Supplementary Material

In this section, we provide additional results and analysis
that could not be included in the main paper owing to space
constraints. In particular, we discuss the impact of varying
the loss formulation described in Section 3; we consider a
different set of unseen classes and show that our results are
consistent with observations obtained in Section 5; we also
present qualitative results for the MS COCO dataset, includ-
ing failure cases.

7. Additional Results and Analysis
7.1. Qualitative Results for MS COCO

Figure 6 presents detection results for classes that gener-
ally perform well on the AP metric. We can observe from
the detections that shortcomings of the individual search
space methods MS-Zero-S and MS-Zero-V are rectified by
MS-Zero. In Figure 7, we present qualitative results for
classes that perform poorly on the AP metric on the new
split of COCO. From the qualitative results, we can infer
that the model could not recognize some of the unseen ob-
jects in the failure cases namely, multiple oranges, laptop,
surfboard, clock and bear. A few cases of misclassification
are also observed. Misclassification of surfboard to skis and
bear to horse in images 7(d) and 7(g) respectively is due to
very close occurrence of surfboard to skis and horse to bear
in the nearest neighbour search space. A more prominent
phenomenon in ZSD is discarding unseen objects as back-
ground. We observe that the model misses the detection
of unseen class for images 7(a), 7(b), 7(c), 7(e) and 7(f).
This can be attributed to the model classifying the unseen
objects as background. Since Region Proposal Network
is trained using a purely supervised strategy, it suppresses
certain unseen class objects in its proposals and considers
them to be background. A solution to this problem would
be to include semantic information in the region proposal
network to avoid misclassification of region proposals con-
taining unseen objects as background class.

7.2. Varying Unseen Classes

We considered a fixed set of unseen classes for both
datasets in Section 4 which comprised of the same unseen
classes used in earlier work for fairness of comparison. In
this section, we present results for a different set of unseen
classes for both datasets. We note that earlier work didn’t
explicitly consider the quality of results on using different
splits, hence we don’t include their methods for comparison
here.

Tables 12 and 13 present the results for the new split of
the PASCAL vOC dataset (with table 13 stating the unseen
classes in the new split). Tables 7 and 11 present the re-
sults for the new split of the MS COCO dataset (with table 7
stating the unseen classes in the new split). Similar to the

previous split of the dataset, the MS-Zero and MS-Zero++
models outperform the MS-Zero-S and MS-Zero-V models
in all three test settings. Also, MS-Zero++ performs better
than MS-Zero in the test-unseen setting whereas MS-Zero
performs better than MS-Zero++ in the test-seen and test-
mix settings on both PASCAL VOC and MS COCO datasets.
This can be attributed to the fact that MS-Zero++, with the
help of the correlation loss, learns visual representations
which retain semantic properties that helps it to perform
well in the unseen setting. But, because of bad separa-
tion between seen classes in the semantic space, both MS-
Zero++ and MS-Zero-S do not perform well in the test-seen
setting when compared to MS-Zero. MS-Zero does not use
the correlation loss and hence learns visual representations
similar to MS-Zero-V which are relatively less affected by
the bad separation between seen classes in semantic space.
The performance in test-mix setting is biased towards the
test-seen setting.

7.3. Max-Margin Loss

We now discuss the impact of varying the margin in max-
margin loss formulation described in Equation 4. We train
the visual space branch of MS-Zero on two datasets: MS
COCO and PASCAL VOC using a max-margin loss. Max-
margin loss enforces a constraint on cosine similarity scores
between predicted embedding and ground truth embedding
to be at least the value specified by margin m. We consider
three values for margin 0.1, 0.7 and 1.0 corresponding to
approximately 90, 45 and 0O angle between the unit vectors
of the predicted and ground truth embeddings. Tables 8 and
10 present results on PASCAL VOC dataset and tables 9 and
6 present results on MS COCO dataset for different values
of margin. It is evident from the results that a margin value
of 0.1 performs the best for unseen classes. This can be
attributed to the fact that while a margin value of 0.1 en-
forces a minimum similarity constraint, it also allows the
model flexibility over a large range of similarity scores as
compared to other margin values. Hard constraints of mar-
gin value 0.7 and 1.0 lead to high loss values and model
divergence. Results for margin value of 1.0 for MS coco
are not provided in the tables due to model divergence with
margin 1.0 leading to very low scores. Thus, we conclude
that a margin value of 0.1 is the most appropriate choice.
We hence use 0.1 as the margin value for both MS-Zero and
MS-Zero++.

7.4. Weighting individual loss terms

In this section, we study the relative importance of the
loss terms in Equation 7. We assign a weight, A, to the fol-
lowing loss terms: softmax loss (L. as described in [31]
but used in our case only for seen classes), embedding loss
(Lsem in Equation 2), max margin loss (£,;s in Equation 4)
and correlation loss (L, in Equation 5). Similar to cycle-
gan, A was set to 10 for all experiments except for weighting
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Table 6. Table shows the class-wise Average Precision (AP) (%) for the unseen classes in test-unseen setting on MS COCO dataset for

different values of margin.
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Table 7. Table shows the class wise Average Precision (AP) (%) for the unseen classes for all models in test-unseen setting on MS COCO

dataset for the new split.

Margin | Seen | Unseen | Mix
0.1 74.49 | 62.15 | 60.05
0.7 76.77 | 44.89 | 59.07
1.0 76.37 | 45.64 | 58.78

Table 8. Table shows the mean average precision (mAP) (%) for
PASCAL VOC dataset in three different test settings for different
values of margin.

Margin | Seen | Unseen | Mix
0.1 424 12.9 30.7
0.7 41.9 10.4 30.1

Table 9. Table shows the mean average precision (mAP) (%) for
MS COCO dataset in three different test settings for different values
of margin.

Ls: for which A was set to 0.1. Further, this choice of A
was made as Lsem, Lyis and Le,, are of significantly lower
order than L.;s. On weighting L£.;s with A\ = 0.1, we obtain
a marginally better mAP of 57.95 than MS-Zero++ in test-
unseen setting on PASCAL VOC. This is because of reducing
the order of magnitude for L5 to the same order as Lge,,
Ly;s and L, which allows better contribution of each loss
term. On weighting L., and L,;s with A = 10, we get
an improved mAP of 58.46 and 58.85 respectively as due
to an increase in loss values, a higher gradient is obtained
which improves the training of MS-Zero++. On weighting
the correlation loss with A = 10, we observe an even higher
mAP of 61.49 as it enforces correlation amongst classes to
be the same in semantic and visual spaces thus enabling the
model to learn good representations in both spaces. We also
note that weighting these losses further improves upon the
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Figure 6. Qualitative detection results on test images from
MS COCO dataset. The topmost row shows detections using
MS-Zero-S. The middle row shows detections using MS-Zero-V.
The bottom row shows detections using MS-Zero.

mAP obtained by the unweighted loss objective for MS-
Zero++ on the PASCAL VOC dataset in test-unseen setting.
We cannot compare these results to MS-Zero results in ta-
ble 3 as MS-Zero uses GloVe embeddings [26] for the vi-
sual component of the model and semantic attribute embed-
dings [9] for the semantic component of the model whereas
MS-Zero++ uses only semantic attribute embeddings [9] on
PASCAL VOC.




Figure 7. Images showing some failure cases and potential areas
of improvement for MS-Zero as described in section 7.1. Incor-
porating semantic information in Region Proposal Network is a
possible step towards improving these detections.

Margin | car dog sofa | train
0.1 69.00 | 86.80 | 65.99 | 26.81
0.7 21.45 | 85.66 | 61.49 | 10.96
1.0 21.89 | 86.6 | 60.21 | 13.87

Table 10. Table shows the class-wise average precision (AP) (%)
for the unseen classes in test-unseen setting on PASCAL VOC
dataset for different values of margin.

Model Seen | Unseen | Mix
MS-Zero-S | 44.3 12.2 31.9
MS-Zero-V | 44.8 15.7 324

MS-Zero 46.0 17.6 33.1
MS-Zero++ | 39.6 19.7 30.1

Table 11. Table shows the mean average precision (mAP) (%) of
all models for MS COCO dataset in three different test settings for
the new split.

Model Seen | Unseen | Mix
MS-Zero-S | 70.39 | 48.14 | 52.74
MS-Zero-V | 79.46 | 47.71 | 63.15

MS-Zero 80.49 | 49.18 | 63.54
MS-Zero++ | 76.94 | 54.04 54.2

Table 12. Table shows the mean average precision (mAP) (%) of
all models for PASCAL VOC dataset in three different test settings
for the new split.

Model aeroplane | chair | motorbike | sheep
MS-Zero-S 21.95 20.61 73.47 76.53
MS-Zero-V 254 17.86 77.00 70.60

MS-Zero 24.98 22.85 77.95 70.90
MS-Zero++ 31.5 23.28 83.01 78.38

Table 13. Table shows the class wise average precision (AP) (%)
of all models for PASCAL VOC dataset in test-unseen setting for

the new split.




