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Abstract

In this document we provide supplementary material and
analysis that was not included in the main paper due to
space restraints. This supplementary document is organized
as follows:

1. PDQ Qualitative Examples.

2. Evaluation of PDQ traits.

3. Traditional Measures Obscuring False Positives.

4. PDQ Evaluation Without Ground-Truth Segmentation
Masks

5. Definition of mAP.

1. PDQ Qualitative Examples
We provide qualitative results for detectors tested on

COCO data in Section 7 of the main paper. Specifi-
cally, in this section we visualise results from SSD-300 [2],
YOLOv3 [7], Faster RCNN with ResNext backbone and
a feature pyramid network (FRCNN X+FPN) [3], and the
probabilistic MC-Dropout SSD detector based on the work
by Miller et al. [4, 5]. Unless otherwise stated, results
shown are for detectors using a label confidence threshold
of 0.5.

Using the detection-object pairing assignment from PDQ
as outlined in section 5.4 of the main paper, we are able
to provide visualisations outlining the true positives (TPs),
false positives (FPs) and false negatives (FNs) present in a
given image, as was done in Figure 6 of the main paper.
In these visualisations we show TPs as blue segmentation
masks and boxes, FPs as orange boxes, and FNs as orange

segmentation masks. We also provide a way to visualise
spatially probabilistic detections using ellipses in the top-
left and bottom-right corners, showing the contours of the
Gaussian corners at distances of 1, 2 and 3 standard devi-
ations. For conventional detectors, there are no ellipses as
they provide no spatial uncertainty. Because we know the
optimal assignment, as mentioned in the main paper, we can
extract pairwise quality scores between TPs. In our visual-
isations we provide pPDQ, spatial quality and label quality
scores for all TP detections in a text box at the top-left cor-
ner of the detection box.

Using visualisations of this form enables us to qualita-
tively reinforce some of the findings from the main paper
in the following three subsections. Firstly, we see again
how the number of false positives under PDQ increases with
lower label confidence thresholds (despite such detections
getting higher mAP scores). Secondly, we get to observe
the effect of spatial uncertainty estimation and how this ef-
fects spatial quality scores for different detections. Thirdly,
we can visually show the high label quality but poorer lo-
calisation achieved by YOLOv3 when compared to FRCNN
X+FPN.

1.1. Increased False Positives with Lower Label
Confidence Threshold

Reinforcing the finding of the main paper, we show more
examples for FRCNN X+FPN with label confidence thresh-
olds of 0.5 and 0.05 respectively in Figure 1. Note that be-
cause these images are rather cluttered, we omit the detailed
quality information beyond the detection’s maximum class
label. We see that the number of FPs (orange boxes) in-
creases dramatically when the label confidence threshold is
lowered to 0.05.
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(a) 0.5 Label Threshold

(b) 0.05 Label Threshold

Figure 1: Detections from FRCNN X+FPN at label confidence thresholds of 0.5 (a) and 0.05 (b) as evaluated by PDQ. We
see more false positives (orange boxes) under PDQ with 0.05 despite 0.05 giving higher mAP scores as shown in the main
paper.

1.2. Spatial Uncertainty Estimation

We show some examples from the MC-Dropout SSD de-
tector to highlight the effect that spatial uncertainty has on
both spatial quality and overall pPDQ in Figures 2 and 3.

Figure 2 shows the effect that spatial uncertainty estima-
tion has on the spatial quality of PDQ. In Figure 2a we see
the spatial quality vary between three people based upon
uncertainty estimation. The left-most person has the poor-
est spatial quality as the box misses part of his entire arm,
goes too far below their feet, and yet has very little spa-
tial uncertainty in it’s detection, scoring a spatial quality of
only 28.5%. This is in comparison to the right-most person
who has a detection with some uncertainty to the top, left,
and right of the box, matching where there is the most error
in the detection itself. This leads to a much higher spatial
quality of 88.4%.

In Figure 2b, we see that simply adding spatial uncer-
tainty is not enough to guarantee a good score and a TP
detection. We see the bottom of the detection box for the

human is over-confident, leading to a FP detection. Fi-
nally, in Figure 2c, we see that the box around the laptop
is nearly perfect and yet the right-most edge has high un-
certainty. By comparison, we see the person in the picture
has a poorer base bounding box but appears to have a more
reasonable estimate of it’s uncertainties. Comparing spatial
quality scores, we see that despite it’s better base bounding
box, the spatial quality of the laptop is only 65% compared
the person’s spatial quality of 87.5%. This drop in spatial
quality is due to the high spatial uncertainty expressed by
the laptop detection.

1.3. MC Dropout Vs SSD

In the main paper, we showed that MC-Dropout SSD
was able to achieve higher spatial quality, and by extension
pPDQ, than conventional detectors. We show this visually
in Figure 3, comparing detections from MC-Dropout SSD
to those of SSD-300. Neither has tight detections around
the person or umbrella, but SSD-300 boxes visually appear
tighter. However, SSD-300 detections are over-confident,
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expressing no spatial uncertainty and attaining spatial qual-
ity up to only 3.8% found on the person. In comparison,
we see MC-Dropout SSD detections expressing uncertainty
that coincides with the innacuraccies of the detection. This
provides a spatial quality of up to 62.7% found on the per-
son. Better pPDQ scores are seen for both objects with MC-
Dropout.

1.4. YOLO Label Vs Spatial Quality

In the experiments from the main paper, we showed that
YOLOv3 achieves high label quality but comparatively low
spatial quality when compared with other detectors such as
FRCNN X+FPN. In Figure 4 we visually compare YOLOv3
and FRCNN X+FPN results to qualitatively confirm this ob-
servation.

Examining Figure 4, we see that in the left image
YOLOv3 produces higher confidence detections for chair
and hotdog than FRCNN X+FPN, but because their detec-
tions are over-confident and have poorer localisation, they
are treated as FPs rather than TPs. On the right, we see a
more confident pizza detection from YOLOv3 but a poorer
box localisation leading to spatial quality of 0.1% compared
to the 13.9% spatial quality of FRCNN X+FPN (0.5). This
supports the observation from the main paper that YOLOv3
can have higher label quality than FRCNN detectors but
tends to have a lower spatial quality due to poorer locali-
sation.

2. Evaluation of PDQ Traits
We demonstrate the characteristics of PDQ when com-

pared with existing measures (mAP [1] and moLRP [6])
when responding to different types of imperfect detec-
tions, expanding upon what was covered in the main paper.
Specifically, we examine the effect of spatial uncertainty,
detection misalignment, label quality, missing ground-truth
objects, and duplicate/false detections. Throughout, we re-
fer to standard detections with no spatial uncertainty as
bounding box (BBox) detections and probabilistic detec-
tions with spatial uncertainty as probabilistc bounding box
(PBox) detections.

2.1. Spatial Uncertainty

We examine the effect of spatial uncertainty on BBox
and PBox detections respectively.

BBox Spatial Uncertainty We evaluate a perfectly
aligned BBox detection which has varying values of spa-
tial probability for every pixel therein. Whilst not a realis-
tic type of detection, it allows for easy examination of the
response from existing measures and PDQ to spatial proba-
bility variations. The results are shown in Figure 5

This experiment shows that PDQ is gradually reduced
by decreasing spatial certainty, whereas mAP and moLRP

(a) general

(b) over-confident

(c) under-confident

Figure 2: Visualisation of MC-Dropout SSD detections as
analysed by PDQ. Ellipses represent spatial uncertainty. In
(a) we see a general case where individuals have better or
worse spatial quality dependant on uncertainty estimation.
In (b) we see a detection with uncertainty which is still over-
confident and misses the person. In (c) we see an under-
confident detection around the laptop.
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(a) MC-Dropout SSD

(b) SSD-300

Figure 3: Comparison of MC-Dropout SSD to SSD-300.
SSD-300 is shown to be spatially over-confident leading to
low scores despite tighter boxes.

consistently consider the provided output to be perfect as
they are not designed to measure uncertainty.

PBox Spatial Uncertainty To examine the effect of in-
creasing spatial uncertainty on PDQ using PBoxes, we per-
form a test using a perfectly aligned PBox detection on a
single object. We consider a simple square-shaped 500 x
500 object centred in a 2000 x 2000 image. PBox corner
Gaussians are spherical and located at the corners of the
object they are detecting. PBox reported variance for the
corner Gaussians is varied to observe the effect of increased
uncertainty. The results of this test are shown in Figure 6.
We see a decline in PDQ with increased uncertainty demon-
strating how PDQ penalises under-confidence.

2.2. Detection Misalignment

We perform two experiments to analyse responses to
misaligned detections. These are translation error and scal-
ing error.

Translation Error We observe the effect of translation
errors by shifting a 500 x 500 detection left and right past
a 500 x 500 square object centred within a 2000 x 2000
image. This is tested both using BBoxes, and PBoxes
with spherical Gaussian corners of varying reported vari-
ance (BBoxes equivalent to reported variance of zero). The
results from this test are shown in Figure 7.

Here, we see that PDQ strongly punishes any deviation
from the ground-truth for BBoxes with no spatial uncer-
tainty. In some cases PDQ drops close to zero after only
a 10% shift. This is in strong comparison to mAP and
moLRP which, while decreasing, does so at a far slower
rate despite high confidence being supplied to incorrectly
labelled pixels. As a shift of 10% is quite large for a 500 x
500 square, PDQ does not provide such leniency in its scor-
ing until variance is 1000, at which point it closely follows
the results of mAP and moLRP. We see that as uncertainty
increases, PDQ provides increased leniency, however, the
highest score attainable drops reinforcing the idea that PDQ
requires accurate detections with accurate spatial probabili-
ties as stated within the main paper.

Scaling Error Using the same experimental setup as the
translation tests, rather than translating detections, we keep
detections centred around the square object and adjust the
corner locations such that the area of the square generated
by them is proportionally bigger or smaller than the original
object. The results from this are shown in Figure 8.

This reinforces the findings of the translation tests, show-
ing how PDQ strongly punishes over-confidence or under-
confidence in spatial uncertainty. When there is greater de-
viation in box size, PDQ is more lenient when the uncer-
tainty is higher. We do not see this same response from
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(a) YOLOv3

(b) FRCNN X+FPN

Figure 4: Visualisation of YOLOv3 detections compared with FRCNN X+FPN.
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Figure 5: Evaluation of the effect of spatial probability on a
perfectly aligned BBox. We see that unlike existing object
detection measures, PDQ is effected by spatial probability
changes.

mAP and moLRP which treat standard BBoxes with high
confidence in a similar manner to PDQ on PBoxes with vari-
ance of 100. We see from both this and the translation test
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Figure 6: Plot showing the effect on PDQ of increasing
variance, and by extension uncertainty, on perfectly aligned
PBoxes. We see that for perfectly aligned detections, the
score goes down the more uncertain the PBox detection is.

that PDQ rewards boxes with high predicted variance when
the actual variance of the box is high. This reinforces the
finding of the main paper which states that PDQ requires
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Figure 7: Evaluation of the effect of translation on mAP,
moLRP, and PDQ scores. X-axis shows proportional shift
of detection box either to the left (negative) or right (posi-
tive). Variance (var) refers to the variance of corner Gaus-
sians of the PBox detections. BBox is used when var is
zero. We see mAP and moLRP are lenient to BBox detec-
tions with no uncertainty when compared to PDQ and that
PDQ is more lenient the more uncertain the detector is.
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Figure 8: Evaluation of the effect of scaling on mAP,
moLRP and PDQ scores. X-axis shows the proportional
size of the detection to the ground-truth object. Variance
(var) refers to the variance of corner Gaussians of PBox
detections. BBox is used when var is zero. We see mAP
and moLRP are lenient to detections with no uncertainty
compared to PDQ and that PDQ is more lenient the more
uncertain the detector is.

accurate estimates of spatial uncertainty.

2.3. Label Quality

As demonstrated in the main paper, PDQ explicitly mea-
sures label quality, unlike existing measures. We performed
an additional test on the COCO 2017 validation data[1] us-
ing simulated detectors beyond that done in Section 6 of the
main paper. In this test, we set the label confidence for the
correct class of each simulated detection to a given value
and evenly distribute the remaining confidence between all
possible other classes. The results from this experiment
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Figure 9: Effects of adjusting label confidences on mAP,
moLRP, and PDQ when label probability for the correct
class is adjusted using simulated detections on the COCO
2017 validation dataset. We see that existing measures are
unaffected as long as the correct class is the class with high-
est probability in the label distribution. PDQ by comparison
decreases with the label probability.

when using perfectly aligned BBox simulated detections are
shown in Figure 9. This reinforces what had been seen pre-
viously, that existing measures are not explicitly effected
by label probability, except when the maximum label confi-
dence does not belong to the correct class.

2.4. Missed Ground-truth Objects

We provide the results of two experiments that show that
PDQ and existing measures perform the same when ground-
truth objects are missed. The first experiment is a simplified
scenario where we add an increasing number of small 2 x
2 square objects around the edge of a single image with
one large ground-truth object within it. In this image, only
the large ground-truth object is ever detected and the detec-
tion is spatially and semantically perfect. Results for mAP,
moLRP, and PDQ for this scenario are visualised in Fig-
ure 10. The second experiment is performed on the COCO
2017 validation data using simulated detectors as done pre-
viously. Here we define a missed object rate for all detectors
which dictates the probability that a detection is generated
for the given ground-truth object. This was done for per-
fectly spatially aligned BBox detections and results can be
seen in Figure 11.

Both experiments show that, despite their other differ-
ences, mAP, moLRP, and PDQ respond the same to missed
ground-truth objects (FNs).

2.5. False Detections

We provide the results of a simplified scenario to show
that, excluding edge cases that will be discussed in Sec-
tion 3, mAP, moLRP, and PDQ respond almost the same
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Figure 10: Evaluation of the effect of missing ground-truth
objects on evaluation scores in simplified scenario. We ob-
serve that all measures respond the same to missed ground-
truth objects.
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Figure 11: Evaluation of the effect of missing an increased
proportion of ground-truth objects on COCO 2017 valida-
tion dataset images. We see the response from all measures
is the same.

to false positive detections. To demonstrate this, we test
a scenario where a single object in a single image is pro-
vided with a single perfectly spatially aligned detection and
an increasing number of small 2 x 2 detections around the
edge of the image. The correct detection always has a la-
bel probability of 0.9 and all subsequent detections have a
label probability of 1.0 so as to avoid edge cases for mAP
explained and discussed in Section 3. We plot the resultant
mAP, moLRP, and PDQ scores in Figure 12.

Here we again observe consistency between the mAP,
moLRP, and PDQ responses to false detections despite their
differences in formulation. Variations between PDQ and the
other measures are caused by the lower label confidence for
the correct detection which is known to effect PDQ. While
the responses here are almost identical, we have identified
situations wherein mAP and moLRP obscure FP detections
and lessen their impact.
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Figure 12: Evaluation of the effect of false detections on
evaluation scores. We observe that generally, all measures
respond the same to false detections.

3. Traditional Measures Obscuring False Posi-
tives.

In the main paper, we describe how mAP and moLRP are
able to obscure the impact of FPs present in the detections
presented for evaluation. To support these statements, we
produce some simplified scenarios designed to demonstrate
unintuitive outputs from mAP and moLRP when given FP
detections. Whilst not representative of how these measures
are meant to act, they show unusual behavior for testing
deployed detectors that PDQ does not share. We do this
through multiple test scenarios.

3.1. Duplicate 100% Confident Detections

In the first scenario, we consider detecting a single object
in a single image where there is an increasing number of
perfectly-aligned, 100% confidence detections of that single
object. Results of this scenario are shown in Figure 13. We
observed that PDQ and moLRP penalised the additional FP
detections, whereas mAP gave 100% accuracy at all times.

This edge case breaks mAP due to how the PR curve for
this scenario is generated and utilised. As is explained later
in Section 5, the PR curve used for mAP uses the maxi-
mum precision at each level of recall to provide a smooth
PR curve. However, through this approach, it is assumed
that as detections are added to the analysis, the result will
be continually increasing recall. Once the recall becomes
perfect, or reaches some maximum value, any further false
detections are ignored. Here, as all detections have 100%
confidence and perfectly overlap the ground truth, the first
detection is treated as the TP and all others are ignored. The
same effect would occur regardless of whether detections
are perfect duplicates or located randomly within the im-
age, as long as the TP is ordered first in confidence order
(or in input order in the case of ties, see section 5). This is
why we attain the result for mAP shown in Figure 13.

This is not a new problem with mAP, and such be-

7



0 2 4 6 8 10
Number of False Detections

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Sc

or
e

False Detections Plot

Measure
mAP
1-moLRP
PDQ

Figure 13: Duplications test results showing mAP, moLRP,
and PDQ values when perfect duplicate FP detections are
added in a one-object scenario. The TP detection is evalu-
ated before the FPs, causing subsequent FPs to be ignored
by mAP. PDQ and moLRP respond as expected, penalising
FPs.

haviour caused by relative ranking has been outlined in
past works [7]. In comparison to this, moLRP and PDQ
respond as expected to an increasing number of FP detec-
tions. This is because both explicitly measure the number
of false positives or the false positive rate from the detector
output. While robust to this first scenario, our second sce-
nario shows that moLRP can also respond to false positive
detections in the same unintuitive manner as mAP.

3.2. False Detections with Lower Confidence

Here, we consider a single image with a single object
which is detected by a BBox detection of perfect spatial
and semantic quality. In addition to this, we introduce an
increasing number of small false detections with label con-
fidence 90% around the border of the image. The results
from this scenario are shown in Figure 14.

We observe in this scenario that mAP and moLRP both
consider the results as perfect, regardless of the number of
FPs, while PDQ penalises the increasing number of FP de-
tections. This mAP result comes from the same relative
ranking issues as outlined in the previous scenario (Section
3.1). The moLRP result, on the other hand, has changed due
to the optimal thresholding done as part of the algorithm [6].
The moLRP score is designed to show the best possible per-
formance of the detector if the best label confidence thresh-
old for each class is chosen. Choosing an ideal threshold
above 0.9, the performance of the detector becomes per-
fect, despite the high-confidence false positive detections.
This trait of moLRP is beneficial for testing the ideal perfor-
mance of a detector and for tuning a detector’s final output.
However, as stated in the main paper this is not beneficial
for testing systems to be applied in real-world applications,
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Figure 14: False detection test where all FP detections have
slightly lower label confidence than the TP detection (90%
Vs 100%). Both mAP and moLRP are shown to treat this
as perfect detection output.

which cannot choose the optimal threshold on-the-fly dur-
ing operation. In contrast, PDQ does no such filtering and
does not obscure false positive detections.

3.3. Duplicate Detections on COCO Data

Scenario 3 extends scenario 1 (Section 3.1) from a single
image to examine duplicate detections on the COCO 2017
validation data [1]. Again, every detection provided 100%
probability of being the correct class and was perfectly spa-
tially aligned. The detections are ordered such that all de-
tections for a given object occur before the detections of the
following object. For example, if the number of duplicates
is three, the order of detections would be three detections
of object A followed by three detections of object B and so
on. See Section 5 for why ordering is important. It is ex-
pected that for such an experiment, the result for all evalua-
tion measures would be reciprocal in nature (i.e. when there
are 2 detections per object the score will be 1/2). However,
this is not exactly what we observed by our results as shown
in Figure 15. What we see from this figure, is that the mAP
provides scores slightly higher than expected, whereas PDQ
and moLRP measures more closely follow the expected out-
comes from such an experiment.

Again, this issue with mAP is caused by the smoothing
of the PR curve outlined in Section 5 and the ordering of
our detections. As described in Section 5, mAP takes the
maximum precision at each of its 101 sample recall values.
Additional FPs decrease precision, but don’t affect the re-
call, and so are ignored. As a simplified example, if two
detections are given for every object, the recorded precision
after 3 objects have been correctly detected is not 0.5 but
rather 0.6 as three TPs have been evaluated to only two FPs,
despite three FPs being present at this level of recall. This
can cause small discrepancies to occur and is the reason for
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Figure 15: Test results on COCO 2017 validation data com-
paring scores when a number of perfectly aligned dupli-
cate FP detections are added. Each duplicate FP is or-
dered directly after their corresponding TP detection. Due
to smoothing of the PR curve, calculated precision becomes
higher than expected for some classes at different levels of
recall, causing mAP to be higher than expected. Other mea-
sures remain relatively unaffected.
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Figure 16: Duplication test results such as done for Fig-
ure 15 on subset of 100 images from COCO 2017 valida-
tion data. This shows heightened mAP scores from those
shown Figure 15 demonstrating increased unintuitive be-
haviour from mAP as the dataset gets smaller.

mAP’s unusual performance. As we see in the following
scenario, this is a problem which increases in severity with
small datasets.

3.4. Duplicate Detections on Subset of COCO Data

In the fourth scenario, we increase the severity of the
mAP error found in the previous scenario (Section 3.3). We
do this by testing on a subset of the full 5,000 COCO images
previously used, evaluating on only the first 100 images. We
show these results in Figure 16.

Here we see that the mAP scores are far higher at than
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Figure 17: Duplication test results on COCO 2017 valida-
tion data where all FP duplicate detections have lower label
confidence than the TP detection (90% Vs 100%). Unlike
PDQ, both mAP and moLRP are shown to treat this as per-
fect detection output.

expected for each level of detections per object, an exagger-
ation of the effect in Section 3.3. This occurs because the
smaller number of ground truth instances results in fewer
possible measurable recall values. As precision is recorded
at 101 set levels of recall, and (as established in Section
3.3) FPs are obscured until a new measured level of recall
is reached, the FPs remain obscured for more recorded lev-
els of recall. Correspondingly, there are fewer total detec-
tions at each recorded level of recall, making the number of
obscured FPs relatively more significant. This means that
more of the recorded maximum precision values are higher,
leading to a higher mAP score.

This can ultimately result in the extreme case discussed
in Section 3.1. We observe then that the issues caused by
the obfuscation of FPs under mAP increases as the number
of samples tested gets smaller. Again, we note that both
moLRP and PDQ do not suffer from this issue, as they ex-
plicitly measure FPs.

3.5. Duplicate Detections with Lower Confidence on
COCO Data

Reinforcing our findings in Sections 3.3 and 3.4, we
show again that moLRP, while sometimes avoiding pitfalls
present in mAP, can still obscure false positive detections
through optimal thresholding. In this scenario, we ensure
that only the first detection has label confidence of 100%
and all subsequent duplicate detections have label confi-
dence of 90%. The results of this test are shown in Fig-
ure 17. As expected, PDQ continues to treat the false pos-
itives as significant whilst mAP and moLRP both consider
the detection output as perfect.

9



3.6. Summary

In summary, we have demonstrated extreme scenarios
showing that both mAP and moLRP can obscure false posi-
tive detections under different conditions leading to unintu-
itive results. These issues result from the assumptions made
when generating and using PR curves for mAP and optimal
thresholding for moLRP. As stated in the main paper, this
unintuitive nature is inappropriate behavior for evaluating
detectors meant for real-world deployment. We show that
PDQ is unaffected by such scenarios, reinforcing the find-
ings of the main paper.

4. PDQ Evaluation Without Ground-Truth
Segmentation Masks

In the main paper we allude to the fact that PDQ can be
used without pixel-perfect segmentation ground-truth. Here
we reinforce this point by modifying the experiments from
the main paper (Section 7) using the COCO bounding-box
annotations as ground-truth rather than the segmentation
mask annotations within our PDQ analysis. This enables us
to observe the difference in PDQ scores between the two
types of ground-truth. When using bounding-box anno-
tations, all pixels within the bounding-box are considered
part of the object’s segmentation mask Sfj . Results from
the bounding-box experiments alongside the average differ-
ences in scores between the original results from Table 1 of
the main paper are summarized in Table 1.

These tests show that, although unideal, using bounding-
boxes as ground-truth segmentation masks does not drasti-
cally change PDQ. The change yields only an absolute de-
crease in PDQ scores of 1.1% and does not change PDQ
rank order significantly. We can see the change in PDQ
is caused by the need to detect previously irrelevant pix-
els, decreasing foreground quality by an average of 27.7%.
We see that the use of the bounding-box ground-truth also
increases background quality by an average of 11.8% and
this can be attributed to the higher number of foreground
pixels used to scale background loss in Equation 3 of the
main paper. Overall we can conclude that while there will
be some changes to PDQ score when using the unideal case
of bounding-boxes as ground-truth annotation masks, these
changes are not drastic and PDQ is suitable for use in cases
where only such annotations are available.

5. Definition of mAP

For the sake of completeness and to aid in understanding
the behaviour shown in Section 3, here we define mean av-
erage precision (mAP) as used by the COCO detection chal-
lenge [1]. Each detection provides a bounding box (BBox)
detection location (Bfj ) and a confidence score for its pre-
dicted class sfj . For each detection in the f -th frame of

Data: a dataset of f = 1 . . . NF frames with

detections Df = {Bfj , s
f
j }

Nf
D

j=1 and ground

truths Gf = {B̂fi }
Nf

G
i=1 for each frame for a given

class ĉ
Let U be the set of unmatched objects
forall frames in the dataset do

order detections by descending order of sfj
forall detections in frame do
Gf∗ = argmaxGf

i
IoU(Gfi ,D

f
j ) if

IoU(Gf∗ ,Df
j ) > τ and Gf∗ ∈ U then

zfj = 1

U = U − Gf∗
end

end
Return z = [z11 , z

1
2 , . . . , z

NF

N
NF
D

]

Algorithm 1: mAP Detection Assignment

a given class, mAP assigns detections to ground-truth ob-
jects of that same class. Each detection is defined as as
either a true positive (TP) if it is assigned to a ground-truth
object, or a false positive (FP) if it is not. Detections for
each class are ranked by confidence score and assigned to
ground-truth objects in a greedy fashion if an intersection
over union (IoU) threshold τ is reached. IoU is calculated
as follows

IoU(B̂fi ,B
f
j ) =

area(B̂fi ∩ B
f
j )

area(B̂fi ∪ B
f
j )
, (1)

where B̂fi ∩B
f
j is the intersection of the ground-truth and de-

tection bounding boxes and B̂fi ∪B
f
j is their union. The as-

signment process is summarized by Algorithm 1 and results
in an identity vector z which describes for each detection,
whether it is a TP or FP with values of 1 or 0 respectively.

After the assignment process is conducted for all images,
a precision-recall (PR) curve is computed from the ranked
outputs of the given class. Precision and recall are calcu-
lated for each detection as it is “introduced” to the evalu-
ation set in order of highest class confidence (and then in
submission order in the event of confidence ties). Preci-
sion is defined as the proportion of detections evaluated that
were true positives, and recall is defined as the proportion
of ground-truth objects successfully detected. After gener-
ating the PR curve for the given class, the maximum pre-
cision is recorded for 101 levels of recall uniformly spaced
between zero and one. The maximum precision is used to
avoid “wiggles” in the PR curve, resulting in a smoothed PR
curve. If no precision has been measured for a given level
of recall, the precision at the next highest measured level
of recall is recorded. Maximum precision at recall values
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Table 1: PDQ-based Evaluation of Probabilistic and Non-Probabilistic Object Detectors using bounding-box ground-truth.
Legend: mLRP = 1 − moLRP, Sp = Spatial Quality, Lbl = Label Quality, FG = Foreground Quality (exp(−LFG)), BG =
Background Quality (exp(−LBG), TP = True Positives, FP = False Positives, FN = False Negatives. pPDQ, Sp, Lbl, FG and
BG averaged over all TP. Final row shows average difference between bounding-box ground-truth and segment ground-truth
with (+) and (-) indicating score increases and decreases when using bounding-box ground-truth respsectively.

Approach (τ ) mAP mLRP PDQ pPDQ Sp Lbl FG BG TP FP FN
(%) (%) (%) (%) (%) (%) (%) (%)

probFRCNN (0.5) 35.5 32.2 27.0 52.6 40.8 90.2 54.4 77.8 23,809 9,641 12,972
MC-Dropout SSD (0.5) [4] 15.8 15.6 12.4 43.9 36.2 73.3 55.9 67.7 10,892 1,783 25,889
MC-Dropout SSD (0.05) [4] 19.5 16.6 1.3 26.1 23.2 33.3 50.1 49.3 27,797 458,120 8,984
SSD-300 (0.5) [2] 15.0 14.3 2.7 11.4 3.9 79.5 27.7 30.1 9,768 3,977 27,013
SSD-300 (0.05) [2] 19.3 16.0 0.4 5.8 2.2 41.8 19.9 29.1 23,318 322,710 13,463
YOLOv3 (0.5) [7] 29.7 30.8 4.8 10.0 2.8 95.7 21.5 34.0 20,145 4,973 16,636
YOLOv3 (0.05) [7] 30.1 27.7 2.7 8.1 2.2 93.0 18.8 33.9 27,499 46,022 9,282
FRCNN R (0.5) [8] 32.8 29.1 7.2 17.3 7.8 88.3 31.6 39.4 22,505 17,469 14,276
FRCNN R (0.05) [8] 34.3 29.1 3.2 15.3 7.1 78.2 30.0 38.5 26,235 89,987 10,546
FRCNN R+FPN (0.5) [3] 34.6 31.2 7.9 16.7 7.1 86.2 21.8 54.3 23,827 13,416 12,954
FRCNN R+FPN (0.05) [3] 37.0 30.4 2.8 2.8 6.5 69.8 20.4 53.2 30,942 121,895 5,839
FRCNN X+FPN (0.5) [3] 37.4 32.7 8.0 17.2 7.4 87.9 21.8 55.6 25,937 19,030 10,844
FRCNN X+FPN (0.05) [3] 39.0 32.1 2.9 15.1 6.9 74.6 20.6 54.5 31,578 128,353 5,203

Avg. Diff. from Original 0 0 -1.1 -6.5 -5.5 -0.3 -27.7 +11.8 +1873 -1873 -1873

above the highest reached are 0, to handle false negatives
(FNs). This process on a simple scenario is outlined visu-
ally in Figure 18. This is process repeated for every eval-
uated class and at multiple values of τ . The average of all
recorded precision values across all IoU thresholds, classes,
and recall levels, provides the final mAP score.
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Figure 18: Process for extracting precision values from a PR curve for a given object class at a given threshold. The top-left
shows the example scenario with ground-truth objects shown as black boxes, true-positive detections shown as light blue
BBoxes, and false-positive detections shown as orange BBoxes. Numbers within the boxes represent label confidence. Top-
right figure shows PR curve generated as each detection is added in order of decreasing label confidence. Bottom-left figure
shows the effect of smoothing the PR curve by only taking the maximum precision values. Bottom-right shows the precision
values extracted for a given range of recall values examined. Note that 101 samples are made across different levels of recall.
Best viewed in colour.
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