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Reverse Style Transfer Serial Style Transfer
L2 SSIM LPIPS L2 SSIM LPIPS

Gatys et al. [1] 4.4331 0.2033 0.3684 7.5239 0.0472 0.4317
AdaIN [2] 0.0368 0.3818 0.4614 0.0213 0.5477 0.3637
WCT [5] 0.0597 0.3042 0.5534 0.0568 0.3318 0.5048

Extended baseline (AdaIN w/ cycle consistency) 0.0502 0.2931 0.5809 0.0273 0.4140 0.4314
Our two-stage 0.0187 0.4796 0.3323 0.0148 0.7143 0.2437
Our end-to-end 0.0193 0.5945 0.3802 0.0104 0.8523 0.1487

Table 1: The average L2 distance, structural similarity (SSIM) and learned perceptual image patch similarity (LPIPS [11])
between the results produced by different models and their corresponding expectations. Regarding extended baseline (AdaIN
with cycle consistency), please refer to the Section 3 in this supplement for more detailed description.

1. More Results

1.1. Regular, Reverse and Serial Style Transfer

1.1.1 Qualitative Evaluation

First, we provide three more sets of results in Figure 6,
demonstrating the differences between the results of regu-
lar, reverse, and serial style transfer performed by different
methods. Moreover, we provide in the Figure 7 more qual-
itative results, based on diverse sets of content and style
images from MS-COCO [6] and WikiArt [7] datasets re-
spectively. In which these results show that our proposed
methods are working fine to perform regular, reverse, and
serial style transfer on various images.

1.1.2 Quantitative Evaluation

As mentioned in the Section 4.3 of our main manuscript,
here we provide more quantitative evaluations in Table 1,
based on L2 distance, structural similarity (SSIM), and
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LPIPS [11]. Both our methods in the tasks of reverse and se-
rial stylization perform better than the baselines in terms of
different metrics. Please note that although Gatys et al. [1]
can obtain also good performance for the task of reverse
style transfer in terms of LPIPS metric (based on the simi-
larity in semantic feature representation), it needs to use the
original image as the style reference to perform the reverse
style transfer, which is actually impractical.

1.2. Serial Style Transfer for Multiple Times

To further demonstrate the ability of preserving the con-
tent information of our models, we perform serial style
transfer on an image for multiple times. There are three
sets of results in Figure 8 for comparing the results gener-
ated by different methods. It can be seen that Gatys et al. [1]
and AdaIN [2] fail to distinguish the contour of the content
objects from the edges caused by the stylization, thus the
results deviate further from the original content when serial
style transfer is applied. As for our two-stage and end-to-
end model, the content is still nicely preserved even in the
final results after a series of style transfer. It clearly indi-
cates that our models provide better solutions to the issue of
serial style transfer.



2. More Ablation Study
2.1. Two-Stage Model

2.1.1 Quantitative Evaluation of Identity Mapping

We evaluate the effect of having identity mapping (Sec-
tion 3.1.1 in the main paper) in our proposed two-stage
model based on the average L2 distance, structural similar-
ity (SSIM), and learned perceptual image patch similarity
(LPIPS [11]).The results are provided in Table 2. It clearly
shows that adding identity mapping in the training of AdaIN
decoder DAdaIN enhances the performance of reverse and
serial style transfer.

2.1.2 Training with and without Adversarial Learning

As mentioned in Section 3.1.3 of the main paper, the archi-
tectures of our message encoder Emsg and decoder Dmsg

in the steganography stage are the same as the ones used
in HiDDeN [12], while HiDDeN [12] additionally utilizes
adversarial learning to improve the performance of en-
coding. Here we experiment to train our steganography
stage with adversarial learning as well, where two losses
{Ldiscriminator,Lgenerator} are added to our object func-
tion as follows.

Ldiscriminator =E
[
(Dis (It)− E (Dis (Ie))− 1)

2
]
+

E
[
(Dis (Ie)− E (Dis (It)) + 1)

2
] (1)

Lgenerator =E
[
(Dis (Ie)− E (Dis (It))− 1)

2
]
+

E
[
(Dis (It)− E (Dis (Ie)) + 1)

2
] (2)

where Dis denotes the discriminator used in adversarial
learning. Here in our experiment, the architecture of the
discriminator is identical to the one used in HiDDeN [12],
and we adopt the optimization procedure proposed in [3] for
adversarial learning.

Afterward, we perform qualitative and quantitative eval-
uations on the results, as shown in Figure 9 and Table 2
respectively. We observe that adding adversarial learning
does not enhance the quantitative performance. Similarly,
we remark that the results are visually similar according to
the qualitative examples as shown in Figure 9.

2.1.3 Serial Style Transfer with De-Stylized Image

As mentioned in the main paper (cf. Section 3.1.3), we styl-
ize the image generated from the decoded message to per-
form serial style transfer. However, we can also resolve the
issue of serial style transfer in a different way. Figure 1

shows that we can implement serial style transfer by styl-
izing the de-stylized image from the result of reserve style
transfer. For comparison, we qualitatively evaluate the re-
sults generated with the de-stylized image and the decoded
message. Figure 2 shows that the results of these two meth-
ods are nearly identical. Since the model using decoded
message (as in the main paper) is simpler than the other, we
choose to adopt it in our proposed method. The quantitative
evaluation is also provided in the Table 3, based on the met-
rics of average L2 distance, structural similarity (SSIM) and
learned perceptual image patch similarity (LPIPS [11]). We
can see that our model of using decoded message performs
better than the one of using de-stylized image, in which this
observation thus verifies our design choice.

2.2. End-to-End Model

2.2.1 Quantitative evaluation of using Einv to recover
vt from Ist in end-to-end model

We evaluate the effect of having Einv (please refer to the
Section 4.4 in the main paper) in our proposed end-to-end
model based on the metrics of average L2 distance, struc-
tural similarity (SSIM), and learned perceptual image patch
similarity (LPIPS [11]). The results are provided in Table
4. It clearly shows that using Einv instead of EV GG en-
hances the performance of reverse and serial style transfer,
which thus verifies our design choice of having Einv in our
end-to-end model.

2.2.2 Decoding with Plain Image Decoder or AdaIN
Decoder for Reverse Style Transfer

It is mentioned in Section 3.2 of the main paper that the
training of a plain image decoder Dplain in the end-to-
end model shares the same idea with the identity mapping,
which is used in learning AdaIN decoder DAdaIN of the
two-stage model. However, although they both are trained
to reconstruct the image Ic with its own feature EV GG(Ic),
these two decoders accentuate different parts of the given
feature during the reconstruction. The AdaIN decoder is
trained to decode the results of regular and reverse style
transfer simultaneously, but with an emphasis on the styl-
ization, considering that identity mapping is only activated
occasionally during the training. It is optimized toward both
content and style features based on the perceptual loss in or-
der to evaluate the effect of the stylization. As for the plain
image decoder, it is solely trained for reconstructing the im-
age with the given content feature, and optimized with the
L2 distance to the original image. Such distinction brings
differences to the images decoded from the same feature by
these two decoders, as shown in Figure 3 and Table 5.

Comparing to the results generated by the plain image
decoder, the images decoded by the AdaIN decoder have
sharper edges and more fine-grained details, but sometimes



Reverse Style Transfer Serial Style Transfer
L2 SSIM LPIPS L2 SSIM LPIPS

Our two-stage (w/ identity mapping) 0.0187 0.4796 0.3323 0.0148 0.7143 0.2437
Our two-stage (w/o identity mapping) 0.0226 0.4596 0.3637 0.0152 0.6990 0.2560

Our two-stage (w/ adversarial learning) 0.0271 0.4292 0.3878 0.0168 0.5946 0.3236

Table 2: The average L2 distance, structural similarity (SSIM) and learned perceptual image patch similarity (LPIPS [11])
between the expected results and the ones which are obtained by our two-stage model and its variants of having identity
mapping AdaIN decoder or adversarial learning.

Figure 1: Illustrations of how to apply our two-stage model in the task of serial style transfer with de-stylized image.

Content Message De-stylized Ground Truth

Figure 2: Comparison between the results of serial style
transfer generated with decoded messages and the de-
stylized images.

L2 SSIM LPIPS
w/ de-stylized image 0.02558 0.48694 0.40362
w/ decoded message 0.01480 0.71430 0.24370

Table 3: The average L2 distance, structural similar-
ity (SSIM) and learned perceptual image patch similarity
(LPIPS [11]) between expected results and the ones which
are produced by our two-stage model with performing serial
style transfer w/ de-stylized image or w/ decoded message.

the straight lines are distorted and the contours of the ob-
jects are not in the same place as they are in the origi-
nal image, harming the consistency of the overall content
structure. Examples can be found in Figure 3, especially
on the boundaries of the buildings. The quantitative eval-

Reverse
Style Transfer

Serial
Style Transfer

L2 SSIM LPIPS L2 SSIM LPIPS
Einv 0.0193 0.5945 0.3802 0.0104 0.8523 0.1487
EV GG 0.0241 0.5190 0.4727 0.0149 0.7525 0.2362

Table 4: The average L2 distance, structural similar-
ity (SSIM) and learned perceptual image patch similarity
(LPIPS [11]) between expected results and the ones which
are obtained by our end-to-end model of using Einv or
EV GG.

uation provided in Table 5 also shows that using plain im-
age decoder could provide better performance than adopting
AdaIN decoder in terms of different metrics.The benefit of
introducing the plain image decoder for reverse style trans-
fer of end-to-end model is therefore verified.

L2 SSIM LPIPS
Plain image decoder 0.0193 0.5945 0.3802

AdaIN decoder 0.0349 0.4261 0.4141

Table 5: The average L2 distance, structural similar-
ity (SSIM) and learned perceptual image patch similarity
(LPIPS [11]) between expected results and the ones which
are obtained by our end-to-end model of using plain image
decoder Dplain or VGG decoder for reverse style transfer.
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Figure 3: Comparison between the images decoded from the same feature vectors by (1) the AdaIN decoder DAdaIN in
two-stage model and (2) the plain image decoder Dplain in end-to-end model. In set (a), the features given to the decoders
are the content features extracted from the images in the top row by pre-trained VGG19 [9], which is EV GG(Ic). As for set
(b), the given feature vectors are the ones derived from the stylized images (the second row) with the end-to-end model, i.e
v̂c.

Figure 4: Illustration of the framework and training ob-
jectives for the extended baseline for reverse style trans-
fer, which is based on a typical style transfer approach (i.e.
AdaIN) and the cycle consistency objective Lcycle.

3. Extended Baseline

Typical Style Transfer Approach Extended with Cycle
Consistency. As mentioned in the Section 4.2.2. and Fig-
ure.2 of our main manuscript, the naı̈ve baselines built upon
the typical style transfer approaches (i.e. Gatys et al. [1] and
AdaIN [2]) are not able to resolve the task of reverse style
transfer, which is analogous to perform de-stylization on a
stylized image back to its original photo. For further ex-
ploration of the capacity of the naı̈ve baselines for reverse
style transfer, here we provide another extended baseline for
comparison.

The framework of this extended baseline is illustrated
in Figure 4, where the AdaIN style transfer component is

composed of a pre-trained VGG19 encoder and a decoder
DAdaIN . First, given a content photo Ic and a style im-
age Is, DAdaIN is trained for making the stylized image
It to have similar content and style as Ic and Is respec-
tively, where the content loss Lcontent(Ic, It) and the style
loss Lstyle(Is, It) are used (please refer to Equation.3 and
4 in the main manuscript). Second, It and Ic are taken
as the source of content and style respectively to produce
a de-stylized output Ĩc, where DAdaIN is now trained to
minimize Lcontent(It, Ĩc) and Lstyle(Ic, Ĩc). Last, the cy-

cle consistency objective Lcycle =
∥∥∥Ĩc − Ic∥∥∥ is introduced

for updating DAdaIN in order to encourage Ĩc and Ic to be
identical, i.e. reverse style transfer or de-stylization.

As shown in Figure 5, even if the extended baseline is
trained with the cycle consistency objective, it is still not
able to resolve the task of reverse style transfer. The quan-
titative results provided in the Table 1 also indicate the in-
ferior performance of this extended baseline. These results
also demonstrate that the content information is lost dur-
ing the procedure of the typical style transfer and can not
be easily recovered, which further emphasize the contribu-
tion and the novelty of our proposed models based on the
steganography idea. Please also note that the extended base-
line needs to take the original content photo Ic as the source
of style for performing de-stylization, while our proposed
models are self-contained without any additional input.
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Figure 5: The results produced by the extended baseline
of reverse style transfer which is trained with cycle consis-
tency loss.

4. Replacing AdaIN with Other Stylization
Methods for Two-Stage Model

To verify the adaptability of our two-stage model, we re-
place AdaIN, which is originally adopted in the style trans-
fer stage, with WCT [5] and instance normalization [10],
and compare their results to the ones of the original im-
plementation. Denote the selected style transfer method
(e.g.WCT [5]) by f , we can get the stylized image It =
f(Ic, Is) in the style transfer stage. Meanwhile, the content
feature vc = DV GG(Ic) remains to be relu4 1 extracted
by VGG19 from the content image, and is encrypted into
the stylized image It by Ie = Emessage(It, vc) later in the
steganography stage.

As the content feature encrypted in Ie is retrievable
by v′c = Dmsg(Ie) just like the original implementation,
reverse style transfer can be intuitively done by I ′c =
DAdaIN (v′c). When it comes to serial style transfer, we
simply need to further stylize the reconstructed image I ′c
with another style I ′s by computing I ′t = f(I ′c, I

′
s). As the

results shown in Figure 10, our two-stage model still per-
forms well when adapted to WCT [5] and instance normal-
ization [10]. Their results are closer to the corresponding
expectations, have less artifacts, and preserve more content
structure and detail than the ones of naı̈ve approaches, as
the original implementation with AdaIN does. Please note
that all these replacements are done without the need of any
additional training. The encoders/decoders trained with the
original implementation can be directly inherited without
further modification.

5. Limitations
The main limitation of our proposed methods, which

stem from the idea of steganography, is being unavoidable
to have errors in the decrypted message through the proce-
dure of encryption and decryption. In our two-stage model,
since it needs to hide the whole content feature of the origi-
nal image into its stylized output, the errors in the decrypted
message would cause inconsistent color patches in the re-
sults of reverse style transfer. For instance in Figure 6, as
can be seen from the reverse style transfer results of the
sailboat image produced by our two-stage model, there are
different color patches in the sky which ideally should be
homogeneous. While for our end-to-end model, it aims to
encrypt the statistic (i.e., mean and variance) of the content
feature of the original image into the stylized output, the
errors in the decrypted message now lead to the color shift
issue when performing reverse style transfer, which is also
observable in the Figure 6. We would seek for other net-
work architecture designs or training techniques (e.g. add
random noise during network training, as used in [12]) in
order to have better robustness of our models against the
errors caused by encryption and decryption.

6. Implementation Details
Here we provide some implementation details of our

two-stage and end-to-end model. We use PyTorch [8] 0.4.1
as our environment of developing deep learning framework.
All the source code and trained models will be publicly
available for reproductivity once the paper is accepted.

6.1. Two-Stage Model

Architectures.DAdaIN has the same architecture as the de-
coder used in the original implementation of AdaIN [2]. It
consists of 3 nearest up-sampling layers, 9 convolutional
layers with the kernels of size 3 × 3, and ReLU activations
after each conv-layer except the last one. Our Emsg and
Dmsg also inherit the architecture of the encoder and de-
coder in the implementation of HiDDeN [12]. Emsg has
4 convolution blocks. Each convolution block includes a
convolutional layer with a 3 × 3 kernel, a batch normal-
ization layer and a ReLU activation (except the last block).
The message to encrypt is first reshaped, then concatenated
to the output of the first convolution block. Dmsg has 8
convolution blocks. Each convolution block includes a con-
volutional layer with a 3 × 3 kernel, a batch normalization
layer and a ReLU activation (except the first and the last
block). The dimension of the decrypted message is recov-
ered by adaptive average pooling and reshaping after the
final block.
Hyperparameters. The learning rate used in our model
training is 10−4. We adopt Adam optimizer [4] with
hyper-parameters {β1 = 0.5, β2 = 0.999}. The batch-



size is set to 8. The λ parameters for the objective func-
tion Lsteganography in the steganography stage are set as
{λimg = 2000, λmsg = 10−5}.

6.2. End-to-End Model

Architectures. Dencrypt is a deeper version of the decoder
used in the original AdaIN implementation. It consists of
3 nearest up-sampling layers, 13 convolutional layers with
kernels of size 3×3, and ReLU activations after each conv-
layer except the last one. Edecrypt stacks up 8 building
blocks, where each building block contains a convolutional
layer with kernels of size 3×3, a batch normalization layer,
a ReLU activation, and a max-pooling layer with kernel of
size 3× 3.
Hyperparameters. The learning rate used in our model
training is 10−4. We adopt Adam optimizer [4] with hyper-
parameters {β1 = 0.5, β2 = 0.999}. The batch-size is set
to 8. The λ parameters for the objective function Lend2end

are set as {λc = 2, λs = 10, λdec = 30, λinv = 5, λdes =
5, λp = 1}.
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Figure 6: Three sets of additional results to demonstrate the comparison between different methods for regular, reverse, and
serial style transfer. The rows in each set sequentially show the results generated by (1) Gatys et al. [1], (2) AdaIN [2], (3)
our two-stage model, and (4) our end-to-end model.
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Figure 7: Example results of our proposed models in regular, reverse, and serial style transfer, based on diverse sets of content
and style images from MS-COCO [6] and WikiArt [7] datasets respectively.
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Figure 8: Three sets of example results of serial style transfer for multiple times. The top row contains the style images used
in each serial style transfer. The rows in each set sequentially show the results generated by (1) Gatys et al. [1], (2) AdaIN [2],
(3) our two-stage model, and (4) our end-to-end model. Except the leftmost column, which are the content images, every
stylized image is generated with the content feature of the image in its left, and the style feature of the image at the top of
the column. The content of the results produced by our proposed models are less distorted by the intermediate style transfer
operations.
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Figure 9: Comparison between the expected results for reverse and serial issues and the actual results generated w/ adversarial
learning (1) and w/o adversarial learning (2).
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Figure 10: Three sets of results to demonstrate the comparison between adopting different methods for the style transfer
stage of our two-stage model to perform regular, reverse, and serial style transfer. The rows in each set sequentially show
the results generated by (1) AdaIN [2] and our two-stage model with AdaIN [2], (2) WCT [5] and our two-stage model with
WCT [5], and (3) instance normalization [10] and our two-stage with instance normalization [10]


