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Table 1: block 8 architecture (input size is 8×8×3)

Layer Filter/Stride/Dilation # of filters
conv0 3×3/1/2 128
conv1 3×3/1/2 1,024
RB1 3×3/1/1 1,024
fc1 512 -
fc2 16,384 -

conv2 3×3/1/1 4*512
PS1 - -

conv3 5×5/1/1 3

1. Detailed Model Architecture
In this section, we list the layers of each generator block

of our model. For both the cascaded and progressively
growing (ProGAN) [8] versions of our model, the architec-
tures of the generator block remain the same. For the cas-
caded model however, we use a set of four pixel shuffling
[15] blocks to upscale the hallucination of a block 2x be-
fore feeding it as input to the next generator block. The ar-
chitecture of each upscaling pixel shuffling blocks remains
the same. The detailed layers of ‘block 8’, ‘block 16’,
‘block 32’, ‘block 64’, and ‘block 128’ layers are listed in
Tables 1, 2, 3, 4, and 5 respectively. The convolution lay-
ers, residual blocks and pixel shuffling layers are indicated
as ‘conv’, ’RB’, and ‘PS’ respectively in the tables. For
each of these layers in the generator, we used leaky ReLU
with slope of 0.1 as the activation, except for the last ‘conv’
layer where a tanh activation is used [13, 14].

2. Ablation Studies
In this section, we analyze the effect of each component

of our loss function on the overall quality of context and
background synthesis. We present a comprehensive com-
parison that includes both qualitative results and quantita-
tive experiments, using face images from the LFW dataset
[7].

Table 2: block 16 architecture (input size is 16×16×3)

Layer Filter/Stride/Dilation # of filters
conv0 3×3/1/2 128
conv1 3×3/2/1 512
RB1 3×3/1/1 512

conv2 3×3/2/1 1,024
RB2 3×3/1/1 1,024
fc1 512 -
fc2 16,384 -

conv3 3×3/1/1 4*512
PS1 - -

conv4 3×3/1/1 4*256
PS2 - -

conv5 5×5/1/1 3

Table 3: block 32 architecture (input size is 32×32×3)

Layer Filter/Stride/Dilation # of filters
conv0 3×3/1/2 128
conv1 3×3/2/1 256
RB1 3×3/1/1 256

conv2 3×3/2/1 512
RB2 3×3/1/1 512

conv3 3×3/2/1 1,024
RB3 3×3/1/1 1,024
fc1 512 -
fc2 16,384 -

conv3 3×3/1/1 4*512
PS1 - -

conv4 3×3/1/1 4*256
PS2 - -

conv5 3×3/1/1 4*128
PS3 - -

conv6 5×5/1/1 3

For this experiment, we prepare four variations of our
multi-scale cascaded GAN model, while keeping the net-
work architecture intact. We replace l1 loss with l2 loss



Figure 1: Ablation studies - hallucination results of our multi-scale GAN model and its variants.

Table 4: block 64 architecture (input size is 64×64×3)

Layer Filter/Stride/Dilation # of filters
conv0 3×3/1/2 128
conv1 3×3/2/1 128
RB1 3×3/1/1 128

conv2 3×3/2/1 256
RB2 3×3/1/1 256

conv3 3×3/2/1 512
RB3 3×3/1/1 512

conv4 3×3/2/1 1,024
RB4 3×3/1/1 1,024
fc1 512 -
fc2 16,384 -

conv3 3×3/1/1 4*512
PS1 - -

conv4 3×3/1/1 4*256
PS2 - -

conv5 3×3/1/1 4*128
PS3 - -

conv6 3×3/1/1 4*64
PS4 - -

conv7 5×5/1/1 3

as the metric for computing Lpixel for one model. For the
other three models, we remove one of the other three losses
(i.e., Ladv , Lid, and Lpc) in each case. We keep the weight
of the other loss components intact in each case. To analyze

Table 5: block 128 architecture (input size is 128×128×3)

Layer Filter/Stride/Dilation # of filters
conv0 3×3/1/2 128
conv1 3×3/2/1 64
RB1 3×3/1/1 64

conv2 3×3/2/1 128
RB2 3×3/1/1 128

conv3 3×3/2/1 256
RB3 3×3/1/1 256

conv4 3×3/2/1 512
RB4 3×3/1/1 512

conv5 3×3/2/1 1,024
RB5 3×3/1/1 1,024
fc1 512 -
fc2 16,384 -

conv3 3×3/1/1 4*512
PS1 - -

conv4 3×3/1/1 4*256
PS2 - -

conv5 3×3/1/1 4*128
PS3 - -

conv6 3×3/1/1 4*64
PS4 - -

conv7 3×3/1/1 4*64
PS5 - -

conv8 5×5/1/1 3



Table 6: Ablation Studies - quantitative results on the LFW [7] dataset.

Model Mean Match Score Mean SSIM [16] FID [6] Mean Perceptual Error [12]
l2 loss 0.520 0.413 166.76 2.489

w/o Ladv 0.522 0.411 132.71 2.320
w/o Lid 0.609 0.519 91.65 1.956
w/o Lpc 0.624 0.528 101.44 2.046

Ours (ProGAN) 0.668 0.466 103.71 2.255
Ours (Cascaded) 0.722 0.753 46.12 1.256

the role of the training regime, we compare each of these
cascaded models with our ProGAN model keeping other
factors constant. For this experiment, we use the same set
of quality metrics as before - (1) mean match score with
ResNet-50 [4], (2) mean SSIM [16], (3) FID [6], and (4)
mean perceptual error [12] (description of each metric is
available in Section 4 of main text). The quantitative results
are presented in Table 6, along with visual results in Figure
1.

As expected, we find using l2 loss for Lpixel drastically
deteriorates the quality of the hallucinated face images by
producing blurrier results. Since the pixel intensities are
normalized to [0, 1], l2 loss suppresses high frequency sig-
nals, compared to l1, due to its squaring operation. The
absence of a discriminator (w/o Ladv) at a network block
fails to push the results towards the distribution of real
face images, consequently hampering the performance of
the model. Although not as critical as Lpixel and Ladv ,
the inclusion of both Lid and Lpc refine the hallucination
result, as apparent from both the example images and the
quality scores. The impact of the training regime, compar-
ing end-to-end cascaded training with progressive growing
(ProGAN), has already been discussed in Section 4 of the
main text.

3. Epoch by Epoch Learning
To understand how the context and background are

learned by the model during training, we save snapshots
of our cascaded GAN model at different levels of train-
ing - 10 epochs, 20 epochs, 30 epochs, 40 epochs and 50
epochs. Except the training iterations, all other parame-
ters and hyper-parameters remain the same. These models
are then used to generate context and background pixels on
masked face images from LFW [7]. Hallucinations for three
such images have been shown in Figure 2.

As apparent from the figure, the model learns to gen-
erate a rough set of hair and skin pixels in the first few
training epochs, not focusing on the clothes or background
(10-20 epochs). Then it adds in pixels for the clothes and
background, while further refining the overall skin and hair
pixel quality (30-40 epochs). The validation loss stabilizes
around the 50-th epoch (our hard termination point), and
hence this snapshot has been used in our experiments. We

Figure 2: Sample synthesis results from LFW [7] at different levels of
training - (a) the original face image (cropped), (b) masked face input,
hallucination results after (c) 10 epochs, (d) 20 epochs, (e) 30 epochs, (f)
40 epochs, and (g) 50 epochs of training.

also find the model to take a few extra iterations of refine-
ment in hallucinating context and background for images
with posed faces compared to those with frontal faces.

4. Changing the Background Pixels
To add more variety to our images, we add a post-

processing step to further change the background pixels,
while keeping the face and context pixels unchanged, us-
ing background images supplied by the user. We first locate
the pixels outside the background (context + face mask) us-
ing the segmentation network from [21, 20, 18]. The pixels
with the label ’Person’ are kept inside the mask, which is
further refined by a saliency map. This saliency map is com-
puted using the gradient of each pixel of the image and the
outer contour detected as the salient edge. The union of the
initial mask and the points inside this contour produces the
final foreground mask. Alternatively, the foreground mask
can also be generated using the image matting network pro-
vided in [19]. The new background image is then blended
in with the help of this foreground mask using a Laplacian
pyramid based blending [2, 1].

5. Additional Qualitative Results
In this section, we present additional qualitative results

for visual perusal. Face images, varying in gender, eth-
nicity, age, pose, lighting and expression, are randomly
selected from the LFW dataset [7] and IJB-B [17] video
frames. Each image is then aligned about their eye centers
using landmark points extracted from Dlib [9], face masked



Figure 3: Background replacement process - (a) hallucinated face image
(b) the detected foreground mask using a combination of gradient map and
the segmentation network from [21, 20, 18], and (c) background pixels
replaced with Laplacian blending [2].

Figure 4: Additional qualitative results generated by our ProGAN and cas-
caded models. The first three rows are samples from the LFW [7] dataset,
while the last three rows are taken from the IJB-B [17] dataset. All images
are 128×128 in size.

and resized to 128×128. Each image is then fed to the
trained snapshots, used in our original experiments, of our
cascaded and progressively growing models for context and
background pixel synthesis. The results are shown in Figure
4.

Figure 5: Some problematic cases - missing pixels for the microphone
occluding subject’s chin (left), no matching temples generated for the eye-
glasses (middle), and hairstyle of wrong gender (right).

6. Model Limitations

As our model learns to hallucinate from the training data,
we observe visual artifacts for face masks which vary dras-
tically in appearance from it. For example, it fails to hal-
lucinate missing pixels of occluding objects present in the
face mask (like the microphone in leftmost image in Fig-
ure 5). This can be fixed by refining the input face mask to
remove such occluding objects. In some cases our model
mis-labels the gender of the face mask and generates the
wrong hairstyle. Such an example can be seen Figure 5
(rightmost image), where the input male subject gets a fe-
male hairstyle. This issue can be resolved by either training
two networks separately with male and female subjects or
by adding a gender preserving loss (using [10]) to the loss
function. Our model also fails to generate matching tem-
ples when the subject wears eyeglasses due to their absence
in the training images (Figure 5 middle image). To tackle
this issue, the training data can be augmented by adding
eyeglasses to some images using [11, 5, 3].
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