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This supplementary file is to convince the readers
that the results in the main paper is general to differ-
ent combinations of content/style images. So we sim-
ply reproduce the original diagrams in the paper with
different content and style images. Images are taken
from [2].
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Figure 1: Removing the content loss
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Figure 2: Varing the biases while keeping trained
weights



(a) Content image (b) Style image (c) ‘Baseline (d) Trained weights

e) ‘ Gaussian : (=0.015) (f) G-aussia_r-l- (=0.015) ([1]) | (g) aussian E 0.5) o ( Unifogm(—O.l, .1)
(trained bias)

(i) Uniform(—0.5,0.5) (j) Uniform(—1,1) (k) Shuffled weights @ Shuffled weights
(trained biases)

Figure 3: Continuously or densely distributed weights
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Figure 4: Symmetric discrete weights with fixed biases (0.5)
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Figure 5: Removal of structure
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Figure 6: Alternative first-layer convolution kernels



(a) Gaussian pyramid (b) Laplacian pyramid
without pooling without pooling

7 e r e
< s = 2,

(¢) Gaussian pyramid (d) Laplacian pyramid
with pooling with pooling

Figure 7: Using image pyramids instead of multi-layer
nonlinearities
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Figure 8: Removing the content loss
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Figure 9: Varing the biases while keeping trained
weights
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Figure 10: Continuously or densely distributed weights
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Figure 11: Symmetric discrete weights with fixed biases (0.5)
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Figure 12: Removal of structure
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(a) Basic set 1, strategy (b) Basic set 2, strategy (c) Basic set 3, strategy (d) 2 x 2 kernels, ran- (e) 3 x 3 kernels, ran-
4 (32-channel) 1 (18-channel) 3 (64-channel) dom, 64-channel dom, 64-channel

Figure 13: Alternative first-layer convolution kernels
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Figure 14: Using image pyramids instead of multi-layer
nonlinearities
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Figure 15: Removing the content loss
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Figure 16: Varing the biases while keeping trained
weights
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Figure 17: Continuously or densely distributed weights
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Figure 18: Symmetric discrete weights with fixed biases (0.5)
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Figure 19: Removal of structure
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Figure 20: Alternative first-layer convolution kernels
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Figure 21: Using image pyramids instead of multi-layer
nonlinearities
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Figure 22: Removing the content loss
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Figure 23: Varing the biases while keeping trained
weights
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Figure 24: Continuously or densely distributed weights
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Figure 25: Symmetric discrete weights with fixed biases (0.5)
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Figure 26: Removal of structure

(a) Basic set 1, strategy (b) Basic set 2, strategy (c) Basic set 3, strategy (d) 2 x 2 kernels, ran- (e) 3 x 3 kernels, ran-

)
4 (32-channel) 1 (18-channel) 3 (64-channel) dom, 64-channel dom, 64-channel

Figure 27: Alternative first-layer convolution kernels
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Figure 28: Using image pyramids instead of multi-layer
nonlinearities
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Figure 29: Removing the content loss
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Figure 30: Varing the biases while keeping trained
weights
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Figure 31: Continuously or densely distributed weights
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Figure 32: Symmetric discrete weights with fixed biases (0.5)
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Figure 33: Removal of structure
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4 (32-channel) 1 (18-channel) 3 (64-channel) dom, 64-channel dom, 64-channel

Figure 34: Alternative first-layer convolution kernels
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Figure 35: Using image pyramids instead of multi-layer
nonlinearities
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Figure 36: Removing the content loss
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Figure 37: Varing the biases while keeping trained
weights
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Figure 38: Continuously or densely distributed weights
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Figure 39: Symmetric discrete weights with fixed biases (0.5)
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Figure 40: Removal of structure
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(a) Basic set 1, strategy (b) Basic set 2, strategy (c) Basic set 3, strategy (d) 2 x 2 kernels, ran- (e) 3 x 3 kernels, ran-
4 (32-channel) 1 (18-channel) 3 (64-channel) dom, 64-channel dom, 64-channel

Figure 41: Alternative first-layer convolution kernels
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Figure 42: Using image pyramids instead of multi-layer
nonlinearities
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Figure 43: Removing the content loss
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Figure 44: Varing the biases while keeping trained
weights
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Figure 45: Continuously or densely distributed weights
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Figure 46: Symmetric discrete weights with fixed biases (0.5)
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Figure 47: Removal of structure
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(a) Basic set 1, strategy (b) Basic set 2, strategy (c) Basic set 3, strategy (d) 2 x 2 kernels, ran- (e) 3 x 3 kernels, ran-
4 (32-channel) 1 (18-channel) 3 (64-channel) dom, 64-channel dom, 64-channel

Figure 48: Alternative first-layer convolution kernels
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Figure 49: Using image pyramids instead of multi-layer
nonlinearities



T N~ T

(a) Content Image (b) Style Im- ‘ (c) Baseline (d) B/a =102 (e) Removing the con-
age tent loss

Figure 50: Removing the content loss
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Figure 51: Varing the biases while keeping trained
weights
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Figure 52: Continuously or densely distributed weights
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Figure 53: Symmetric discrete weights with fixed biases (0.5)
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Figure 54: Removal of structure
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4 (32-channel) 1 (18-channel) 3 (64-channel) dom, 64-channel dom, 64-channel

Figure 55: Alternative first-layer convolution kernels
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Figure 56: Using image pyramids instead of multi-layer
nonlinearities
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Figure 57: Removing the content loss
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Figure 58: Varing the biases while keeping trained
weights
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Figure 59: Continuously or densely distributed weights
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Figure 60: Symmetric discrete weights with fixed biases (0.5)
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Figure 61: Removal of structure

(a) Basic set 1, strategy (b) Basic set 2, strategy (c) Basic set 3, strategy (d) 2 x 2 kernels, ran- (e) 3 x 3 kernels, ran-
4 (32-channel) 1 (18-channel) 3 (64-channel) dom, 64-channel dom, 64-channel

Figure 62: Alternative first-layer convolution kernels



(a) Gaussian pyramid (b) Laplacian pyramid
without pooling without pooling

(¢) Gaussian pyramid (d) Laplacian pyramid
with pooling with pooling

Figure 63: Using image pyramids instead of multi-layer
nonlinearities
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Figure 64: Removing the content loss
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Figure 65: Varing the biases while keeping trained
weights
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Figure 66: Continuously or densely distributed weights
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Figure 67: Symmetric discrete weights with fixed biases (0.5)
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Figure 68: Removal of structure
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Figure 69: Alternative first-layer convolution kernels
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Figure 70: Using image pyramids instead of multi-layer
nonlinearities



