain at least one hard face, thus they fa-

cilitate training robust face detectors; (2) most hard faces

are small faces and other types of hard faces can be easily

shrunk to small faces. To this end, we build an anchor-

based deep face detector, which only outputs a single

high-resolution feature map with small anchors, to specif-

ically learn small faces and train it by a novel hard im-

age mining strategy which automatically adjusts training

weights on images according to their difficulties. Exten-

sive experiments have been conducted on WIDER FACE,

FDDB, Pascal Faces, and AFW datasets and our method

achieves APs of 95.7, 94.9 and 89.7 on easy, medium

and hard WIDER FACE val dataset respectively, which

verify the effectiveness of our methods, especially on detect-

ing hard faces. Our detector is also lightweight and enjoys

a fast inference speed. Code and model are available at

https://github.com/bairdzhang/smallhardface.

1. Introduction

Face detection is a fundamental and important com-

puter vision problem, which is critical for many face-related

tasks, such as face alignment [3, 36], tracking [9] and recog-

nition [19, 24]. Stem from the recent success of deep

neural networks, massive CNN-based face detection ap-

proaches [7, 17, 29, 42, 45, 46] have been proposed and

achieved state-of-the-art performance. However, face de-

tection remains a challenging task due to occlusion, illu-
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Figure 1: Left: AP of each training image computed based

on official SSH model, the x-axis is index of the training

image, the y-axis is the AP for the corresponding image.

Upper right: hard training images. Lower right: easy train-

ing images.

mination, makeup, as well as pose and scale variance, as

shown in the benchmark dataset WIDER FACE [40].

Current state-of-the-art CNN-based face detectors at-

tempt to address these challenges by employing more pow-

erful backbone models [1], exploiting feature pyramid-style

architectures to combine features from multiple detection

feature maps [29], designing denser anchors [46] and uti-

lizing larger contextual information [29]. These methods

and techniques have been shown to be successful to build a

robust face detector, and improve the performance towards

human-level for most images.

In spite of their success for most images, an evident per-

formance gap still exists especially for those hard images

which contain small, blurred and partially occluded faces.

We realize that these hard images have become the main

barriers for face detectors to achieve human-level perfor-

mance. In Figure 1, we show that, even on the train set of

WIDER FACE, the official SSH model 1 still fails on some

of the images with extremely hard faces. We show two such

hard training images in the upper right corner in Figure 1.

On the contrary, most training images with easy faces

can be almost perfectly detected (see the illustration in the

lower right corner of Figure 1). As shown in the left part of

Figure 1, over two-thirds of the training images already ob-

tained perfect detection accuracy, and we believe that those

easy images are less useful towards training a robust face

detector. To address this issue, in this paper, we propose a

1https://github.com/mahyarnajibi/SSH
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robust face detector by putting more training focus on those

hard images.

This problem is mostly related to anchor-level hard ex-

ample mining discussed in OHEM [26]. OHEM aims at

mining hard anchors/proposals in each image. However,

when the majority of the training set are easy images with

no hard anchors/proposals (see Figure 1), OHEM will ex-

hibit less effectiveness since less useful information can be

exploited towards a more robust model. To this end, we

propose to mine hard positive examples at image level (i.e.

hard image mining, HIM) in conjunction with anchor level

OHEM. More specifically, we propose to dynamically as-

sign difficulty scores to training images during the learning

process, which can determine whether an image is already

well-detected or still useful for further training. This allows

us to fully utilize the images which were not perfectly de-

tected to better facilitate the subsequent learning process.

We show that this strategy can make our detector more ro-

bust towards hard faces, without involving more complex

network architecture and computation overhead. The main

difference between our HIM and OHEM is that ours takes

an image as a unit for mining while OHEM takes an an-

chor/proposal as a unit for mining. Our HIM is comple-

mentary to OHEM and our face detector uses both OHEM

and HIM since they aim to solve different issues.

Apart from mining the hard images, we also propose

to improve the detection quality by exclusively exploiting

small faces. Small faces are typically hard and have at-

tracted extensive research attention [1, 7, 46]. Existing

methods aim at building a scale-invariant face detector to

learn and infer on both small and big faces, with multiple

levels of detection features and anchors of different sizes.

Compared with these methods, our detector is more efficient

since it is specially designed to aggressively leverage the

small faces during training. More specifically, large faces

are automatically ignored during training due to the design

of small anchors and single high-resolution feature map, so

that the model can fully focus on the small hard faces. Ex-

perimental results also demonstrate the effectiveness of our

design.

To conclude, in this paper, we propose a novel face de-

tector with the following contributions:

• We propose a hard image mining strategy, to improve

the robustness of our detector to those extremely hard

faces. This is done without any extra modules, param-

eters or computation overhead added on the existing

detector.

• We design a single shot detector with only one detec-

tion feature map, which focuses on small faces with

a specific range of sizes. This allows our model to be

simple and focus on difficult small faces without strug-

gling with scale variance.

• Our face detector achieves state-of-the-art level per-

formance on all popular face detection benchmarks,

including WIDER FACE, FDDB, Pascal Faces, and

AFW. We achieve 95.7, 94.9 and 89.7 on easy,

medium and hard WIDER FACE val dataset. Our

method also achieves APs of 99.00 and 99.60 on Pas-

cal Faces and AFW respectively, as well as a TPR of

98.7 on FDDB.

The remainder of this paper is organized as follows. In

Section 2, we discuss some studies which are related to our

paper. In Section 3, we dive into details of our proposed

method, and we discuss experimental results and ablation

experiments in Section 4. Finally, conclusions are drawn in

Section 5.

2. Related work

Face detection has received extensive research atten-

tion [11, 16, 31]. With the emergence of modern CNN [6,

10, 27] and object detector [4, 14, 21, 22], there are

many face detectors proposed to achieve promising perfor-

mances [17, 29, 33, 34, 45], by adopting general object de-

tection framework into face detection domain. In this sec-

tion, we briefly review hard example mining, face detection

architecture, and anchor design & matching.

2.1. Hard example mining

Hard example mining is an important strategy to im-

prove model quality, and has been studied extensively in im-

age classification [15] and general object detection [13, 26].

The main idea is to find some hard positive and hard neg-

ative examples at each step, and put more effort into train-

ing on those hard examples [23, 30]. Recently, with mod-

ern detection frameworks proposed to boost the perfor-

mance, OHEM [26] and Focal Loss [13] have been pro-

posed to select hard examples. OHEM computed the gradi-

ents of the networks by selecting the proposals with highest

losses in every minibatch; while Focal Loss aimed at nat-

urally putting more focus on hard and misclassified exam-

ples by adding a factor to the standard cross entropy crite-

rion. However, these algorithms mainly focused on anchor-

level or proposal-level mining, and they will exhibit less

effectiveness on easy images where there are no hard an-

chors/proposals. In face detection, most training images are

easy as shown in Figure 1, while some extremely hard im-

ages drag the final performance down. To this end, we pro-

pose to exploit hard example mining on image level, i.e.

hard image mining, to improve the quality of face detec-

tor on extremely hard faces. Our hard image mining can

be used in conjunction with OHEM, to put more training

efforts on hard images and make OHEM more effective.
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Figure 2: The framework of our face detector. We take VGG16 as our backbone CNN, and we fuse two layers (conv4 3

and conv5 3) after dimension reduction and bilinear upsampling, to generate the final detection feature map. Based on that,

we add a detection head for classification and bounding-box regression.

2.2. Face detection architecture

Recent state-of-the-art face detectors are generally built

based on Faster-RCNN [22], R-FCN [4] or SSD [14].

SSH [17] exploited the RPN (Region Proposal Network)

from Faster-RCNN to detect faces, by building three detec-

tion feature maps and designing six anchors with different

sizes attached to the detection feature maps. S3FD [45] and

PyramidBox [29], on the other hand, adopted SSD as their

detection architecture with six different detection feature

maps. Different from S3FD, PyramidBox exploited a fea-

ture pyramid-style structure to combine features from dif-

ferent detection feature maps. Our proposed method, on the

other hand, only builds single level detection feature map,

based on VGG16, for classification and bounding-box re-

gression, which is both simple and effective.

2.3. Anchor design and matching

Usually, anchors are designed to have different sizes to

detect objects with different scales, in order to build a scale-

invariant detector. SSD as well as its follow-up detectors

S3FD and PyramidBox, had six sets of anchors with dif-

ferent sizes, ranging from (16 × 16) to (512 × 512), and

their network architectures had six levels of detection fea-

ture maps, with resolutions ranging from 1
4 to 1

128 , respec-

tively. Similarly, SSH had the same anchor setting, and

those anchors were attached to three levels of detection fea-

ture maps with resolutions ranging from 1
8 to 1

32 . The differ-

ence between SSH and S3DF is that in SSH, anchors with

two neighboring sizes share the same detection feature map,

while in S3DF, anchors with different sizes are attached to

different detection feature maps.

SNIP [28] discussed an alternative approach to handle

scales. It showed that CNNs are not robust to changes in

scale, so training and testing on the same scales of an image

pyramid can be a more optimal strategy. In our paper, we

exploit this idea by limiting the anchor sizes to be (16×16),

(32 × 32) and (64 × 64). Then those faces with either too

small or too big sizes will not be matched to any of the

anchors, thus will be ignored during the training and test-

ing. By removing those large anchors with sizes larger than

(64 × 64), our network focuses more on small faces which

are potentially more difficult. To process large faces, we use

multi-scale training and testing to resize them to match our

small anchors.

3. Proposed method

In this section, we introduce our proposed method for

effective face detection. We first discuss the architecture of

our detector in Subsection 3.1, then we elaborate our hard

image mining strategy in Subsection 3.2, as well as some

other useful training techniques in Subsection 3.3.

3.1. Singlelevel small face detection framework

The framework of our face detector is illustrated in Fig-

ure 2. We use VGG16 network as our backbone CNN, and

combine conv4 3 and conv5 3 features, to build the de-

tection feature map with both low-level and high-level se-

mantic information. Similar to SSH [17], we apply 1×1

convolution layers after conv4 3 and conv5 3 to reduce

dimension, and then apply a 3×3 convolution layer on the

concatenation of these two dimension reduced features. The

output feature of the 3×3 convolution layer is the final de-

tection feature map, which will be fed into the detection

head for classification and bounding-box regression.

The detection feature map has a resolution of 1
8 of the

original image (of size H ×W ). We attach three anchors at

each point in the grid as default face detection boxes. Then

we do classification and bounding-box regression on those

3×H
8 ×

W
8 anchors. Unlike many other face detectors which

build multiple feature maps to detect faces with a variant
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Figure 3: The framework of our dilated detection head for

classification and regression. Based on the detection feature

map from the backbone CNN, we first perform dimension

reduction to reduce the number of channels from 512 to 128.

Then we put three convolution layers with the shared weight

and different dilation rates, to generate final detection and

classification features.

range of scales, inspired by SNIP [28], faces are trained and

inferred with roughly the same scales. We only have one de-

tection feature map, with three sets of anchors attached to it.

The anchors have sizes of (16×16), (32×32) and (64×64),

and the aspect ratio is set to be 1. By making this configura-

tion, our network only trains and infers on faces with small

and medium sizes; and we propose to handle large faces by

shrinking the images in the test phase. We argue that there

is no speed or accuracy degradation for large faces, since in-

ferring on a tiny image (with the short side containing 100

or 300 pixels) is very fast, and the shrunk large faces will

still have enough information to be recognized.

To handle the difference of anchor sizes attached to the

same detection feature map, we propose a detection head

which uses different dilation rates for anchors with differ-

ent sizes, as shown in Figure 3. The intuition is that in or-

der to detect faces with different sizes, different effective

receptive field sizes are required. This naturally requires

the backbone feature map to be invariant to scales. To this

end, we adopt different dilation rates for anchors with dif-

ferent sizes. For anchors with size (16× 16), (32× 32) and

(64× 64), we use a convolution with a kernel size of 3 and

dilation rate of 1, 2 and 4 to gather context features at dif-

ferent scales. These three convolution layers share weights

to reduce the model size. With this design, the input of the

3 × 3 convolution, will be aligned to the same location of

faces, regardless of the size of faces and anchors. Subsec-

tion 4.3 will show the effectiveness of this multi-dilation

design.

3.2. Hard image mining

Different from OHEM, which selects proposals or an-

chors with the highest losses, we propose a novel hard im-

age mining strategy at the image level. The intuition is that

most images in the dataset are very easy, and we can achieve

a very high AP even on the hard subset of the WIDER

FACE val dataset with our baseline model, while there are

still some extremely challenging images with occlusion, il-

lumination, makeup and pose/scale variance. We believe

not all training images should be treated equally, and well-

recognized images will not help towards training a more

robust face detector. To put more attention on training hard

images instead of easy ones, we use a subset D′ of all train-

ing images D, to contain hard ones for training. At the be-

ginning of each epoch, we build D′ based on the difficulty

scores obtained in the previous epoch.

We initially use all training images to train our model

(i.e. D′ = D). This is due to the fact that our initial Im-

ageNet pre-trained model will only give random guess to-

wards face detection. In this case, there is no easy image

and, every image is considered as hard image and fed to the

network for training at the first epoch. During the training

procedure, we dynamically assign different difficulty scores

to training images, which is defined by the metric Worst

Positive Anchor Score (WPAS):

WPAS(I; Θ) = min
a∈A(I)+

exp(l(I; Θ)a,1)

exp(l(I; Θ)a,1) + exp(l(I; Θ)a,0)

where A(I)+ is the set of positive anchors for image I , with

IoU over 0.5 against ground-truth boxes, l is the classifica-

tion logit and l(I; Θ)a,1, l(I; Θ)a,0 are the logits of anchor

a for the image I to be foreground face and background.

All images are initially marked as hard, and any image with

WPAS greater than a threshold th will be regarded as easy,

since all positive anchors have been correctly recognized.

At the beginning of each epoch, we first randomly shuf-

fle the training dataset to generate the complete training list

D = [Ii1 , Ii2 , · · · , Iin ] for the following epoch of train-

ing, where i1, · · · , in is a random permutation of 1, · · · , n.

Then given an image marked as easy, we remove it from

D with a probability of p. The remaining training list

D′ = [Iiji , Iij2 , · · · , Iijk ] (a sublist of D), which focuses

more on hard images, will be used for training at this epoch.

Note that for multi-GPU training, each GPU will maintain

its training list D′ independently. In our experiments, we

set the probability p to 0.7, and the threshold th to 0.85. We

test with different p and th and find that the model performs

consistently well when th falls between 0.3 and 0.85 and p

falls between 0.5 and 0.7.
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3.3. Training strategy

Multi-scale training and anchor matching

Since we only have anchors covering a limited range of face

scales, we train our model by varying the sizes of training

images. During the training phase, we resize the training

images so that the short side of the image contains s pixels,

where s is randomly selected from {400, 800, 1200}. We

also set an upper bound of 2000 pixels to the long side of

the image considering the GPU memory limitation.

For each anchor, we assign a label {+1, 0,−1} based on

how well it matches with any ground-truth face bounding

box. If an anchor has an IoU (Intersection over Union) over

0.5 against a ground-truth face bounding box, we assign +1
to that anchor. On the other hand, if the IoU against any

ground-truth face bounding box is lower than 0.3, we as-

sign 0 to that anchor. All other anchors will be given −1
as the label, and thus will be ignored in the classification

loss. By doing so, we only train on faces with designated

scales. Those faces with no anchor matching will be sim-

ply ignored, since we do not assign the anchor with largest

IoU to it (thus assign the corresponding anchor label +1)

as Faster-RCNN does. This anchor matching strategy will

ignore the large faces, and our model can put more capac-

ity on learning different face patterns on hard small faces

instead of memorizing the change in scales.

For the regression loss, all anchors with IoU greater than

0.3 against ground-truth faces will be taken into account and

contribute to the smooth ℓ1 loss. We use a smaller thresh-

old (i.e. 0.3) because (1) this will allow imperfectly matched

anchors to be able to localize the face, which may be use-

ful during the testing and (2) the regression task has less

supervision since unlike classification, there are no nega-

tive anchors for computing loss and the positive anchors are

usually sparse.

Anchor-level hard example mining

OHEM has been proven to be useful for object detection

and face detection in [14, 17, 26]. During our training, in

parallel with our newly proposed hard image mining, we

also use the traditional hard anchor mining method to fo-

cus more on the hard and misclassificed anchors. Given a

training image with size H × W , there are 3 × H
8 × W

8
anchors at the detection head, and we only select 256 of

them to be involved in computing the classification loss.

For all positive anchors with IoU greater than 0.5 against

ground-truth boxes, we select the top 64 of them with low-

est confidences to be recognized as faces. After selecting

positive anchors, (256 − #pos anchor) negative anchors

with highest face confidences are selected to compute the

classification loss as hard negative anchors. Note that we

only perform OHEM for classification loss, and we keep all

anchors with IoU greater than 0.3 for computing regression

loss, without selecting a subset based on either classification

loss or bounding-box regression loss.

Data augmentation

Data augmentation is extremely useful to make the model

robust to light, scale changes and small shifts [14, 29]. In

our proposed method, we exploit cropping and photometric

distortion as data augmentation. Given a training image af-

ter resizing, we crop a patch of it with a probability of 0.5.

The patch has a height of H ′ and a width of W ′ which are

independently drawn from U(0.6H,H) and U(0.6W,W ),
where U is the uniform distribution and H , W are the height

and width of the resized training image. All ground-truth

boxes whose centers are located inside the patch are kept.

After the random cropping, we apply photometric distor-

tion following SSD by randomly modifying the brightness,

contrast, saturation and hue of the cropped images.

4. Experiments

To verify the effectiveness of our model and proposed

method, we conduct extensive experiments on popular

face detection benchmarks, including WIDER FACE [40],

FDDB [8], Pascal Faces [37] and AFW [48]. It is worth not-

ing that the training is only performed on the train set of

WIDER FACE, and we use the same model for evaluation

on all these datasets without further fine-tuning.

4.1. Experiment settings

We train our model on the train set of WIDER FACE,

which has 12880 images with 159k faces annotated. We

flip all images horizontally, to double the size of our training

dataset to 25760. For each training image, we first randomly

resize it, and then we use the cropping and photometric dis-

tortion data augmentation methods discussed in Section 3.3

to pre-process the resized image. We use an ImageNet pre-

trained VGG16 [10] model to initialize our network back-

bone, and our newly introduced layers are randomly initial-

ized with Gaussian initialization. We train the model with

the itersize to be 2, for 46k iterations, with a learning rate

of 0.004, and then for another 14k iterations with a smaller

learning rate of 0.0004. For training, we use 4 GPUs to si-

multaneously to compute the gradient and update the weight

by synchronized SGD with Momentum [20]. The first two

blocks of VGG16 are frozen during the training, and the rest

layers of VGG16 are set to have a double learning rate.

Since our model is designed and trained on only small

faces, we use a multiscale image pyramid for testing to deal

with faces larger than our anchors. Specifically, we resize

the testing image so that the short side contains 100, 300,

600, 1000 and 1400 pixels for evaluation on WIDER FACE
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Figure 4: Precision-recall curve on WIDER FACE val dataset.
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Figure 5: Precision-recall curve on the hard subset of

WIDER FACE test dataset.

dataset. We also follow the testing strategies used in Pyra-

midBox [29]2 such as horizontal flip and bounding-box vot-

ing [5].

4.2. Experiment results

WIDER FACE dataset includes 3226 images and 39708

faces labelled in the val dataset, with three subsets –

easy, medium and hard. In Figure 4, we show the

precision-recall (PR) curve and average precision (AP) for

our model compared with many other state-of-the-arts [1, 2,

17, 18, 29, 32, 33, 34, 35, 38, 39, 40, 41, 43, 44, 45, 46, 47]

on these three subsets. As we can see, our method achieves

the state-of-the-art level accuracy on the hard subset.

Since the hard set is a superset of small and medium,

which contains all faces taller than 10 pixels, the perfor-

mance on hard set can represent the performance on the

full testing dataset more accurately. Our performance on

2https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/

face detection/widerface eval.py

the medium subset is comparable to the most recent state-

of-the-art and the performance on the easy subset is a

bit worse since our method focuses on learning hard faces,

and the architecture of our model is simpler compared with

other state-of-the-arts.

There is also a WIDER FACE test dataset with no an-

notations provided publicly. It contains 16097 images, and

is evaluated by WIDER FACE author team. We report the

performance of our method at Figure 5 for the hard subset.

FDDB dataset includes 5171 faces on a set of 2845 images,

and we use our model trained on WIDER FACE train

set to infer on the FDDB dataset. We use the raw bounding-

box result without fitting it into ellipse to compute ROC. We

show the discontinuous ROC curve at Figure 6a compared

with [12, 16, 25, 29, 31, 37, 43, 45, 48], and our method

achieves the state-of-the-art performance with a TPR of

98.7% given 1000 false positives.

Pascal Faces dataset includes 1335 labeled faces on a set

of 851 images extracted for the Pascal VOC dataset. We

show the PR curve at Figure 6b compared with [16, 45], and

our method achieves a new state-of-the-art performance of

AP=99.0.

AFW dataset includes 473 faces labelled in a set of 205

images. As shown in Figure 6c compared with [16, 25, 45,

48], our method achieves state-of-the-art and almost perfect

performance, with an AP of 99.60.

4.3. Ablation study and diagnosis

Ablation experiments

In order to verify the performance of our single level face

detector, as well as the effectiveness of our proposed hard

image mining, the dilated-head classification and regression

structure, we conduct various ablation experiments on the

WIDER FACE val dataset. All results are summarized in

Table 1. From Table 1, we can see that our single level

baseline model can already achieve performance compara-
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Figure 6: Performance compared with state-of-the-arts on other face datasets.

Method easy medium hard

Baseline-Three 95.0 93.8 88.5

+ HIM 95.5 94.5 89.0

Baseline-Single 95.1 94.2 89.1

+ HIM 95.4 94.8 89.6

+ DH 95.4 94.5 89.3

+ DH + HIM 95.7 94.9 89.7

Table 1: Ablation experiments. Baseline-Three is a face

detector similar to SSH with three detection feature maps.

Baseline-Single is our proposed detector with single detec-

tion feature map shown in Figure 2. HIM and DH repre-

sents hard image mining (Subsection 3.2) and dilated head

architecture (Figure 3). The same testing strategy is used.

ble to the current state-of-the-art face detector, especially

on the hard subset. Our model with single detection feature

map performs better than the one with three detection fea-

ture maps, despite its shallower structure, fewer parameters

and anchors. This confirms the effectiveness of our simple

face detector with single detection feature map focusing on

small faces.

We also separately verify our newly proposed hard image

mining (HIM) and dilated head architecture (DH) described

in Subsection 3.2 and Figure 3 respectively. HIM can im-

prove the performance on hard subset significantly without

involving more complex network architecture nor computa-

tion overhead, and this benefit holds for both our three-map

baseline and single-map baseline. DH itself can also boost

the performance, which shows the effectiveness of design-

ing larger convolution for larger anchors. Combining HIM

and DH together can achieve the best performance.

Diagnosis of OHEM as hard face mining

In this subsection we investigate the possibility of using on-

line hard example mining (OHEM) [26] to make the net-

Method easy medium hard

Baseline-Single 95.1 94.2 89.1

+ HIM 95.4 94.8 89.6

+ OHEM HARD FACE 95.0 94.2 89.1

Table 2: Diagnose of using OHEM to mine hard faces. All

entries are based on our Baseline-SingleLevel configuration

without DH.

work focus more on hard faces, by selecting hard propos-

als/anchors in each image separately. Instead of selecting

the top 64 hardest positive anchors as we did in Subsec-

tion 3.3, we mimic the settings used in HIM (see 3.2), and

disable a positive anchor with a probability of p if the score

of that positive anchor is greater than th, where p is 0.7 and

th is 0.85. All other settings are kept the same and we do

not use the dilated head architecture (DH) here. The results

are shown in Table 2, and the performance of using OHEM

to mine hard faces (listed as OHEM HARD FACE in the

table) is inferior compared with our HIM. It confirms our

intuition that most images are easy without hard faces, and

mining hard faces on those easy images is not helpful to

train a more robust detector, so it is important to select and

focus on hard images.

Diagnosis of multi-scale testing

Our face detector with one detection feature map is de-

signed for small face detection, and our anchors are only

capable of capturing faces with sizes ranging from (16×16)

to (64 × 64). As a result, it is critical to adopt multi-scale

testing to deal with large faces. Different from SSH, S3FD

and PyramidBox, our testing pyramid includes some ex-

tremely small scales (i.e. short side contains only 100 or

300 pixels). In Table 3, we show the effectiveness of these

extremely small scales to deal with easy and large images.
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Testing Scales (x100) easy medium hard

[6, 10, 14] 78.2 85.7 86.1

[3, 6, 10, 14] 91.3 92.6 88.8

[1, 3, 6, 10, 14] 95.7 94.9 89.7

Table 3: Diagnosis of multi-scale testing. All results are

evaluated with the same model with HIM and DH.

Our full evaluation resizes the image so that the short side

contains 100, 300, 600, 1000 and 1400 pixels respectively,

to build an image pyramid. We diagnose the impact of the

extra small scales (i.e. 100 and 300) by removing them from

the image pyramid.

As shown in Table 3, the extra small scales are crucial to

detect easy faces. Without resizing the short side to contain

100 and 300 pixels, the performance on easy subset is only

78.2, which is even lower than the performance on medium

and hard which contain much harder faces. We will show

in the next subsection that these extra small scales (100 and

300) lead to negligible computation overhead, due to the

lower resolution.

Diagnosis of accuracy/speed trade-off

We evaluate the speed of our method as well as some other

popular face detectors in Table 4. For fair comparison,

we run all methods on the same machine, with one Titan

X Maxwell GPU, and Intel Core i7-4770K 3.50GHz. All

methods except for PyramidBox are based on Caffe1 imple-

mentation, which is compiled with CUDA 9.0 and CUDNN

7. For PyramidBox, we follow the official fluid code and

the default configurations3. We use the officially built Pad-

dlePaddle with CUDA 9.0 and CUDNN 74.

For SSH, S3FD and Pyramid, we use the official infer-

ence code and configurations. For SSH, we use multi-scale

testing with the short side containing 500, 800, 1200 and

1600 pixels, and for S3FD, we execute the official evalua-

tion code with both multi-scale testing and horizontal flip.

PyramidBox takes a similar testing configuration as S3FD.

As shown in Table 4, our detector can outperform SSH,

S3FD and PyramidBox significantly with a smaller infer-

ence time. Based on that, using horizontal flip can further

improve the performance slightly. In terms of GPU mem-

ory usage, our method uses only a half of what PyramidBox

occupies, while achieving better performance.

Ours∗ in Table 4 indicates our method without extra

small scales in inference, i.e., evaluated with scales [600,

1000, 1400]. It is only 6.5% faster than evaluation with

[100, 300, 600, 1000, 1400] (1.59 compared with 1.70).

This proves that although our face detector is only trained

3https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/

face detection/widerface eval.py
4pip install paddlepaddle-gpu

Method MS HF Time G-Mem AP-h

SSH Yes No 1.00 6.1 84.5

S3FD Yes Yes 1.34 6.2 85.2

PyramidBox Yes Yes 2.24 11.9 88.9

Ours∗ Yes∗ Yes 1.59 5.3 86.1

Ours Yes No 0.84 5.3 89.3

Ours Yes Yes 1.70 5.3 89.7

Table 4: Diagnosis of inference speed. MS and HF indicate

multi-scale testing and horizontal flip; Time is the inference

time (in second) for a single image; G-Mem is the GPU

memory usage in gigabyte; AP-h is the average precision

on the hard subset of WIDER FACE val set. Ours∗ indi-

cates our detector without extra small scales. All entries are

evaluated with a single nVIDIA Titan X Maxwell.

on small faces, it can perform well on large faces, by sim-

ply shrinking the testing image with negligible computation

overhead.

5. Conclusion

To conclude, we propose a novel face detector to fo-

cus on learning small faces on hard images, which achieves

superior performance on all popular face detection bench-

marks. We identify that there are many easy training images

with no hard faces which are less useful to build a robust de-

tector, and traditional online hard example mining (OHEM)

is unable to handle this imbalance between images. Based

on this, we propose a hard image mining strategy by dynam-

ically assigning difficulty scores to training images, and re-

sampling subsets with more hard images and fewer easy im-

ages for training before each epoch. We also design a single

shot face detector with only one detection feature map, to

train and test on small faces. With these designs, our model

can put more attention on learning small hard faces instead

of memorizing change of scales. Extensive experiments and

ablations have been carried out to show the effectiveness of

our method, and our face detector achieves the state-of-the-

art performance on all popular face detection benchmarks,

including WIDER FACE, FDDB, Pascal Faces and AFW.

Our face detector also enjoys a fast multi-scale inference

speed and less GPU memory usage. Our proposed method

is flexible and can be applied to other backbones and tasks,

which we remain as future work.
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