Supplementary Material

A. Implementation Details

In this section, we provide more information about the network architectures and hyper-parameters used in the experiments
from Section 4.

A.1. Network Architecture

Our QGN encoder and decoder architectures are based on ResNets [[4]. Similar to existing semantic segmentation papers,
we replace the first 7 x 7 convolution of the original ResNet with three 3 x 3 convolutions [5,41,46]. We use the ResNet-50
architecture as our encoder unless otherwise specified. For our decoder, we use a transposed ResNet, similar to the network
proposed in [21]. Specifically, this decoder is a residual network with 38 layers. The exact channel and layer counts for the
encoder and decoder are summarized in Table 7.

Table 7. Encoder and Decoder configurations for QGNs, based on the architecture proposed in [21]. Each *Block’ subsamples or upsamples
the image by a factor of 2.

Encoder Decoder
Block ——6w #oar B" & ow #unn
Block0 3 64 - Trans4 512 256 6
Block1 64 256 3 Trans3 256 128 4
Block2 256 512 4 Trans2 128 64 3
Block3 512 1024 6 Transl 64 64 3
Block4 1024 2048 3 TransO 64 64 3

Sparse convolutions. To implement sparse convolutions in the decoder, we use the SparseConvNet framework, introduced
with submanifold sparse convolutional networks [10]. We also implement a sanity check that uses dense convolutions with
multiplicative masks of zeros to emulate sparse convolutions. We found that the wall-clock time for training with sparse vs.
dense convolutions is similar (up to +10% training time depending on dataset sparsity). More optimized implementations of
sparse convolutions (eg. [29]) could translate the large gains in memory efficiency to reductions in wall-clock training time.

A.2. Optimization

Input resolution. We take advantage of our efficient architecture by training QGNs with full resolution input images (without
cropping) on all datasets. Within the ADE20k and SUN-RGBD datasets, resolution and aspect ratios vary widely (561 x 427
to 730 x 530, with many others). We found that zero padding to the nearest multiple of 32 pixels (maximum downsampling
ratio of the encoder) during training effectively deals with this problem. During inference, we use bilinear interpolation
to rescale the image dimensions to the nearest multiple of 32, make the predictions at each pixel, and rescale the resulting
segmentation map to the original input dimensions with nearest neighbor interpolation.

Learning rate schedule. We optimize our networks with Stochastic Gradient Descent (SGD), with an initial learning rate
a of 0.02, which is decreased based on a polynomial decay function o = v (-)p We use a decay factor p of 0.9,
training for a total of ¢,,,, = 100, 000 iterations. Random scaling and horizontal ﬂlpS are applied for data augmentation. For
all our experiments, we maintain this set of hyper-parameters, without specific tuning to each task.

Class weighting. To counter the effect of class imbalance, we double the weight of the loss for the set of classes whose
IoU is below the median IoU on a test subset. Specifically, we evaluate the performance of the model every 5,000 training
iterations on a subset of 100 images set aside for validation, and use these results to set the class weights.

B. Dataset Sparsity Visualization

In this section, we visualize the quadtree representations of the segmentation maps obtained using the procedure detailed in
Section 3.1. Specifically, we are interesting in visualizing each level of the ground truth quadtree representation. To this end,
we apply the merge operator from Eq. 2 to validation images from the Cityscapes and ADE20k datasets. The visualizations
we obtain are presented in Table 8 and Table 9 respectively.

We observe that a majority of the image pixels have their ground truth encoded in ()5, which is highly efficient due to its
lower resolution. The intermediate levels coarsely encode semantic boundaries, with the leaf nodes (Q)g) encoding the finer
details of these boundaries between classes. These observations mirror the statistics observed in Table 5, showcasing the
huge potential for lossless compression in semantic segmentation using quadtree representations.

JSBIA uoneuow3og

*(10100 UI pamalA 159q) Mor[q ur pajuasaidar st sse[o oy1sodwod ayg, “asreds A[owonxa a1k sopou (07)) Jea[oyl o[Iym ‘(S¢» sk yons) s[[oo 1318 01 Juofeq sjoxid
9y} JO UOIORIJ 95Ie[B ‘C 9[QRL, UI PAJOU SY "S[9AS] 9a13penb ju1oyjip ay) a1e 0 ¢ ‘S¢y 198 uoneprea sadedsAi) oy) woig sojdwrexs Juisn Ajisreds 10seiep Jo UOLBZI[ENSIA ' 9[qBL,

Table 9. Visualization of dataset sparsity using examples from the ADE20k validation set. Qs, ..., Qo are the different quadtree levels. As
noted in Table 5, a large fraction of the pixels belong to larger cells (such as (Js), while the leaf (QQo) nodes are extremely sparse. The
composite class is represented in black (best viewed in color).

Qs

Segmentation Mask

Segmentation Mask

Segmentation Mask

("Q

